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Continuous rearrangements of the Haar
system in Hp for 0 < p <∞

by

Krzysztof Smela (Rzeszów)

Abstract. We prove three theorems on linear operators Tτ,p : Hp(B)→ Hp induced
by rearrangement of a subsequence of a Haar system. We find a sufficient and necessary
condition for Tτ,p to be continuous for 0 < p <∞.

1. Introduction. Denote by D the collection of all dyadic intervals
in [0, 1]. The Lebesgue measure on [0, 1], the cardinality of the set or the
absolute value, depending on the context, will be denoted by the same | · |.
With each interval I ∈ D, I = [k/2n, (k + 1)/2n), we associate the Haar
function hI,p,

hI,p(t) =


2n/p if 2k/2n+1 ≤ t < (2k + 1)/2n+1,
−2n/p if (2k + 1)/2n+1 ≤ t < 2(k + 1)/2n+1,
0 otherwise.

We define Hp as the space of all distributions f =
∑
aI,phI,p for which

‖f‖Hp =
[ 1�

0

(∑
I∈D
|aI,phI,p(t)|2

)p/2]1/p
<∞.

For 1 ≤ p < ∞, ‖ · ‖Hp is actually a norm. When 0 < p < 1 the above
expression defines a quasi-norm. It is known ([W1]) that Hp spaces are
isomorphic to classical Hardy spaces of analytic functions on the unit disc.
Suppose B ⊂ D. Then Hp(B) denotes the closed linear span of {hI,p : I ∈ B}
in Hp. For a one-to-one map τ : B → D it is of interest to consider the
operators Tτ,p : Hp(B)→ Hp, given by

Tτ,p(hI,p) = hτ(I),p (I ∈ B).

After [Mu] such operators will be called rearrangements of the Haar system
(or subsystem), for short rearrangements in Hp. In this paper we describe
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the continuous rearrangements Tτ,p : Hp(B) → Hp for 0 < p < ∞. This
allows us for example to characterize the isomorphisms (isomorphic rear-
rangements) of Hp(B) induced by τ . We restrict the discussion to Hp spaces
for 0 < p <∞. However, for p > 1, Hp = Lp with equivalent norms, so in
this case the results presented here apply to Lp. The operators Tτ,p in Lp,
1 < p < ∞, for τ length preserving were investigated by Semyonov [Sem].
The operators Tτ,∞ in BMO and Tτ,p in Hp for 1 ≤ p < 2 and 2 < p < ∞,
for arbitrary injection τ , were thoroughly studied by Müller [Mu]. Geiss
et al. [GMP] described extrapolation of rearrangement operators in Hp for
0 < p < 2, namely they showed that for 0 < s < p < 2 and 0 < θ < 1
satisfying 1/p = (1− θ)/s + θ/2 there exists a constant c > 0, depending
only on s and p, such that

‖Tτ,s : Hs → Hs‖1−θ ≤ ‖Tτ,p : Hp → Hp‖
(the reverse inequality is rather standard and follows by interpolation). Thus
results from [Mu] were extended in [GMP] to the case 0 < p < 1.

For L ⊂ D and I ∈ D we use L ∩ I to denote the family of all intervals
from the family L contained in I; Q(I) denotes D ∩ I. All intervals from D
of length 2−m will be denoted by Dm. In other words, Dm = D∩{I ⊂ [0, 1] :
|I| = 2−m}. For L ⊂ D, the set of all maximal intervals in L with respect to
inclusion will be denoted by max(L). After [Mu] we say that L ⊂ D satisfies
the M -Carleson condition if

(1) sup
J∈D

1
|J |

∑
I∈L∩J

|I| ≤M.

We use [[L]] to denote the infimum of the constants M that satisfy (1) and we
call it the Carleson constant of the family L. If there exists N <∞ such that
[[τ−1(L)]] ≤ N [[L]] for each L ⊂ τ(B), we say that τ−1 preserves the Carleson
constant , and we denote by [[τ−1]] the infimum of such constantsN . Similarly,
we say that τ preserves the Carleson constant if there exists N < ∞ such
that [[τ(L)]] ≤ N [[L]] for every L ⊂ B, and we define [[τ ]] as the infimum of
such N . We will see that for 0 < p < 2 the operator Tτ,p is continuous if and
only if τ−1 preserves the Carleson constant, while for 2 < p <∞ the operator
Tτ,p is continuous if and only if τ preserves the Carleson constant. These
results appeared in [Mu] for rearrangements in BMO and Hp for 1 ≤ p < 2
and 2 < p <∞, and were then extended in [GMP] to 0 < p < 1. Our main
result is proved with the use of atomic decomposition of Hp ([CoW], [We]).

2. A sufficient condition. We now give a sufficient condition for Tτ,p
to be continuous.

Theorem 1. Let 0 < p < 2. Assume B, C are families of dyadic inter-
vals from D such that there exists a bijection τ : B → C. If τ−1 preserves
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the Carleson constant , then the operator

Tτ,p : Hp(B)→ Hp(C)

induced by τ is continuous.

Proof. We divide the proof into six parts.

1. It suffices to show that for some finite constant C <∞.

‖Tτ,p(x)‖Hp ≤ C‖x‖Hp
for all x ∈ Hp(B) of norm ‖x‖Hp ≤ 1 with finite Haar expansion x =∑
aI,phI,p. Indeed, if x =

∑
I∈R aI,phI,p and ‖Tτ,p(x)‖Hp > N , then (by

simple approximation) there exists a finite family R1 ⊂ R such that
‖T (

∑
J∈R1

aJ,phJ,p)‖Hp > N . By [We, Theorem 2.2] we may also assume
that x is a simple (2, p,∞) atom (see [We] for definition). Moreover, we
shall show in the next part that we can assume that the quadratic function
S(x) = (

∑
a2
I,ph

2
I,p)

1/2 is bounded,

(2) 1/8 ≤ S(x)[t] ≤ 1 for t ∈ [0, 1].

2. In order to justify (2) we use an atomic decomposition of x similar to
the one used in the proof of [We, Theorem 2.2]. Let {hi,p}i denote the Haar
functions {hI,p} numbered according to the Haar order. For s ∈ N set

ds,p(x) =
{
aI,phI,p if hs,p = hI,p and aI,p 6= 0,
0 if hs,p = hJ,p and aJ,p = 0.

We define stopping times νk,p for k ∈ Z by

νk,p(t) = inf
{
n ∈ N :

( n+1∑
s=0

ds,p(x)2[t]
)1/2

> 2k
}
.

Now x has an atomic decomposition

(3) x =
∑
k

ck,pAk,p

where
ck,p = 3 · 2k|{t ∈ [0, 1] : S(x)[t] > 2k}|1/p

and Ak,p are simple (2, p,∞) atoms described by

Ak,p =
∑
s≥0

χ({t : νk,p(t) < s ≤ νk+1,p(t)}) · ds,p(x) · c−1
k,p

with the property

(4) C−1
p

(∑
k

|ck,p|p
)1/p

≤ ‖x‖Hp ≤
(∑

k

|ck,p|p
)1/p

.
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Indeed, if we decompose x using (3), then applying the Abel rearrangement
([We]) we get∑

k

|ck,p|p = 3p
∑
k

(2p)k|{t : Sp(x)[t] > (2p)k}|(5)

=
3p

2p − 1

∑
k

[(2p)k+1 − (2p)k]|{t : Sp(x)[t] > (2p)k}|

≤ 6p

2p − 1

∑
k

(2p)k−1|{t : (2p)k−1 < Sp(x)[t] ≤ (2p)k}|.

3. For x =
∑
xI,phI,p the collection of all dyadic intervals I from D

for which xI,p 6= 0 in this Haar decomposition of x will be called the Haar
support of x. Now we will construct an atomic decomposition of some vector
x′ such that

(6) Haar support of x′ = Haar support of x.

We assume for the moment that Ak,p = 0 for k < 0. For t ∈ [0, 1] let

k0,p(t) = min{k : Ak,p[t] 6= 0}
and Bk0,p(t) = Ak0,p(t). Suppose kn−1,p(t) has been defined for some n ≥ 1.
Then we define

kn,p(t) = min{k > kn−1,p(t) : Ak,p[t] 6= 0}
if it exists. Let Ikn,p(t) denote the longest interval in the Haar support of
Akn,p(t) containing t. We put

(7) Bkn,p(t)[t] = ckn,p(t)Akn,p(t)[t] + 2kn,p(t)−2
hIkn,p(t)[t]

|hIkn,p(t)[t]|
.

We can see that

2kn,p(t)−2 ≤ S(Bkn,p(t)[t]) ≤ 2kn,p(t)+1 for t ∈ supp(Bkn,p(t))

so Bkn,p(t) multiplied by 2−(kn,p(t)+1) satisfies the boundedness condition (2)
on its support. Define Bk,p (to get rid of t in the index) as follows:

Bk,p[t] = Bkn,p(t)[t] if kn,p(t) = k.

It is easy to check that 1
2Bk,p are (2, p,∞) atoms. To specify x′ mentioned

in (6), we set
x′ =

∑
k

Bk,p.

Notice that each Bk,p can be easily decomposed into a sum of simple atoms
Bkn,p(t) (where kn,p(t) = k) with pairwise disjoint supports being dyadic
intervals. If we can show that

(8) ‖Tτ,p(Bk,p)‖Hp ≤ C‖Bk,p‖Hp
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for every k and C = C([[τ−1]]) <∞, then for Cp from (4),

‖Tτ,p(x)‖pHp
(7)

≤
∥∥∥Tτ,p(∑

k

Bk,p

)∥∥∥p
Hp
≤
∑
k

‖Tτ,p(Bk,p)‖pHp(9)

(8)

≤ Cp
∑
k

‖Bk,p‖pHp
(4),(7)

≤ Cp · Cpp · 2p‖x‖
p
Hp

and we are done.
4. Suppose x ∈ Hp(B), 1/8 ≤ S(x) ≤ 1 on [0, 1], A is the Haar support

of x, and x has finite Haar expansion (i.e. A is finite)

x =
∑
I∈A

aI,phI,p.

For k ∈ N+ define

Kk,τ,p(x) = {t ∈ [0, 1] : (2p)k−1 < Sp(Tτ,p(x))[t] ≤ (2p)k}.
We shall always assume that |Ls| = 1

2 min{|τ(I)| : I ∈ A} and Ls ∈ D
for each s. If Ls ⊂ Kk,τ,p(x) and J1, . . . , Jgs are all intervals from τ(A)
containing Ls, we define

Bs = {J1, . . . , Jgs}
and

αJ= |τ−1(J)|/|J |,
α̂s= max{αJ : J ∈ Bs},
βJ= ‖aτ−1(J),phτ−1(J),p‖∞,

and choose an interval Ĵs ∈ Bs such that

(10) |Ĵs| = max{|J | : J ∈ Bs, αJ = α̂s}.
Then, if Ls ⊂ Kk,τ,p(x), we have

2(k−1)p ≤
( ∑
J∈Bs

α
2/p
J β2

J

)p/2
.

5. We consider three possible cases:

(i)
∑

J∈Bs β
2
J ≤ 1;

(ii)
∑

J∈Bs β
2
J > 1 but

∑
J∈Bs αJβ

2
J − αK < 0 for some K ∈ Bs;

(iii)
∑

J∈Bs β
2
J > 1 and

∑
J∈Bs αJβ

2
J − αK ≥ 0 for each K ∈ Bs.

We write s ∈ Ai, s ∈ Aii, or s ∈ Aiii, according to the case. Then

(11)
∑
s

( ∑
J∈Bs

α
2/p
J β2

J

)p/2
|Ls| =

∑
i

+
∑
ii

+
∑
iii

.

We will estimate each sum separately.
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Case (i). We have

(12)
∑

i

=
∑
s∈Ai

( ∑
J∈Bs

α
2/p
J β2

)p/2
|Ls| ≤

∑
s∈Ai

α̂s|Ls|.

Now we define

s(J) =
∣∣∣ ⋃
E∈{ bJs : bJs⊂J, bJs 6=J, s∈Ai}

E
∣∣∣ · |J |−1.

From the sequence (Ĵs)s∈Ai we choose a subsequence (Ĵs)s∈A′i such that:

1. Ĵk 6= Ĵj for all k, j ∈ A′i, k 6= j ,
2. for each j 6∈ A′i there exists k ∈ A′i such that Ĵj = Ĵk .

Then by definition of Ĵs, α̂s and s(Ĵs) we get∑
s∈Ai

α̂s|Ls| =
∑
s∈Ai

|τ−1(Ĵs)|
|Ĵs|

|Ls|(13)

=
∑
s∈A′i

[
|τ−1(Ĵs)|
|Ĵs|

∑
Lk⊂ bJsbJk= bJs

|Lk|
]

(10)
=
∑
s∈A′i

|τ−1(Ĵs)|
|Ĵs|

(
|Ĵs| −

∣∣∣ ⋃
E∈{ bJk : bJk⊂ bJs, bJk 6= bJs, s∈Ai}

E
∣∣∣)

=
∑
s∈A′i

|τ−1(Ĵs)|(1− s(Ĵs))

=
∑
s∈A′i

∑
n

∑
2−n≤1−s( bJs)<2−n+1

|τ−1(Ĵs)|(1− s(Ĵs))

≤ 2
∑
s∈A′i

∑
n

∑
2−n≤1−s( bJs)<2−n+1

|τ−1(Ĵs)|2−n

We shall show that

(14)
∑
s∈A′i

∑
n

∑
2−n≤1−s( bJs)<2−n+1

|τ−1(Ĵs)|2−n ≤ 6[[τ−1]].

To do this we use some ideas of Jones ([Jo, p. 201]).
Fix I ∈ max[τ−1({Ĵs : s ∈ A′i})]. Suppose that for some natural numbers

L and ls (s ∈ A′i), whenever 1− s(Ĵs) ∈ [2−n, 2−n+1) we have

(15) 2−n = ls/L.
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Now if A′i = {s1, . . . , sr}, we define

x = (Ĵs1 , . . . , Ĵs1︸ ︷︷ ︸
ls1 times

, Ĵs2 , . . . , Ĵs2︸ ︷︷ ︸
ls2 times

, . . . , Ĵsr , . . . , Ĵsr︸ ︷︷ ︸
lsr times

)

and write x as (xn)rn=1 where r =
∑r

m=1 lsm . Then we split (xn)rn=1 into L
subsequences S1, . . . , SL by evenly distributing the entries xn: put xn in Sq

if n ≡ q (mod L), so that if xn = Ĵs for some s ∈ A′i, we put a copy of Ĵs
in Sq. Notice that each sequence Sj consists of pairwise different elements.
Thus from now on, Sj ’s will be families of intervals. Then

(16)
∑
n

∑
s∈A′i

τ−1( bJs)⊂I
2−n≤1−s( bJs)<2−n+1

2−n|τ−1(Ĵs)|
(15)
=

1
L

∑
s∈A′i

τ−1( bJs)⊂I
ls|τ−1(Ĵs)|

=
1
L

L∑
j=1

∑
bJs∈Sj

τ−1( bJs)⊂I
|τ−1(Ĵs)|.

Moreover, for each J0 ∈ D and j ≤ L the number of intervals Ĵs from the
family Sj with |Ĵs| = 2−m and Ĵs ⊂ J0 satisfies

(17) |{Ĵs ⊂ J0 : s ∈ A′i, Ĵs ∈ Sj ∩ Dm}| ≤ 1 +
1
L

∑
s∈A′ibJs∈Dm∩J0

ls.

By definition of s,

(18)
∑
s∈A′ibJs⊂J0

(1− s(Ĵs))|Ĵs| ≤ |J0|,

so (for j ≤ L) ∑
bJs∈Sj∩J0

|Ĵs| =
∑

m≥− log2 |J0|

2−m|(Sj ∩ Dm) ∩ J0|(19)

(17)

≤ 2|J0|+
1
L

∑
s∈A′ibJs⊂J0

ls|Ĵs|
(18)

≤ 3|J0|.

This gives [[Sj ]] ≤ 3 for 1 ≤ j ≤ L. Now for all j ≤ L and all K ∈
max[τ−1(Sj)], by definition of the Carleson constant, we have

(20)
1
|K|

∑
bJs∈Sj

τ−1( bJs)⊂K
|τ−1(Ĵs)| ≤ [[τ−1(Sj)]].



196 K. Smela

So for j ≤ L we get

(21)
∑

bJs∈Sj
τ−1( bJs)⊂I

|τ−1(Ĵs)| ≤ [[τ−1(Sj)]]|I|.

Similarly, by (20) we obtain∑
bJs∈Sj

|τ−1(Ĵs)| ≤ [[τ−1(Sj)]]
∑

K∈max[τ−1(Sj)]

|K|(22)

= [[τ−1(Sj)]]
∣∣∣ ⋃bJs∈Sj τ

−1(Ĵs)
∣∣∣.

Because [[τ−1]] preserves the Carleson constant, for [[τ−1]] = M we have

(23) [[τ−1(Sj)]] ≤ [[τ−1]][[Sj ]]
(19)

≤ M · 3,
thus ∑

s∈A′i
τ−1( bJs)⊂I

(1− s(Ĵs))|τ−1(Ĵs)|
(13),(16)

≤ 2
1
L

L∑
j=1

∑
bJs∈Sj

τ−1( bJs)⊂I
|τ−1(Ĵs)|

(21),(23)

≤ 6M |I|.

But I was chosen from max[τ−1{Ĵs : s ∈ A′i}], so by (22) we get

(24)
∑

i

≤ 6M.

Case (ii). Since for s ∈ Aii,

(25)
∑
J∈Bs

αJβ
2
J − αK < 0

for some K ∈ Bs, by definition of α̂s we can of course assume that K = Ĵs,
i.e.

(26)
∑
J∈Bs

αJβ
2
J < α̂s.

Thus for s ∈ Aii we have( ∑
J∈Bs

α
2/p
J β2

J

)p/2
≤
(
α̂2/p−1
s

∑
J∈Bs

αJβ
2
J

)p/2 (26)

≤ α̂1−p/2
s α̂p/2s = α̂s.

Now we can repeat the argument used in Case (i) to show that

(27)
∑
ii

≤ 6M.



Rearrangements of the Haar system 197

Case (iii). Since
∑

J∈Bs αJβ
2
J − αK ≥ 0 for each K ∈ Bs, by direct

computation for s ∈ Aiii we get( ∑
J∈Bs

α
2/p
J β2

J

)p/2
≤
(
α̂2/p−1
s

∑
J∈Bs

αJβ
2
J

)p/2
≤
[( ∑

J∈Bs

αJβ
2
J

)2/p−1( ∑
J∈Bs

αJβ
2
J

)]p/2
=
∑
J∈Bs

αJβ
2
J .

Let {Kt}t∈T be the family of all dyadic intervals such that:

1. |Kt| = 1
2 min{|N | : N ∈ τ−1({J : J ∈ Bs, s ∈ Aiii}) for all t ∈ T ,

2.
⋃
t∈T Kt =

⋃
{J : J ∈ Bs, s ∈ Aiii},

3. Kt1 6= Kt2 whenever t1, t2 ∈ T , t1 6= t2.

Surprisingly easily, we get∑
s∈Aiii

( ∑
J∈Bs

αJβ
2
J

)
|Ls| ≤

∑
s∈Aiii

∑
J∈Bs

|τ−1(J)|β2
J ≤

∑
t

∑
s∈Aiii

J∈Bs
τ−1(J)⊃Kt

|Kt|β2
J

=
∑
t

|Kt|
( ∑

s∈Aiii

J∈Bs
τ−1(J)⊃Kt

β2
J

)
≤
∑
t

|Kt| ≤ 1.

So we have proved that

(28)
∑
iii

≤ 1.

6. Now we only need to summarize the above observations. The operator
quasinorm of Tτ,p : Hp → Hp satisfies (the first 2p on the right hand side
below comes from (9)), by (3) and (5),

‖Tτ,p‖p ≤ 2p · 2p · 6p

2p − 1
· (6M + 6M + 1) · ‖x‖−pHp

≤ 4p · 6p

2p − 1
· (12M + 1) · 8p,

and we are done.

Remark 1. In case (iii) of the above proof we have found an analytic
condition on τ guaranteeing the continuity of Tτ : Hp(B)→ Hp for arbitrary
B ⊂ D. This condition does not make use of [[τ−1]] at all.

Question 1. Does the condition from Case (iii) characterize contractive
rearrangements in Hp?

We can now apply Theorem 1 and duality to prove our main result.
There already exists a proof of our next theorem in the literature: see Geiss
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et al. [GMP] who used general concepts such as complex interpolation of
quasi-Banach lattices.

Theorem 2. Let B ∪ C ⊂ D and let τ : B → C be a bijection. If

(a) 0 < p < 2 and τ−1 preserves the Carleson constant , or
(b) 2 < p <∞ and τ preserves the Carleson constant ,

then the operator Tτ,p : Hp(B)→ Hp(C) induced by τ is continuous.

3. A necessary condition. Now we formalize a necessary condition
for the continuity of Tτ,p. We simply prove the converse to Theorem 2.

Theorem 3. Let B ∪ C ⊂ D and let τ : B → C be a bijection. Suppose
Tτ,p : Hp(B)→ Hp(C) induced by τ is a continuous operator. Then

(a) τ−1 preserves the Carleson constant if 0 < p < 2;
(b) τ preserves the Carleson constant if 2 < p <∞.

Proof. (a) Suppose that Tτ,p is continuous but τ−1 does not preserve the
Carleson constant. By [Jo, Lemma 2.1] and [Mu, Proposition 2] this implies
that

∀M ≥ 1 ∃LM ⊂ C : [[LM ]] ≤ 4 and [[τ−1(LM )]] > 4M.

By [Ga, Lemma 3.2 in Chapter 10], there exists an interval I ∈ D and 2M
pairwise disjoint families E i ⊂ Q(I)∩ τ−1(LM ), i = 1, . . . , 2M , such that E i
covers at least half of I. By [W2, Lemma 3.3], span{hI,p : I ∈

⋃2M
i=1 E i}, i.e.

Hp(
⋃2M
i=1 E i), contains a space X spanned by vectors with pairwise disjoint

Haar supports and isomorphic to `2M2 with constant Cp. But {hJ,p : J ∈ LM}
spans `p with constant Cp,4, in particular, Tτ,p(X)

Cp,4∼ `p because we can
divide LM into eight disjoint parts LM1 , . . . ,LM8 such that for 1 ≤ i ≤ 8 and
I ∈ LMi we have ∣∣∣ ⋃

I 6=J∈I∩LMi

J
∣∣∣ < 1

2 |I|,

so {hJ,p : J ∈ LMi } spans `p with constant 21/p for 1 ≤ i ≤ 8 (cf.
[Sm, Lemma 2]). Since M can be arbitrarily large, and since Tτ,p is continu-
ous and a rearrangement, and Hp is p-convex, this leads to a contradiction.

(b) follows by duality from the case 1 < p < 2.
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