STUDIA MATHEMATICA 189 (2) (2008)

Continuous rearrangements of the Haar system in H_p for 0

by

Krzysztof Smela (Rzeszów)

Abstract. We prove three theorems on linear operators $T_{\tau,p} : H_p(\mathcal{B}) \to H_p$ induced by rearrangement of a subsequence of a Haar system. We find a sufficient and necessary condition for $T_{\tau,p}$ to be continuous for 0 .

1. Introduction. Denote by \mathcal{D} the collection of all dyadic intervals in [0, 1]. The Lebesgue measure on [0, 1], the cardinality of the set or the absolute value, depending on the context, will be denoted by the same $|\cdot|$. With each interval $I \in \mathcal{D}$, $I = [k/2^n, (k+1)/2^n)$, we associate the Haar function $h_{I,p}$,

$$h_{I,p}(t) = \begin{cases} 2^{n/p} & \text{if } 2k/2^{n+1} \le t < (2k+1)/2^{n+1}, \\ -2^{n/p} & \text{if } (2k+1)/2^{n+1} \le t < 2(k+1)/2^{n+1}, \\ 0 & \text{otherwise.} \end{cases}$$

We define H_p as the space of all distributions $f = \sum a_{I,p} h_{I,p}$ for which

$$||f||_{H_p} = \left[\int_{0}^{1} \left(\sum_{I \in \mathcal{D}} |a_{I,p}h_{I,p}(t)|^2\right)^{p/2}\right]^{1/p} < \infty.$$

For $1 \leq p < \infty$, $\|\cdot\|_{H_p}$ is actually a norm. When 0 the above $expression defines a quasi-norm. It is known ([W1]) that <math>H_p$ spaces are isomorphic to classical Hardy spaces of analytic functions on the unit disc. Suppose $\mathcal{B} \subset \mathcal{D}$. Then $H_p(\mathcal{B})$ denotes the closed linear span of $\{h_{I,p} : I \in \mathcal{B}\}$ in H_p . For a one-to-one map $\tau : \mathcal{B} \to \mathcal{D}$ it is of interest to consider the operators $T_{\tau,p} : H_p(\mathcal{B}) \to H_p$, given by

$$T_{\tau,p}(h_{I,p}) = h_{\tau(I),p} \quad (I \in \mathcal{B}).$$

After [Mu] such operators will be called *rearrangements of the Haar system* (or subsystem), for short rearrangements in H_p . In this paper we describe

[189]

Key words and phrases: Haar basis, Carleson constant.

²⁰⁰⁰ Mathematics Subject Classification: 42C20, 43A17, 47B38.

the continuous rearrangements $T_{\tau,p}: H_p(\mathcal{B}) \to H_p$ for 0 . Thisallows us for example to characterize the isomorphisms (isomorphic rear $rangements) of <math>H_p(\mathcal{B})$ induced by τ . We restrict the discussion to H_p spaces for 0 . However, for <math>p > 1, $H_p = L_p$ with equivalent norms, so in this case the results presented here apply to L_p . The operators $T_{\tau,p}$ in L_p , $1 , for <math>\tau$ length preserving were investigated by Semyonov [Sem]. The operators $T_{\tau,\infty}$ in BMO and $T_{\tau,p}$ in H_p for $1 \le p < 2$ and 2 , $for arbitrary injection <math>\tau$, were thoroughly studied by Müller [Mu]. Geiss et al. [GMP] described extrapolation of rearrangement operators in H_p for 0 , namely they showed that for <math>0 < s < p < 2 and $0 < \theta < 1$ satisfying $1/p = (1 - \theta)/s + \theta/2$ there exists a constant c > 0, depending only on s and p, such that

$$||T_{\tau,s}: H_s \to H_s||^{1-\theta} \le ||T_{\tau,p}: H_p \to H_p||$$

(the reverse inequality is rather standard and follows by interpolation). Thus results from [Mu] were extended in [GMP] to the case 0 .

For $\mathcal{L} \subset \mathcal{D}$ and $I \in \mathcal{D}$ we use $\mathcal{L} \cap I$ to denote the family of all intervals from the family \mathcal{L} contained in I; $\mathcal{Q}(I)$ denotes $\mathcal{D} \cap I$. All intervals from \mathcal{D} of length 2^{-m} will be denoted by \mathcal{D}_m . In other words, $\mathcal{D}_m = \mathcal{D} \cap \{I \subset [0, 1] : |I| = 2^{-m}\}$. For $\mathcal{L} \subset \mathcal{D}$, the set of all maximal intervals in \mathcal{L} with respect to inclusion will be denoted by $\mathfrak{max}(\mathcal{L})$. After [Mu] we say that $\mathcal{L} \subset \mathcal{D}$ satisfies the *M*-Carleson condition if

(1)
$$\sup_{J\in\mathcal{D}}\frac{1}{|J|}\sum_{I\in\mathcal{L}\cap J}|I|\leq M.$$

We use $\llbracket \mathcal{L} \rrbracket$ to denote the infimum of the constants M that satisfy (1) and we call it the *Carleson constant* of the family \mathcal{L} . If there exists $N < \infty$ such that $\llbracket \tau^{-1}(\mathcal{L}) \rrbracket \leq N \llbracket \mathcal{L} \rrbracket$ for each $\mathcal{L} \subset \tau(\mathcal{B})$, we say that τ^{-1} preserves the *Carleson* constant, and we denote by $\llbracket \tau^{-1} \rrbracket$ the infimum of such constants N. Similarly, we say that τ preserves the *Carleson constant* if there exists $N < \infty$ such that $\llbracket \tau(\mathcal{L}) \rrbracket \leq N \llbracket \mathcal{L} \rrbracket$ for every $\mathcal{L} \subset \mathcal{B}$, and we define $\llbracket \tau \rrbracket$ as the infimum of such N. We will see that for $0 the operator <math>T_{\tau,p}$ is continuous if and only if τ^{-1} preserves the *Carleson constant*, while for 2 the operator $<math>T_{\tau,p}$ is continuous if and only if τ preserves the *Carleson constant*. These results appeared in [Mu] for rearrangements in BMO and H_p for $1 \le p < 2$ and 2 , and were then extended in [GMP] to <math>0 . Our main $result is proved with the use of atomic decomposition of <math>H_p$ ([CoW], [We]).

2. A sufficient condition. We now give a sufficient condition for $T_{\tau,p}$ to be continuous.

THEOREM 1. Let $0 . Assume <math>\mathcal{B}$, \mathcal{C} are families of dyadic intervals from \mathcal{D} such that there exists a bijection $\tau : \mathcal{B} \to \mathcal{C}$. If τ^{-1} preserves

the Carleson constant, then the operator

$$T_{\tau,p}: H_p(\mathcal{B}) \to H_p(\mathcal{C})$$

induced by τ is continuous.

Proof. We divide the proof into six parts.

1. It suffices to show that for some finite constant $C < \infty$.

$$||T_{\tau,p}(x)||_{H_p} \le C ||x||_{H_p}$$

for all $x \in H_p(\mathcal{B})$ of norm $||x||_{H_p} \leq 1$ with finite Haar expansion $x = \sum a_{I,p}h_{I,p}$. Indeed, if $x = \sum_{I \in \mathcal{R}} a_{I,p}h_{I,p}$ and $||T_{\tau,p}(x)||_{H_p} > N$, then (by simple approximation) there exists a finite family $\mathcal{R}_1 \subset \mathcal{R}$ such that $||T(\sum_{J \in \mathcal{R}_1} a_{J,p}h_{J,p})||_{H_p} > N$. By [We, Theorem 2.2] we may also assume that x is a simple $(2, p, \infty)$ atom (see [We] for definition). Moreover, we shall show in the next part that we can assume that the quadratic function $S(x) = (\sum a_{I,p}^2 h_{I,p}^2)^{1/2}$ is bounded,

(2)
$$1/8 \le S(x)[t] \le 1$$
 for $t \in [0, 1]$.

2. In order to justify (2) we use an atomic decomposition of x similar to the one used in the proof of [We, Theorem 2.2]. Let $\{h_{i,p}\}_i$ denote the Haar functions $\{h_{I,p}\}$ numbered according to the Haar order. For $s \in \mathbb{N}$ set

$$d_{s,p}(x) = \begin{cases} a_{I,p}h_{I,p} & \text{if } h_{s,p} = h_{I,p} \text{ and } a_{I,p} \neq 0, \\ 0 & \text{if } h_{s,p} = h_{J,p} \text{ and } a_{J,p} = 0. \end{cases}$$

We define stopping times $\nu_{k,p}$ for $k \in \mathbb{Z}$ by

$$\nu_{k,p}(t) = \inf \left\{ n \in \mathbb{N} : \left(\sum_{s=0}^{n+1} d_{s,p}(x)^2[t] \right)^{1/2} > 2^k \right\}.$$

Now x has an atomic decomposition

(3)
$$x = \sum_{k} c_{k,p} A_{k,p}$$

where

$$c_{k,p} = 3 \cdot 2^k |\{t \in [0,1] : S(x)[t] > 2^k\}|^{1/p}$$

and $A_{k,p}$ are simple $(2, p, \infty)$ atoms described by

$$A_{k,p} = \sum_{s \ge 0} \chi(\{t : \nu_{k,p}(t) < s \le \nu_{k+1,p}(t)\}) \cdot d_{s,p}(x) \cdot c_{k,p}^{-1}$$

with the property

(4)
$$C_p^{-1} \Big(\sum_k |c_{k,p}|^p \Big)^{1/p} \le ||x||_{H_p} \le \Big(\sum_k |c_{k,p}|^p \Big)^{1/p}.$$

Indeed, if we decompose x using (3), then applying the Abel rearrangement ([We]) we get

(5)
$$\sum_{k} |c_{k,p}|^{p} = 3^{p} \sum_{k} (2^{p})^{k} |\{t : S^{p}(x)[t] > (2^{p})^{k}\}|$$
$$= \frac{3^{p}}{2^{p} - 1} \sum_{k} [(2^{p})^{k+1} - (2^{p})^{k}] |\{t : S^{p}(x)[t] > (2^{p})^{k}\}|$$
$$\leq \frac{6^{p}}{2^{p} - 1} \sum_{k} (2^{p})^{k-1} |\{t : (2^{p})^{k-1} < S^{p}(x)[t] \le (2^{p})^{k}\}|.$$

3. For $x = \sum x_{I,p}h_{I,p}$ the collection of all dyadic intervals I from \mathcal{D} for which $x_{I,p} \neq 0$ in this Haar decomposition of x will be called the *Haar* support of x. Now we will construct an atomic decomposition of some vector x' such that

(6) Haar support of
$$x'$$
 = Haar support of x .

We assume for the moment that $A_{k,p} = 0$ for k < 0. For $t \in [0,1]$ let

$$k_{0,p}(t) = \min\{k : A_{k,p}[t] \neq 0\}$$

and $B_{k_{0,p}(t)} = A_{k_{0,p}(t)}$. Suppose $k_{n-1,p}(t)$ has been defined for some $n \ge 1$. Then we define

$$k_{n,p}(t) = \min\{k > k_{n-1,p}(t) : A_{k,p}[t] \neq 0\}$$

if it exists. Let $I_{k_{n,p}(t)}$ denote the longest interval in the Haar support of $A_{k_{n,p}(t)}$ containing t. We put

(7)
$$B_{k_{n,p}(t)}[t] = c_{k_{n,p}(t)}A_{k_{n,p}(t)}[t] + 2^{k_{n,p}(t)-2} \frac{h_{I_{k_{n,p}(t)}[t]}}{|h_{I_{k_{n,p}(t)}[t]}|}.$$

We can see that

$$2^{k_{n,p}(t)-2} \le S(B_{k_{n,p}(t)}[t]) \le 2^{k_{n,p}(t)+1} \quad \text{for } t \in \text{supp}(B_{k_{n,p}(t)})$$

so $B_{k_{n,p}(t)}$ multiplied by $2^{-(k_{n,p}(t)+1)}$ satisfies the boundedness condition (2) on its support. Define $B_{k,p}$ (to get rid of t in the index) as follows:

$$B_{k,p}[t] = B_{k_{n,p}(t)}[t]$$
 if $k_{n,p}(t) = k$.

It is easy to check that $\frac{1}{2}B_{k,p}$ are $(2, p, \infty)$ atoms. To specify x' mentioned in (6), we set

$$x' = \sum_{k} B_{k,p}.$$

Notice that each $B_{k,p}$ can be easily decomposed into a sum of simple atoms $B_{k_{n,p}(t)}$ (where $k_{n,p}(t) = k$) with pairwise disjoint supports being dyadic intervals. If we can show that

(8)
$$||T_{\tau,p}(B_{k,p})||_{H_p} \le C ||B_{k,p}||_{H_p}$$

for every k and $C = C(\llbracket \tau^{-1} \rrbracket) < \infty$, then for C_p from (4),

(9)
$$\|T_{\tau,p}(x)\|_{H_p}^p \stackrel{(7)}{\leq} \|T_{\tau,p}\Big(\sum_k B_{k,p}\Big)\Big\|_{H_p}^p \leq \sum_k \|T_{\tau,p}(B_{k,p})\|_{H_p}^p \\ \stackrel{(8)}{\leq} C^p \sum_k \|B_{k,p}\|_{H_p}^p \stackrel{(4),(7)}{\leq} C^p \cdot C_p^p \cdot 2^p \|x\|_{H_p}^p$$

and we are done.

4. Suppose $x \in H_p(\mathcal{B})$, $1/8 \leq S(x) \leq 1$ on [0,1], \mathcal{A} is the Haar support of x, and x has finite Haar expansion (i.e. \mathcal{A} is finite)

$$x = \sum_{I \in \mathcal{A}} a_{I,p} h_{I,p}.$$

For $k \in \mathbb{N}^+$ define

$$\mathfrak{K}_{k,\tau,p}(x) = \{ t \in [0,1] : (2^p)^{k-1} < S^p(T_{\tau,p}(x))[t] \le (2^p)^k \}$$

We shall always assume that $|L_s| = \frac{1}{2} \min\{|\tau(I)| : I \in \mathcal{A}\}$ and $L_s \in \mathcal{D}$ for each s. If $L_s \subset \mathfrak{K}_{k,\tau,p}(x)$ and $J_1, \ldots, J_{\mathfrak{g}_s}$ are all intervals from $\tau(\mathcal{A})$ containing L_s , we define

$$\mathcal{B}_s = \{J_1, \ldots, J_{\mathfrak{g}_s}\}$$

and

$$\alpha_J = |\tau^{-1}(J)|/|J|,$$

$$\widehat{\alpha}_s = \max\{\alpha_J : J \in \mathcal{B}_s\},$$

$$\beta_J = ||a_{\tau^{-1}(J),p}h_{\tau^{-1}(J),p}||_{\infty},$$

and choose an interval $\widehat{J}_s \in \mathcal{B}_s$ such that

(10)
$$|\widehat{J}_s| = \max\{|J| : J \in \mathcal{B}_s, \, \alpha_J = \widehat{\alpha}_s\}$$

Then, if $L_s \subset \mathfrak{K}_{k,\tau,p}(x)$, we have

$$2^{(k-1)p} \le \left(\sum_{J \in \mathcal{B}_s} \alpha_J^{2/p} \beta_J^2\right)^{p/2}.$$

5. We consider three possible cases:

(i) $\sum_{J \in \mathcal{B}_s} \beta_J^2 \leq 1;$ (ii) $\sum_{J \in \mathcal{B}_s} \beta_J^2 > 1$ but $\sum_{J \in \mathcal{B}_s} \alpha_J \beta_J^2 - \alpha_K < 0$ for some $K \in \mathcal{B}_s;$ (iii) $\sum_{J \in \mathcal{B}_s} \beta_J^2 > 1$ and $\sum_{J \in \mathcal{B}_s} \alpha_J \beta_J^2 - \alpha_K \geq 0$ for each $K \in \mathcal{B}_s.$

We write $s \in A_i$, $s \in A_{ii}$, or $s \in A_{iii}$, according to the case. Then

(11)
$$\sum_{s} \left(\sum_{J \in \mathcal{B}_{s}} \alpha_{J}^{2/p} \beta_{J}^{2} \right)^{p/2} |L_{s}| = \sum_{i} + \sum_{ii} + \sum_{iii} + \sum_{ii$$

We will estimate each sum separately.

CASE (i). We have

(12)
$$\sum_{\mathbf{i}} = \sum_{s \in A_{\mathbf{i}}} \left(\sum_{J \in \mathcal{B}_s} \alpha_J^{2/p} \beta^2 \right)^{p/2} |L_s| \le \sum_{s \in A_{\mathbf{i}}} \widehat{\alpha}_s |L_s|$$

Now we define

$$\mathfrak{s}(J) = \Big| \bigcup_{E \in \{\widehat{J}_s : \widehat{J}_s \subset J, \, \widehat{J}_s \neq J, \, s \in A_i\}} E \Big| \cdot |J|^{-1}$$

From the sequence $(\widehat{J}_s)_{s\in A_i}$ we choose a subsequence $(\widehat{J}_s)_{s\in A'_i}$ such that:

- 1. $\widehat{J}_k \neq \widehat{J}_j$ for all $k, j \in A'_i, k \neq j$, 2. for each $j \notin A'_i$ there exists $k \in A'_i$ such that $\widehat{J}_j = \widehat{J}_k$.

Then by definition of \widehat{J}_s , $\widehat{\alpha}_s$ and $\mathfrak{s}(\widehat{J}_s)$ we get

$$(13) \quad \sum_{s \in A_{i}} \widehat{\alpha}_{s} |L_{s}| = \sum_{s \in A_{i}} \frac{|\tau^{-1}(J_{s})|}{|\widehat{J}_{s}|} |L_{s}| \\ = \sum_{s \in A_{i}'} \left[\frac{|\tau^{-1}(\widehat{J}_{s})|}{|\widehat{J}_{s}|} \sum_{\substack{L_{k} \subset \widehat{J}_{s} \\ \widehat{J}_{k} = \widehat{J}_{s}}} |L_{k}| \right] \\ \stackrel{(10)}{=} \sum_{s \in A_{i}'} \frac{|\tau^{-1}(\widehat{J}_{s})|}{|\widehat{J}_{s}|} \left(|\widehat{J}_{s}| - |\bigcup_{E \in \{\widehat{J}_{k} : \widehat{J}_{k} \subset \widehat{J}_{s}, \widehat{J}_{k} \neq \widehat{J}_{s}, s \in A_{i}\}} E \right| \right) \\ = \sum_{s \in A_{i}'} |\tau^{-1}(\widehat{J}_{s})| (1 - \mathfrak{s}(\widehat{J}_{s})) \\ = \sum_{s \in A_{i}'} \sum_{n} \sum_{2^{-n} \leq 1 - \mathfrak{s}(\widehat{J}_{s}) < 2^{-n+1}} |\tau^{-1}(\widehat{J}_{s})| (1 - \mathfrak{s}(\widehat{J}_{s})) \\ \leq 2 \sum_{s \in A_{i}'} \sum_{n} \sum_{2^{-n} \leq 1 - \mathfrak{s}(\widehat{J}_{s}) < 2^{-n+1}} |\tau^{-1}(\widehat{J}_{s})| 2^{-n}$$

We shall show that

(14)
$$\sum_{s \in A'_{i}} \sum_{n} \sum_{2^{-n} \le 1 - \mathfrak{s}(\widehat{J}_{s}) < 2^{-n+1}} |\tau^{-1}(\widehat{J}_{s})| 2^{-n} \le 6 \llbracket \tau^{-1} \rrbracket.$$

To do this we use some ideas of Jones ([Jo, p. 201]).

Fix $I \in \max[\tau^{-1}(\{\widehat{J}_s : s \in A'_i\})]$. Suppose that for some natural numbers L and l_s $(s \in A'_i)$, whenever $1 - \mathfrak{s}(\widehat{J}_s) \in [2^{-n}, 2^{-n+1})$ we have

(15)
$$2^{-n} = l_s/L.$$

194

Now if $A'_i = \{s_1, \ldots, s_r\}$, we define

$$x = (\underbrace{\widehat{J}_{s_1}, \dots, \widehat{J}_{s_1}}_{l_{s_1} \text{ times}}, \underbrace{\widehat{J}_{s_2}, \dots, \widehat{J}_{s_2}}_{l_{s_2} \text{ times}}, \dots, \underbrace{\widehat{J}_{s_r}, \dots, \widehat{J}_{s_r}}_{l_{s_r} \text{ times}})$$

and write x as $(x_n)_{n=1}^{\bar{r}}$ where $\bar{r} = \sum_{m=1}^{r} l_{s_m}$. Then we split $(x_n)_{n=1}^{\bar{r}}$ into L subsequences S_1, \ldots, S_L by evenly distributing the entries x_n : put x_n in S_q if $n \equiv q \pmod{L}$, so that if $x_n = \hat{J}_s$ for some $s \in A'_i$, we put a copy of \hat{J}_s in S_q . Notice that each sequence S_j consists of pairwise different elements. Thus from now on, S_j 's will be families of intervals. Then

(16)
$$\sum_{n} \sum_{\substack{s \in A'_{i} \\ \tau^{-1}(\widehat{J}_{s}) \subset I \\ 2^{-n} \leq 1 - \mathfrak{s}(\widehat{J}_{s}) < 2^{-n+1}}} 2^{-n} |\tau^{-1}(\widehat{J}_{s})| \stackrel{(15)}{=} \frac{1}{L} \sum_{\substack{s \in A'_{i} \\ \tau^{-1}(\widehat{J}_{s}) \subset I \\ 2^{-n} \leq 1 - \mathfrak{s}(\widehat{J}_{s}) < 2^{-n+1}}} = \frac{1}{L} \sum_{j=1}^{L} \sum_{\substack{\widehat{J}_{s} \in S_{j} \\ \tau^{-1}(\widehat{J}_{s}) \subset I \\ \tau^{-1}(\widehat{J}_{s}) \subset I \\ \tau^{-1}(\widehat{J}_{s}) \subset I \\ z = 1 - \frac{1}{L} \sum_{j=1}^{L} \sum_{\substack{\widehat{J}_{s} \in S_{j} \\ \tau^{-1}(\widehat{J}_{s}) \subset I \\ \tau^{-1}(\widehat{J}_{s}) \subset I \\ z = 1 - \frac{1}{L} \sum_{j=1}^{L} \sum_{\substack{\widehat{J}_{s} \in S_{j} \\ \tau^{-1}(\widehat{J}_{s}) \subset I \\ \tau^{-1}(\widehat{J}_{s}) \subset I \\ z = 1 - \frac{1}{L} \sum_{j=1}^{L} \sum_{\substack{\widehat{J}_{s} \in S_{j} \\ \tau^{-1}(\widehat{J}_{s}) \subset I \\ \tau^{-1}(\widehat{J}_{s}) \subset I \\ z = 1 - \frac{1}{L} \sum_{j=1}^{L} \sum_{\substack{\widehat{J}_{s} \in S_{j} \\ \tau^{-1}(\widehat{J}_{s}) \subset I \\ \tau^{-1}$$

Moreover, for each $J_0 \in \mathcal{D}$ and $j \leq L$ the number of intervals \widehat{J}_s from the family S_j with $|\widehat{J}_s| = 2^{-m}$ and $\widehat{J}_s \subset J_0$ satisfies

(17)
$$|\{\widehat{J}_s \subset J_0 : s \in A'_i, \, \widehat{J}_s \in S_j \cap \mathcal{D}_m\}| \le 1 + \frac{1}{L} \sum_{\substack{s \in A'_i \\ \widehat{J}_s \in \mathcal{D}_m \cap J_0}} l_s.$$

By definition of \mathfrak{s} ,

(18)
$$\sum_{\substack{s \in A'_i \\ \hat{J}_s \subset J_0}} (1 - \mathfrak{s}(\hat{J}_s)) |\hat{J}_s| \le |J_0|,$$

so (for $j \leq L$)

(19)
$$\sum_{\widehat{J}_s \in S_j \cap J_0} |\widehat{J}_s| = \sum_{m \ge -\log_2 |J_0|} 2^{-m} |(S_j \cap \mathcal{D}_m) \cap J_0|$$
$$\stackrel{(17)}{\leq} 2|J_0| + \frac{1}{L} \sum_{\substack{s \in A_i' \\ \widehat{J}_s \subset J_0}} l_s |\widehat{J}_s| \stackrel{(18)}{\leq} 3|J_0|.$$

This gives $\llbracket S_j \rrbracket \leq 3$ for $1 \leq j \leq L$. Now for all $j \leq L$ and all $K \in \max[\tau^{-1}(S_j)]$, by definition of the Carleson constant, we have

(20)
$$\frac{1}{|K|} \sum_{\substack{\widehat{J}_s \in S_j \\ \tau^{-1}(\widehat{J}_s) \subset K}} |\tau^{-1}(\widehat{J}_s)| \le [\![\tau^{-1}(S_j)]\!].$$

So for $j \leq L$ we get (21)

21)
$$\sum_{\substack{\widehat{J}_s \in S_j \\ \tau^{-1}(\widehat{J}_s) \subset I}} |\tau^{-1}(\widehat{J}_s)| \leq \llbracket \tau^{-1}(S_j) \rrbracket |I|.$$

Similarly, by (20) we obtain

(22)
$$\sum_{\widehat{J}_{s}\in S_{j}} |\tau^{-1}(\widehat{J}_{s})| \leq [\![\tau^{-1}(S_{j})]\!] \sum_{K\in \max[\tau^{-1}(S_{j})]\!]} |K|$$
$$= [\![\tau^{-1}(S_{j})]\!] \Big| \bigcup_{\widehat{J}_{s}\in S_{j}} \tau^{-1}(\widehat{J}_{s}) \Big|.$$

Because $[\![\tau^{-1}]\!]$ preserves the Carleson constant, for $[\![\tau^{-1}]\!]=M$ we have

(23)
$$[\![\tau^{-1}(S_j)]\!] \le [\![\tau^{-1}]\!] [\![S_j]\!] \stackrel{(19)}{\le} M \cdot 3,$$

thus

$$\sum_{\substack{s \in A'_{i} \\ \tau^{-1}(\widehat{J}_{s}) \subset I}} (1 - \mathfrak{s}(\widehat{J}_{s})) |\tau^{-1}(\widehat{J}_{s})| \stackrel{(13),(16)}{\leq} 2 \frac{1}{L} \sum_{j=1}^{L} \sum_{\substack{\widehat{J}_{s} \in S_{j} \\ \tau^{-1}(\widehat{J}_{s}) \subset I}} |\tau^{-1}(\widehat{J}_{s})| |\tau^{-1}(\widehat{J}_{s}$$

But I was chosen from $\max[\tau^{-1}\{\widehat{J}_s : s \in A'_i\}]$, so by (22) we get (24) $\sum_i \leq 6M.$

CASE (ii). Since for $s \in A_{ii}$,

(25)
$$\sum_{J \in \mathcal{B}_s} \alpha_J \beta_J^2 - \alpha_K < 0$$

for some $K \in \mathcal{B}_s$, by definition of $\widehat{\alpha}_s$ we can of course assume that $K = \widehat{J}_s$, i.e.

(26)
$$\sum_{J\in\mathcal{B}_s}\alpha_J\beta_J^2<\widehat{\alpha}_s.$$

Thus for $s \in A_{ii}$ we have

$$\left(\sum_{J\in\mathcal{B}_s}\alpha_J^{2/p}\beta_J^2\right)^{p/2} \le \left(\widehat{\alpha}_s^{2/p-1} \sum_{J\in\mathcal{B}_s}\alpha_J\beta_J^2\right)^{p/2} \le \widehat{\alpha}_s^{1-p/2}\widehat{\alpha}_s^{p/2} = \widehat{\alpha}_s.$$

Now we can repeat the argument used in Case (i) to show that

(27)
$$\sum_{ii} \le 6M.$$

196

CASE (iii). Since $\sum_{J \in \mathcal{B}_s} \alpha_J \beta_J^2 - \alpha_K \ge 0$ for each $K \in \mathcal{B}_s$, by direct computation for $s \in A_{\text{iii}}$ we get

$$\left(\sum_{J\in\mathcal{B}_s} \alpha_J^{2/p} \beta_J^2\right)^{p/2} \le \left(\widehat{\alpha}_s^{2/p-1} \sum_{J\in\mathcal{B}_s} \alpha_J \beta_J^2\right)^{p/2}$$
$$\le \left[\left(\sum_{J\in\mathcal{B}_s} \alpha_J \beta_J^2\right)^{2/p-1} \left(\sum_{J\in\mathcal{B}_s} \alpha_J \beta_J^2\right)\right]^{p/2} = \sum_{J\in\mathcal{B}_s} \alpha_J \beta_J^2.$$

Let $\{K_t\}_{t\in T}$ be the family of all dyadic intervals such that:

- 1. $|K_t| = \frac{1}{2} \min\{|N| : N \in \tau^{-1}(\{J : J \in \mathcal{B}_s, s \in A_{\text{iii}}\}) \text{ for all } t \in T,$
- 2. $\bigcup_{t \in T} K_t = \bigcup \{ J : J \in \mathcal{B}_s, s \in A_{\text{iii}} \},\$
- 3. $K_{t_1} \neq K_{t_2}$ whenever $t_1, t_2 \in T, t_1 \neq t_2$.

Surprisingly easily, we get

$$\sum_{s \in A_{\text{iii}}} \left(\sum_{J \in \mathcal{B}_s} \alpha_J \beta_J^2 \right) |L_s| \le \sum_{s \in A_{\text{iii}}} \sum_{J \in \mathcal{B}_s} |\tau^{-1}(J)| \beta_J^2 \le \sum_t \sum_{\substack{s \in A_{\text{iii}} \\ J \in \mathcal{B}_s \\ \tau^{-1}(J) \supset K_t}} |K_t| \beta_J^2$$
$$= \sum_t |K_t| \left(\sum_{\substack{s \in A_{\text{iii}} \\ J \in \mathcal{B}_s \\ \tau^{-1}(J) \supset K_t}} \beta_J^2 \right) \le \sum_t |K_t| \le 1.$$

So we have proved that

(28)

$$\sum_{
m iii} \leq 1.$$

6. Now we only need to summarize the above observations. The operator quasinorm of $T_{\tau,p}: H_p \to H_p$ satisfies (the first 2^p on the right hand side below comes from (9)), by (3) and (5),

~

$$||T_{\tau,p}||^p \le 2^p \cdot 2^p \cdot \frac{6^p}{2^p - 1} \cdot (6M + 6M + 1) \cdot ||x||_{H_p}^{-p}$$

$$\le 4^p \cdot \frac{6^p}{2^p - 1} \cdot (12M + 1) \cdot 8^p,$$

and we are done. \blacksquare

REMARK 1. In case (iii) of the above proof we have found an analytic condition on τ guaranteeing the continuity of $T_{\tau} : H_p(\mathcal{B}) \to H_p$ for arbitrary $\mathcal{B} \subset \mathcal{D}$. This condition does not make use of $[\tau^{-1}]$ at all.

QUESTION 1. Does the condition from Case (iii) characterize contractive rearrangements in H_p ?

We can now apply Theorem 1 and duality to prove our main result. There already exists a proof of our next theorem in the literature: see Geiss et al. [GMP] who used general concepts such as complex interpolation of quasi-Banach lattices.

THEOREM 2. Let $\mathcal{B} \cup \mathcal{C} \subset \mathcal{D}$ and let $\tau : \mathcal{B} \to \mathcal{C}$ be a bijection. If

(a) $0 and <math>\tau^{-1}$ preserves the Carleson constant, or

(b) $2 and <math>\tau$ preserves the Carleson constant,

then the operator $T_{\tau,p}: H_p(\mathcal{B}) \to H_p(\mathcal{C})$ induced by τ is continuous.

3. A necessary condition. Now we formalize a necessary condition for the continuity of $T_{\tau,p}$. We simply prove the converse to Theorem 2.

THEOREM 3. Let $\mathcal{B} \cup \mathcal{C} \subset \mathcal{D}$ and let $\tau : \mathcal{B} \to \mathcal{C}$ be a bijection. Suppose $T_{\tau,p} : H_p(\mathcal{B}) \to H_p(\mathcal{C})$ induced by τ is a continuous operator. Then

(a) τ^{-1} preserves the Carleson constant if 0 ;

(b) τ preserves the Carleson constant if 2 .

Proof. (a) Suppose that $T_{\tau,p}$ is continuous but τ^{-1} does not preserve the Carleson constant. By [Jo, Lemma 2.1] and [Mu, Proposition 2] this implies that

 $\forall M \ge 1 \; \exists \mathcal{L}^M \subset \mathcal{C} : \; \llbracket \mathcal{L}^M \rrbracket \le 4 \quad \text{and} \quad \llbracket \tau^{-1}(\mathcal{L}^M) \rrbracket > 4M.$

By [Ga, Lemma 3.2 in Chapter 10], there exists an interval $I \in \mathcal{D}$ and 2Mpairwise disjoint families $\mathcal{E}^i \subset \mathcal{Q}(I) \cap \tau^{-1}(\mathcal{L}^M)$, $i = 1, \ldots, 2M$, such that \mathcal{E}^i covers at least half of I. By [W2, Lemma 3.3], $\overline{\operatorname{span}}\{h_{I,p}: I \in \bigcup_{i=1}^{2M} \mathcal{E}^i\}$, i.e. $H_p(\bigcup_{i=1}^{2M} \mathcal{E}^i)$, contains a space X spanned by vectors with pairwise disjoint Haar supports and isomorphic to ℓ_2^{2M} with constant C_p . But $\{h_{J,p}: J \in \mathcal{L}^M\}$ spans ℓ_p with constant $C_{p,4}$, in particular, $T_{\tau,p}(X) \stackrel{C_{p,4}}{\sim} \ell_p$ because we can divide \mathcal{L}^M into eight disjoint parts $\mathcal{L}_1^M, \ldots, \mathcal{L}_8^M$ such that for $1 \leq i \leq 8$ and $I \in \mathcal{L}_i^M$ we have

$$\Big|\bigcup_{I\neq J\in I\cap\mathcal{L}_i^M}J\Big|<\frac{1}{2}|I|,$$

so $\{h_{J,p} : J \in \mathcal{L}_i^M\}$ spans ℓ_p with constant $2^{1/p}$ for $1 \leq i \leq 8$ (cf. [Sm, Lemma 2]). Since M can be arbitrarily large, and since $T_{\tau,p}$ is continuous and a rearrangement, and H_p is *p*-convex, this leads to a contradiction.

(b) follows by duality from the case 1 .

Acknowledgements. I wish to express my gratitude to the referee for the suggestions which improved an earlier version of this paper.

References

[CoW] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645.

198

- [Ga] J. B. Garnett, Bounded Analytic Functions, Academic Press, 1981.
- [GMP] M. Geiss, P. F. X. Müller and V. Pillwein, A remark on extrapolation of rearrangement operators on dyadic H^s , $0 < s \le 1$, Studia Math. 171 (2005), 196–205.
- [Jo] P. W. Jones, Carleson measures and the Fefferman-Stein decomposition of BMO(ℝ), Ann. of Math. 111 (1980) 197–208.
- [Mu] P. F. X. Müller, *Rearrangements of the Haar system that preserve* BMO, Proc. London Math. Soc. 75 (1997), 600–618.
- [Sem] E. Semyonov, On the boundedness of operators rearranging the Haar system in the space L_p , Integral Equations Operator Theory 6 (1983), 385–404.
- [Sm] K. Smela, Subsequences of the Haar basis consisting of full levels in H_p for 0 , Proc. Amer. Math. Soc. 135 (2007), 1709–1716.
- [We] F. Weisz, Martingale Hardy Spaces and their Applications in Fourier Analysis, Springer, Berlin, 1994.
- [W1] P. Wojtaszczyk, H_p -spaces, $p \leq 1$, and spline systems, Studia Math. 77 (1984), 289–320.
- [W2] —, Uniqueness of unconditional bases in quasi-Banach spaces with applications to Hardy spaces, II, Israel J. Math. 97 (1997), 253–280.

Department of Mathematics and Applied Physics Rzeszów University of Technology W. Pola 2 35-959 Rzeszów, Poland E-mail: smelakrz@prz.edu.pl

> Received February 26, 2008 Revised version June 24, 2008

(6289)