# Continuous rearrangements of the Haar system in $H_{p}$ for $0<p<\infty$ 

by
Krzysztof Smela (Rzeszów)


#### Abstract

We prove three theorems on linear operators $T_{\tau, p}: H_{p}(\mathcal{B}) \rightarrow H_{p}$ induced by rearrangement of a subsequence of a Haar system. We find a sufficient and necessary condition for $T_{\tau, p}$ to be continuous for $0<p<\infty$.


1. Introduction. Denote by $\mathcal{D}$ the collection of all dyadic intervals in $[0,1]$. The Lebesgue measure on $[0,1]$, the cardinality of the set or the absolute value, depending on the context, will be denoted by the same $|\cdot|$. With each interval $I \in \mathcal{D}, I=\left[k / 2^{n},(k+1) / 2^{n}\right)$, we associate the Haar function $h_{I, p}$,

$$
h_{I, p}(t)= \begin{cases}2^{n / p} & \text { if } 2 k / 2^{n+1} \leq t<(2 k+1) / 2^{n+1} \\ -2^{n / p} & \text { if }(2 k+1) / 2^{n+1} \leq t<2(k+1) / 2^{n+1} \\ 0 & \text { otherwise }\end{cases}
$$

We define $H_{p}$ as the space of all distributions $f=\sum a_{I, p} h_{I, p}$ for which

$$
\|f\|_{H_{p}}=\left[\int_{0}^{1}\left(\sum_{I \in \mathcal{D}}\left|a_{I, p} h_{I, p}(t)\right|^{2}\right)^{p / 2}\right]^{1 / p}<\infty
$$

For $1 \leq p<\infty,\|\cdot\|_{H_{p}}$ is actually a norm. When $0<p<1$ the above expression defines a quasi-norm. It is known ([W1]) that $H_{p}$ spaces are isomorphic to classical Hardy spaces of analytic functions on the unit disc. Suppose $\mathcal{B} \subset \mathcal{D}$. Then $H_{p}(\mathcal{B})$ denotes the closed linear span of $\left\{h_{I, p}: I \in \mathcal{B}\right\}$ in $H_{p}$. For a one-to-one map $\tau: \mathcal{B} \rightarrow \mathcal{D}$ it is of interest to consider the operators $T_{\tau, p}: H_{p}(\mathcal{B}) \rightarrow H_{p}$, given by

$$
T_{\tau, p}\left(h_{I, p}\right)=h_{\tau(I), p} \quad(I \in \mathcal{B}) .
$$

After $[\mathrm{Mu}]$ such operators will be called rearrangements of the Haar system (or subsystem), for short rearrangements in $H_{p}$. In this paper we describe

2000 Mathematics Subject Classification: 42C20, 43A17, 47B38.
Key words and phrases: Haar basis, Carleson constant.
the continuous rearrangements $T_{\tau, p}: H_{p}(\mathcal{B}) \rightarrow H_{p}$ for $0<p<\infty$. This allows us for example to characterize the isomorphisms (isomorphic rearrangements) of $H_{p}(\mathcal{B})$ induced by $\tau$. We restrict the discussion to $H_{p}$ spaces for $0<p<\infty$. However, for $p>1, H_{p}=L_{p}$ with equivalent norms, so in this case the results presented here apply to $L_{p}$. The operators $T_{\tau, p}$ in $L_{p}$, $1<p<\infty$, for $\tau$ length preserving were investigated by Semyonov [Sem]. The operators $T_{\tau, \infty}$ in BMO and $T_{\tau, p}$ in $H_{p}$ for $1 \leq p<2$ and $2<p<\infty$, for arbitrary injection $\tau$, were thoroughly studied by Müller [Mu]. Geiss et al. [GMP] described extrapolation of rearrangement operators in $H_{p}$ for $0<p<2$, namely they showed that for $0<s<p<2$ and $0<\theta<1$ satisfying $1 / p=(1-\theta) / s+\theta / 2$ there exists a constant $c>0$, depending only on $s$ and $p$, such that

$$
\left\|T_{\tau, s}: H_{s} \rightarrow H_{s}\right\|^{1-\theta} \leq\left\|T_{\tau, p}: H_{p} \rightarrow H_{p}\right\|
$$

(the reverse inequality is rather standard and follows by interpolation). Thus results from $[\mathrm{Mu}]$ were extended in [GMP] to the case $0<p<1$.

For $\mathcal{L} \subset \mathcal{D}$ and $I \in \mathcal{D}$ we use $\mathcal{L} \cap I$ to denote the family of all intervals from the family $\mathcal{L}$ contained in $I ; \mathcal{Q}(I)$ denotes $\mathcal{D} \cap I$. All intervals from $\mathcal{D}$ of length $2^{-m}$ will be denoted by $\mathcal{D}_{m}$. In other words, $\mathcal{D}_{m}=\mathcal{D} \cap\{I \subset[0,1]$ : $\left.|I|=2^{-m}\right\}$. For $\mathcal{L} \subset \mathcal{D}$, the set of all maximal intervals in $\mathcal{L}$ with respect to inclusion will be denoted by $\mathfrak{m a x}(\mathcal{L})$. After $[\mathrm{Mu}]$ we say that $\mathcal{L} \subset \mathcal{D}$ satisfies the $M$-Carleson condition if

$$
\begin{equation*}
\sup _{J \in \mathcal{D}} \frac{1}{|J|} \sum_{I \in \mathcal{L} \cap J}|I| \leq M \tag{1}
\end{equation*}
$$

We use $\llbracket \mathcal{L} \rrbracket$ to denote the infimum of the constants $M$ that satisfy (1) and we call it the Carleson constant of the family $\mathcal{L}$. If there exists $N<\infty$ such that $\llbracket \tau^{-1}(\mathcal{L}) \rrbracket \leq N \llbracket \mathcal{L} \rrbracket$ for each $\mathcal{L} \subset \tau(\mathcal{B})$, we say that $\tau^{-1}$ preserves the Carleson constant, and we denote by $\llbracket \tau^{-1} \rrbracket$ the infimum of such constants $N$. Similarly, we say that $\tau$ preserves the Carleson constant if there exists $N<\infty$ such that $\llbracket \tau(\mathcal{L}) \rrbracket \leq N \llbracket \mathcal{L} \rrbracket$ for every $\mathcal{L} \subset \mathcal{B}$, and we define $\llbracket \tau \rrbracket$ as the infimum of such $N$. We will see that for $0<p<2$ the operator $T_{\tau, p}$ is continuous if and only if $\tau^{-1}$ preserves the Carleson constant, while for $2<p<\infty$ the operator $T_{\tau, p}$ is continuous if and only if $\tau$ preserves the Carleson constant. These results appeared in $[\mathrm{Mu}]$ for rearrangements in BMO and $H_{p}$ for $1 \leq p<2$ and $2<p<\infty$, and were then extended in [GMP] to $0<p<1$. Our main result is proved with the use of atomic decomposition of $H_{p}$ ([CoW], [We]).
2. A sufficient condition. We now give a sufficient condition for $T_{\tau, p}$ to be continuous.

Theorem 1. Let $0<p<2$. Assume $\mathcal{B}, \mathcal{C}$ are families of dyadic intervals from $\mathcal{D}$ such that there exists a bijection $\tau: \mathcal{B} \rightarrow \mathcal{C}$. If $\tau^{-1}$ preserves
the Carleson constant, then the operator

$$
T_{\tau, p}: H_{p}(\mathcal{B}) \rightarrow H_{p}(\mathcal{C})
$$

induced by $\tau$ is continuous.
Proof. We divide the proof into six parts.

1. It suffices to show that for some finite constant $C<\infty$.

$$
\left\|T_{\tau, p}(x)\right\|_{H_{p}} \leq C\|x\|_{H_{p}}
$$

for all $x \in H_{p}(\mathcal{B})$ of norm $\|x\|_{H_{p}} \leq 1$ with finite Haar expansion $x=$ $\sum a_{I, p} h_{I, p}$. Indeed, if $x=\sum_{I \in \mathcal{R}} a_{I, p} h_{I, p}$ and $\left\|T_{\tau, p}(x)\right\|_{H_{p}}>N$, then (by simple approximation) there exists a finite family $\mathcal{R}_{1} \subset \mathcal{R}$ such that $\left\|T\left(\sum_{J \in \mathcal{R}_{1}} a_{J, p} h_{J, p}\right)\right\|_{H_{p}}>N$. By [We, Theorem 2.2] we may also assume that $x$ is a simple $(2, p, \infty)$ atom (see [We] for definition). Moreover, we shall show in the next part that we can assume that the quadratic function $S(x)=\left(\sum a_{I, p}^{2} h_{I, p}^{2}\right)^{1 / 2}$ is bounded,

$$
\begin{equation*}
1 / 8 \leq S(x)[t] \leq 1 \quad \text { for } t \in[0,1] \tag{2}
\end{equation*}
$$

2. In order to justify (2) we use an atomic decomposition of $x$ similar to the one used in the proof of [We, Theorem 2.2]. Let $\left\{h_{i, p}\right\}_{i}$ denote the Haar functions $\left\{h_{I, p}\right\}$ numbered according to the Haar order. For $s \in \mathbb{N}$ set

$$
d_{s, p}(x)= \begin{cases}a_{I, p} h_{I, p} & \text { if } h_{s, p}=h_{I, p} \text { and } a_{I, p} \neq 0 \\ 0 & \text { if } h_{s, p}=h_{J, p} \text { and } a_{J, p}=0\end{cases}
$$

We define stopping times $\nu_{k, p}$ for $k \in \mathbb{Z}$ by

$$
\nu_{k, p}(t)=\inf \left\{n \in \mathbb{N}:\left(\sum_{s=0}^{n+1} d_{s, p}(x)^{2}[t]\right)^{1 / 2}>2^{k}\right\}
$$

Now $x$ has an atomic decomposition

$$
\begin{equation*}
x=\sum_{k} c_{k, p} A_{k, p} \tag{3}
\end{equation*}
$$

where

$$
c_{k, p}=3 \cdot 2^{k}\left|\left\{t \in[0,1]: S(x)[t]>2^{k}\right\}\right|^{1 / p}
$$

and $A_{k, p}$ are simple $(2, p, \infty)$ atoms described by

$$
A_{k, p}=\sum_{s \geq 0} \chi\left(\left\{t: \nu_{k, p}(t)<s \leq \nu_{k+1, p}(t)\right\}\right) \cdot d_{s, p}(x) \cdot c_{k, p}^{-1}
$$

with the property

$$
\begin{equation*}
C_{p}^{-1}\left(\sum_{k}\left|c_{k, p}\right|^{p}\right)^{1 / p} \leq\|x\|_{H_{p}} \leq\left(\sum_{k}\left|c_{k, p}\right|^{p}\right)^{1 / p} \tag{4}
\end{equation*}
$$

Indeed, if we decompose $x$ using (3), then applying the Abel rearrangement ([We]) we get

$$
\begin{align*}
\sum_{k}\left|c_{k, p}\right|^{p} & =3^{p} \sum_{k}\left(2^{p}\right)^{k}\left|\left\{t: S^{p}(x)[t]>\left(2^{p}\right)^{k}\right\}\right|  \tag{5}\\
& =\frac{3^{p}}{2^{p}-1} \sum_{k}\left[\left(2^{p}\right)^{k+1}-\left(2^{p}\right)^{k}\right]\left|\left\{t: S^{p}(x)[t]>\left(2^{p}\right)^{k}\right\}\right| \\
& \leq \frac{6^{p}}{2^{p}-1} \sum_{k}\left(2^{p}\right)^{k-1}\left|\left\{t:\left(2^{p}\right)^{k-1}<S^{p}(x)[t] \leq\left(2^{p}\right)^{k}\right\}\right|
\end{align*}
$$

3. For $x=\sum x_{I, p} h_{I, p}$ the collection of all dyadic intervals $I$ from $\mathcal{D}$ for which $x_{I, p} \neq 0$ in this Haar decomposition of $x$ will be called the Haar support of $x$. Now we will construct an atomic decomposition of some vector $x^{\prime}$ such that

$$
\begin{equation*}
\text { Haar support of } x^{\prime}=\text { Haar support of } x \tag{6}
\end{equation*}
$$

We assume for the moment that $A_{k, p}=0$ for $k<0$. For $t \in[0,1]$ let

$$
k_{0, p}(t)=\min \left\{k: A_{k, p}[t] \neq 0\right\}
$$

and $B_{k_{0, p}(t)}=A_{k_{0, p}(t)}$. Suppose $k_{n-1, p}(t)$ has been defined for some $n \geq 1$. Then we define

$$
k_{n, p}(t)=\min \left\{k>k_{n-1, p}(t): A_{k, p}[t] \neq 0\right\}
$$

if it exists. Let $I_{k_{n, p}(t)}$ denote the longest interval in the Haar support of $A_{k_{n, p}(t)}$ containing $t$. We put

$$
\begin{equation*}
B_{k_{n, p}(t)}[t]=c_{k_{n, p}(t)} A_{k_{n, p}(t)}[t]+2^{k_{n, p}(t)-2} \frac{h_{I_{k_{n, p}(t)}[t]}}{\mid h_{I_{k_{n, p}(t)}[t]}} \tag{7}
\end{equation*}
$$

We can see that

$$
2^{k_{n, p}(t)-2} \leq S\left(B_{k_{n, p}(t)}[t]\right) \leq 2^{k_{n, p}(t)+1} \quad \text { for } t \in \operatorname{supp}\left(B_{k_{n, p}(t)}\right)
$$

so $B_{k_{n, p}(t)}$ multiplied by $2^{-\left(k_{n, p}(t)+1\right)}$ satisfies the boundedness condition (2) on its support. Define $B_{k, p}$ (to get rid of $t$ in the index) as follows:

$$
B_{k, p}[t]=B_{k_{n, p}(t)}[t] \quad \text { if } k_{n, p}(t)=k
$$

It is easy to check that $\frac{1}{2} B_{k, p}$ are $(2, p, \infty)$ atoms. To specify $x^{\prime}$ mentioned in (6), we set

$$
x^{\prime}=\sum_{k} B_{k, p}
$$

Notice that each $B_{k, p}$ can be easily decomposed into a sum of simple atoms $B_{k_{n, p}(t)}$ (where $k_{n, p}(t)=k$ ) with pairwise disjoint supports being dyadic intervals. If we can show that

$$
\begin{equation*}
\left\|T_{\tau, p}\left(B_{k, p}\right)\right\|_{H_{p}} \leq C\left\|B_{k, p}\right\|_{H_{p}} \tag{8}
\end{equation*}
$$

for every $k$ and $C=C\left(\llbracket \tau^{-1} \rrbracket\right)<\infty$, then for $C_{p}$ from (4),

$$
\begin{align*}
& \| T_{\tau, p}(x) \|_{H_{p}}^{p}  \tag{9}\\
& \stackrel{(7)}{\leq}\left\|T_{\tau, p}\left(\sum_{k} B_{k, p}\right)\right\|_{H_{p}}^{p} \leq \sum_{k}\left\|T_{\tau, p}\left(B_{k, p}\right)\right\|_{H_{p}}^{p} \\
& \stackrel{(8)}{\leq} C^{p} \sum_{k}\left\|B_{k, p}\right\|_{H_{p}}^{p} \stackrel{(4),(7)}{\leq} C^{p} \cdot C_{p}^{p} \cdot 2^{p}\|x\|_{H_{p}}^{p}
\end{align*}
$$

and we are done.
4. Suppose $x \in H_{p}(\mathcal{B}), 1 / 8 \leq S(x) \leq 1$ on $[0,1], \mathcal{A}$ is the Haar support of $x$, and $x$ has finite Haar expansion (i.e. $\mathcal{A}$ is finite)

$$
x=\sum_{I \in \mathcal{A}} a_{I, p} h_{I, p} .
$$

For $k \in \mathbb{N}^{+}$define

$$
\mathfrak{K}_{k, \tau, p}(x)=\left\{t \in[0,1]:\left(2^{p}\right)^{k-1}<S^{p}\left(T_{\tau, p}(x)\right)[t] \leq\left(2^{p}\right)^{k}\right\}
$$

We shall always assume that $\left|L_{s}\right|=\frac{1}{2} \min \{|\tau(I)|: I \in \mathcal{A}\}$ and $L_{s} \in \mathcal{D}$ for each $s$. If $L_{s} \subset \mathfrak{K}_{k, \tau, p}(x)$ and $J_{1}, \ldots, J_{\mathfrak{g}_{s}}$ are all intervals from $\tau(\mathcal{A})$ containing $L_{s}$, we define

$$
\mathcal{B}_{s}=\left\{J_{1}, \ldots, J_{\mathfrak{g}_{s}}\right\}
$$

and

$$
\begin{aligned}
& \alpha_{J}=\left|\tau^{-1}(J)\right| /|J| \\
& \widehat{\alpha}_{s}=\max \left\{\alpha_{J}: J \in \mathcal{B}_{s}\right\}, \\
& \beta_{J}=\left\|a_{\tau^{-1}(J), p} h_{\tau^{-1}(J), p}\right\|_{\infty},
\end{aligned}
$$

and choose an interval $\widehat{J}_{s} \in \mathcal{B}_{s}$ such that

$$
\begin{equation*}
\left|\widehat{J}_{s}\right|=\max \left\{|J|: J \in \mathcal{B}_{s}, \alpha_{J}=\widehat{\alpha}_{s}\right\} \tag{10}
\end{equation*}
$$

Then, if $L_{s} \subset \mathfrak{K}_{k, \tau, p}(x)$, we have

$$
2^{(k-1) p} \leq\left(\sum_{J \in \mathcal{B}_{s}} \alpha_{J}^{2 / p} \beta_{J}^{2}\right)^{p / 2}
$$

5. We consider three possible cases:
(i) $\sum_{J \in \mathcal{B}_{s}} \beta_{J}^{2} \leq 1$;
(ii) $\sum_{J \in \mathcal{B}_{s}} \beta_{J}^{2}>1$ but $\sum_{J \in \mathcal{B}_{s}} \alpha_{J} \beta_{J}^{2}-\alpha_{K}<0$ for some $K \in \mathcal{B}_{s}$;
(iii) $\sum_{J \in \mathcal{B}_{s}} \beta_{J}^{2}>1$ and $\sum_{J \in \mathcal{B}_{s}} \alpha_{J} \beta_{J}^{2}-\alpha_{K} \geq 0$ for each $K \in \mathcal{B}_{s}$.

We write $s \in A_{\mathrm{i}}, s \in A_{\mathrm{ii}}$, or $s \in A_{\mathrm{iii}}$, according to the case. Then

$$
\begin{equation*}
\sum_{s}\left(\sum_{J \in \mathcal{B}_{s}} \alpha_{J}^{2 / p} \beta_{J}^{2}\right)^{p / 2}\left|L_{s}\right|=\sum_{\mathrm{i}}+\sum_{\mathrm{ii}}+\sum_{\mathrm{iii}} \tag{11}
\end{equation*}
$$

We will estimate each sum separately.

CASE (i). We have

$$
\begin{equation*}
\sum_{\mathrm{i}}=\sum_{s \in A_{\mathrm{i}}}\left(\sum_{J \in \mathcal{B}_{s}} \alpha_{J}^{2 / p} \beta^{2}\right)^{p / 2}\left|L_{s}\right| \leq \sum_{s \in A_{\mathrm{i}}} \widehat{\alpha}_{s}\left|L_{s}\right| \tag{12}
\end{equation*}
$$

Now we define

$$
\mathfrak{s}(J)=\left.\left.\right|_{E \in\left\{\widehat{J}_{s}: \widehat{J}_{s} \subset J, \widehat{J}_{s} \neq J, s \in A_{\mathrm{i}}\right\}} E|\cdot| J\right|^{-1} .
$$

From the sequence $\left(\widehat{J}_{s}\right)_{s \in A_{\mathrm{i}}}$ we choose a subsequence $\left(\widehat{J}_{s}\right)_{s \in A_{\mathrm{i}}^{\prime}}$ such that:

1. $\widehat{J}_{k} \neq \widehat{J}_{j}$ for all $k, j \in A_{\mathrm{i}}^{\prime}, k \neq j$,
2. for each $j \notin A_{\mathrm{i}}^{\prime}$ there exists $k \in A_{\mathrm{i}}^{\prime}$ such that $\widehat{J}_{j}=\widehat{J}_{k}$.

Then by definition of $\widehat{J}_{s}, \widehat{\alpha}_{s}$ and $\mathfrak{s}\left(\widehat{J}_{s}\right)$ we get

$$
\begin{align*}
& \sum_{s \in A_{\mathrm{i}}} \widehat{\alpha}_{s}\left|L_{s}\right|=\sum_{s \in A_{\mathrm{i}}} \frac{\left|\tau^{-1}\left(\widehat{J}_{s}\right)\right|}{\left|\widehat{J}_{s}\right|}\left|L_{s}\right|  \tag{13}\\
&=\sum_{s \in A_{\mathrm{i}}^{\prime}}\left[\frac{\left|\tau^{-1}\left(\widehat{J}_{s}\right)\right|}{\left|\widehat{J}_{s}\right|} \sum_{\substack{L_{k} \subset \widehat{J}_{s} \\
\widehat{J}_{k}=\widehat{J}_{s}}}\left|L_{k}\right|\right] \\
& \stackrel{(10)}{=} \sum_{s \in A_{\mathrm{i}}^{\prime}} \frac{\left|\tau^{-1}\left(\widehat{J}_{s}\right)\right|}{\left|\widehat{J}_{s}\right|}\left(\left|\widehat{J}_{s}\right|-\left.\right|_{E \in\left\{\widehat{J}_{k}: \widehat{J}_{k} \subset \widehat{J}_{s}, \widehat{J}_{k} \neq \widehat{J}_{s}, s \in A_{\mathrm{i}}\right\}} E \mid\right) \\
&=\sum_{s \in A_{\mathrm{i}}^{\prime}}\left|\tau^{-1}\left(\widehat{J}_{s}\right)\right|\left(1-\mathfrak{s}\left(\widehat{J}_{s}\right)\right) \\
&=\sum_{s \in A_{\mathrm{i}}^{\prime}} \sum_{n}^{2^{-n} \leq 1-\mathfrak{s}\left(\widehat{J}_{s}\right)<2^{-n+1}} \mid \\
& \leq 2 \sum_{s \in A_{\mathrm{i}}^{\prime}} \sum_{n}\left|\tau^{-1}\left(\widehat{J}_{s}\right)\right|\left(1-\mathfrak{s}\left(\widehat{J}_{s}\right)\right) \\
& \sum_{2^{-n} \leq 1-\mathfrak{s}\left(\widehat{J}_{s}\right)<2^{-n+1}}\left|\tau^{-1}\left(\widehat{J}_{s}\right)\right| 2^{-n}
\end{align*}
$$

We shall show that

$$
\begin{equation*}
\sum_{s \in A_{\mathrm{i}}^{\prime}} \sum_{n} \sum_{2^{-n} \leq 1-\mathfrak{s}\left(\widehat{J}_{s}\right)<2^{-n+1}}\left|\tau^{-1}\left(\widehat{J}_{s}\right)\right| 2^{-n} \leq 6 \llbracket \tau^{-1} \rrbracket . \tag{14}
\end{equation*}
$$

To do this we use some ideas of Jones ([Jo, p. 201]).
Fix $I \in \mathfrak{m a x}\left[\tau^{-1}\left(\left\{\widehat{J}_{s}: s \in A_{\mathrm{i}}^{\prime}\right\}\right)\right]$. Suppose that for some natural numbers $L$ and $l_{s}\left(s \in A_{\mathrm{i}}^{\prime}\right)$, whenever $1-\mathfrak{s}\left(\widehat{J}_{s}\right) \in\left[2^{-n}, 2^{-n+1}\right)$ we have

$$
\begin{equation*}
2^{-n}=l_{s} / L \tag{15}
\end{equation*}
$$

Now if $A_{\mathrm{i}}^{\prime}=\left\{s_{1}, \ldots, s_{r}\right\}$, we define

$$
x=(\underbrace{\widehat{J}_{s_{1}}, \ldots, \widehat{J}_{s_{1}}}_{l_{s_{1}} \text { times }}, \underbrace{\widehat{J}_{s_{2}}, \ldots, \widehat{J}_{s_{2}}}_{l_{s_{2}} \text { times }}, \ldots, \underbrace{)}_{l_{s_{r} \text { times }} \widehat{J}_{s_{r}}, \ldots, \widehat{J}_{s_{r}}}
$$

and write $x$ as $\left(x_{n}\right)_{n=1}^{\bar{r}}$ where $\bar{r}=\sum_{m=1}^{r} l_{s_{m}}$. Then we split $\left(x_{n}\right)_{n=1}^{\bar{r}}$ into $L$ subsequences $S_{1}, \ldots, S_{L}$ by evenly distributing the entries $x_{n}$ : put $x_{n}$ in $S_{q}$ if $n \equiv q(\bmod L)$, so that if $x_{n}=\widehat{J}_{s}$ for some $s \in A_{\mathrm{i}}^{\prime}$, we put a copy of $\widehat{J}_{s}$ in $S_{q}$. Notice that each sequence $S_{j}$ consists of pairwise different elements. Thus from now on, $S_{j}$ 's will be families of intervals. Then

$$
\begin{align*}
& \sum_{n} \sum_{\substack{s \in A_{\mathrm{i}}^{\prime} \\
\tau^{-1}\left(\widehat{J}_{s}\right) \subset I}} 2^{-n}\left|\tau^{-1}\left(\widehat{J}_{s}\right)\right| \stackrel{(15)}{=} \frac{1}{L} \sum_{\substack{s \in A_{\mathrm{i}}^{\prime} \\
2^{-n} \leq 1-\mathfrak{s}\left(\widehat{J}_{s}\right)<2^{-n+1}}} l_{s}\left|\tau^{-1}\left(\widehat{J}_{s}\right)\right|  \tag{16}\\
&=\frac{1}{L} \sum_{j=1}^{L-1} \sum_{\left.\widehat{J}_{s}\right) \subset I}^{L}\left|\tau^{-1}\left(\widehat{J}_{s}\right)\right| .
\end{align*}
$$

Moreover, for each $J_{0} \in \mathcal{D}$ and $j \leq L$ the number of intervals $\widehat{J}_{s}$ from the family $S_{j}$ with $\left|\widehat{J}_{s}\right|=2^{-m}$ and $\widehat{J}_{s} \subset J_{0}$ satisfies

$$
\begin{equation*}
\left|\left\{\widehat{J}_{s} \subset J_{0}: s \in A_{\mathrm{i}}^{\prime}, \widehat{J}_{s} \in S_{j} \cap \mathcal{D}_{m}\right\}\right| \leq 1+\frac{1}{L} \sum_{\substack{s \in A_{\mathrm{i}}^{\prime} \\ \widehat{J}_{s} \in \mathcal{D}_{m} \cap J_{0}}} l_{s} \tag{17}
\end{equation*}
$$

By definition of $\mathfrak{s}$,

$$
\begin{equation*}
\sum_{\substack{s \in A_{\mathrm{i}}^{\prime} \\ \widehat{J}_{s} \subset J_{0}}}\left(1-\mathfrak{s}\left(\widehat{J}_{s}\right)\right)\left|\widehat{J}_{s}\right| \leq\left|J_{0}\right|, \tag{18}
\end{equation*}
$$

so $($ for $j \leq L)$

$$
\begin{gather*}
\sum_{\widehat{J}_{s} \in S_{j} \cap J_{0}}\left|\widehat{J}_{s}\right|=\sum_{m \geq-\log _{2}\left|J_{0}\right|} 2^{-m}\left|\left(S_{j} \cap \mathcal{D}_{m}\right) \cap J_{0}\right|  \tag{19}\\
\stackrel{(17)}{\leq} 2\left|J_{0}\right|+\frac{1}{L} \sum_{\substack{s \in A_{\mathrm{i}}^{\prime} \\
\widehat{J}_{s} \subset J_{0}}} l_{s}\left|\widehat{J}_{s}\right| \stackrel{(18)}{\leq} 3\left|J_{0}\right|
\end{gather*}
$$

This gives $\llbracket S_{j} \rrbracket \leq 3$ for $1 \leq j \leq L$. Now for all $j \leq L$ and all $K \in$ $\mathfrak{m a x}\left[\tau^{-1}\left(S_{j}\right)\right]$, by definition of the Carleson constant, we have

$$
\begin{equation*}
\frac{1}{|K|} \sum_{\substack{\widehat{J}_{s} \in S_{j} \\ \tau^{-1}\left(\widehat{J}_{s}\right) \subset K}}\left|\tau^{-1}\left(\widehat{J}_{s}\right)\right| \leq \llbracket \tau^{-1}\left(S_{j}\right) \rrbracket . \tag{20}
\end{equation*}
$$

So for $j \leq L$ we get

$$
\begin{equation*}
\sum_{\substack{\widehat{J}_{s} \in S_{j} \\ \tau^{-1}\left(\widehat{J}_{s}\right) \subset I}}\left|\tau^{-1}\left(\widehat{J}_{s}\right)\right| \leq \llbracket \tau^{-1}\left(S_{j}\right) \rrbracket|I| . \tag{21}
\end{equation*}
$$

Similarly, by (20) we obtain

$$
\begin{align*}
\sum_{\widehat{J}_{s} \in S_{j}}\left|\tau^{-1}\left(\widehat{J}_{s}\right)\right| & \leq \llbracket \tau^{-1}\left(S_{j}\right) \rrbracket \sum_{K \in \mathfrak{m a x}\left[\tau^{-1}\left(S_{j}\right)\right]}|K|  \tag{22}\\
& =\llbracket \tau^{-1}\left(S_{j}\right) \rrbracket\left|\bigcup_{\widehat{J}_{s} \in S_{j}} \tau^{-1}\left(\widehat{J}_{s}\right)\right| .
\end{align*}
$$

Because $\llbracket \tau^{-1} \rrbracket$ preserves the Carleson constant, for $\llbracket \tau^{-1} \rrbracket=M$ we have

$$
\begin{equation*}
\llbracket \tau^{-1}\left(S_{j}\right) \rrbracket \leq \llbracket \tau^{-1} \rrbracket \llbracket S_{j} \rrbracket \stackrel{(19)}{\leq} M \cdot 3 \tag{23}
\end{equation*}
$$

thus

$$
\sum_{\substack{s \in A_{\mathrm{i}}^{\prime} \\ \tau^{-1}\left(\widehat{J}_{s}\right) \subset I}}\left(1-\mathfrak{s}\left(\widehat{J}_{s}\right)\right)\left|\tau^{-1}\left(\widehat{J}_{s}\right)\right| \stackrel{(13),(16)}{\leq} 2 \frac{1}{L} \sum_{j=1}^{L} \sum_{\substack{\widehat{J}_{s} \in S_{j} \\ \tau^{-1}\left(\widehat{J}_{s}\right) \subset I}}\left|\tau^{-1}\left(\widehat{J}_{s}\right)\right|
$$

$$
\stackrel{(21),(23)}{\leq} 6 M|I|
$$

But $I$ was chosen from $\mathfrak{m a x}\left[\tau^{-1}\left\{\widehat{J}_{s}: s \in A_{\mathrm{i}}^{\prime}\right\}\right]$, so by (22) we get

$$
\begin{equation*}
\sum_{\mathrm{i}} \leq 6 M \tag{24}
\end{equation*}
$$

CASE (ii). Since for $s \in A_{\mathrm{ii}}$,

$$
\begin{equation*}
\sum_{J \in \mathcal{B}_{s}} \alpha_{J} \beta_{J}^{2}-\alpha_{K}<0 \tag{25}
\end{equation*}
$$

for some $K \in \mathcal{B}_{s}$, by definition of $\widehat{\alpha}_{s}$ we can of course assume that $K=\widehat{J}_{s}$, i.e.

$$
\begin{equation*}
\sum_{J \in \mathcal{B}_{s}} \alpha_{J} \beta_{J}^{2}<\widehat{\alpha}_{s} \tag{26}
\end{equation*}
$$

Thus for $s \in A_{\mathrm{ii}}$ we have

$$
\left(\sum_{J \in \mathcal{B}_{s}} \alpha_{J}^{2 / p} \beta_{J}^{2}\right)^{p / 2} \leq\left(\widehat{\alpha}_{s}^{2 / p-1} \sum_{J \in \mathcal{B}_{s}} \alpha_{J} \beta_{J}^{2}\right)^{p / 2} \stackrel{(26)}{\leq} \widehat{\alpha}_{s}^{1-p / 2} \widehat{\alpha}_{s}^{p / 2}=\widehat{\alpha}_{s}
$$

Now we can repeat the argument used in Case (i) to show that

$$
\begin{equation*}
\sum_{\mathrm{ii}} \leq 6 M \tag{27}
\end{equation*}
$$

CASE (iii). Since $\sum_{J \in \mathcal{B}_{s}} \alpha_{J} \beta_{J}^{2}-\alpha_{K} \geq 0$ for each $K \in \mathcal{B}_{s}$, by direct computation for $s \in A_{\mathrm{iii}}$ we get

$$
\begin{aligned}
\left(\sum_{J \in \mathcal{B}_{s}} \alpha_{J}^{2 / p} \beta_{J}^{2}\right)^{p / 2} & \leq\left(\widehat{\alpha}_{s}^{2 / p-1} \sum_{J \in \mathcal{B}_{s}} \alpha_{J} \beta_{J}^{2}\right)^{p / 2} \\
& \leq\left[\left(\sum_{J \in \mathcal{B}_{s}} \alpha_{J} \beta_{J}^{2}\right)^{2 / p-1}\left(\sum_{J \in \mathcal{B}_{s}} \alpha_{J} \beta_{J}^{2}\right)\right]^{p / 2}=\sum_{J \in \mathcal{B}_{s}} \alpha_{J} \beta_{J}^{2}
\end{aligned}
$$

Let $\left\{K_{t}\right\}_{t \in T}$ be the family of all dyadic intervals such that:

1. $\left|K_{t}\right|=\frac{1}{2} \min \left\{|N|: N \in \tau^{-1}\left(\left\{J: J \in \mathcal{B}_{s}, s \in A_{\text {iii }}\right\}\right)\right.$ for all $t \in T$,
2. $\bigcup_{t \in T} K_{t}=\bigcup\left\{J: J \in \mathcal{B}_{s}, s \in A_{\mathrm{iii}}\right\}$,
3. $K_{t_{1}} \neq K_{t_{2}}$ whenever $t_{1}, t_{2} \in T, t_{1} \neq t_{2}$.

Surprisingly easily, we get

$$
\begin{aligned}
\sum_{s \in A_{\mathrm{iii}}}\left(\sum_{J \in \mathcal{B}_{s}} \alpha_{J} \beta_{J}^{2}\right)\left|L_{s}\right| & \leq \sum_{s \in A_{\mathrm{iii}}} \sum_{J \in \mathcal{B}_{s}}\left|\tau^{-1}(J)\right| \beta_{J}^{2} \leq \sum_{t} \sum_{\substack{s \in A_{\mathrm{iii}} \\
J \mathcal{B}_{s} \\
\tau^{-1}(J) \supset K_{t}}}\left|K_{t}\right| \beta_{J}^{2} \\
& =\sum_{t}\left|K_{t}\right|\left(\sum_{\substack{s \in A_{\mathrm{iii}} \\
J \mathcal{B}_{s} \\
\tau^{-1}(J) \supset K_{t}}} \beta_{J}^{2}\right) \leq \sum_{t}\left|K_{t}\right| \leq 1 .
\end{aligned}
$$

So we have proved that

$$
\begin{equation*}
\sum_{\mathrm{iii}} \leq 1 . \tag{28}
\end{equation*}
$$

6. Now we only need to summarize the above observations. The operator quasinorm of $T_{\tau, p}: H_{p} \rightarrow H_{p}$ satisfies (the first $2^{p}$ on the right hand side below comes from (9)), by (3) and (5),

$$
\begin{aligned}
\left\|T_{\tau, p}\right\|^{p} & \leq 2^{p} \cdot 2^{p} \cdot \frac{6^{p}}{2^{p}-1} \cdot(6 M+6 M+1) \cdot\|x\|_{H_{p}}^{-p} \\
& \leq 4^{p} \cdot \frac{6^{p}}{2^{p}-1} \cdot(12 M+1) \cdot 8^{p},
\end{aligned}
$$

and we are done.
Remark 1. In case (iii) of the above proof we have found an analytic condition on $\tau$ guaranteeing the continuity of $T_{\tau}: H_{p}(\mathcal{B}) \rightarrow H_{p}$ for arbitrary $\mathcal{B} \subset \mathcal{D}$. This condition does not make use of $\llbracket \tau^{-1} \rrbracket$ at all.

Question 1. Does the condition from Case (iii) characterize contractive rearrangements in $H_{p}$ ?

We can now apply Theorem 1 and duality to prove our main result. There already exists a proof of our next theorem in the literature: see Geiss
et al. [GMP] who used general concepts such as complex interpolation of quasi-Banach lattices.

Theorem 2. Let $\mathcal{B} \cup \mathcal{C} \subset \mathcal{D}$ and let $\tau: \mathcal{B} \rightarrow \mathcal{C}$ be a bijection. If
(a) $0<p<2$ and $\tau^{-1}$ preserves the Carleson constant, or
(b) $2<p<\infty$ and $\tau$ preserves the Carleson constant, then the operator $T_{\tau, p}: H_{p}(\mathcal{B}) \rightarrow H_{p}(\mathcal{C})$ induced by $\tau$ is continuous.
3. A necessary condition. Now we formalize a necessary condition for the continuity of $T_{\tau, p}$. We simply prove the converse to Theorem 2.

Theorem 3. Let $\mathcal{B} \cup \mathcal{C} \subset \mathcal{D}$ and let $\tau: \mathcal{B} \rightarrow \mathcal{C}$ be a bijection. Suppose $T_{\tau, p}: H_{p}(\mathcal{B}) \rightarrow H_{p}(\mathcal{C})$ induced by $\tau$ is a continuous operator. Then
(a) $\tau^{-1}$ preserves the Carleson constant if $0<p<2$;
(b) $\tau$ preserves the Carleson constant if $2<p<\infty$.

Proof. (a) Suppose that $T_{\tau, p}$ is continuous but $\tau^{-1}$ does not preserve the Carleson constant. By [Jo, Lemma 2.1] and [Mu, Proposition 2] this implies that

$$
\forall M \geq 1 \exists \mathcal{L}^{M} \subset \mathcal{C}: \llbracket \mathcal{L}^{M} \rrbracket \leq 4 \quad \text { and } \quad \llbracket \tau^{-1}\left(\mathcal{L}^{M}\right) \rrbracket>4 M
$$

By [Ga, Lemma 3.2 in Chapter 10], there exists an interval $I \in \mathcal{D}$ and $2 M$ pairwise disjoint families $\mathcal{E}^{i} \subset \mathcal{Q}(I) \cap \tau^{-1}\left(\mathcal{L}^{M}\right), i=1, \ldots, 2 M$, such that $\mathcal{E}^{i}$ covers at least half of $I$. By [W2, Lemma 3.3], $\overline{\operatorname{span}}\left\{h_{I, p}: I \in \bigcup_{i=1}^{2 M} \mathcal{E}^{i}\right\}$, i.e. $H_{p}\left(\bigcup_{i=1}^{2 M} \mathcal{E}^{i}\right)$, contains a space $X$ spanned by vectors with pairwise disjoint Haar supports and isomorphic to $\ell_{2}^{2 M}$ with constant $C_{p}$. But $\left\{h_{J, p}: J \in \mathcal{L}^{M}\right\}$ spans $\ell_{p}$ with constant $C_{p, 4}$, in particular, $T_{\tau, p}(X) \stackrel{C_{p, 4}}{\sim} \ell_{p}$ because we can divide $\mathcal{L}^{M}$ into eight disjoint parts $\mathcal{L}_{1}^{M}, \ldots, \mathcal{L}_{8}^{M}$ such that for $1 \leq i \leq 8$ and $I \in \mathcal{L}_{i}^{M}$ we have

$$
\left|\bigcup_{I \neq J \in I \cap \mathcal{L}_{i}^{M}} J\right|<\frac{1}{2}|I|
$$

so $\left\{h_{J, p}: J \in \mathcal{L}_{i}^{M}\right\}$ spans $\ell_{p}$ with constant $2^{1 / p}$ for $1 \leq i \leq 8$ (cf. [Sm, Lemma 2]). Since $M$ can be arbitrarily large, and since $T_{\tau, p}$ is continuous and a rearrangement, and $H_{p}$ is $p$-convex, this leads to a contradiction.
(b) follows by duality from the case $1<p<2$.

Acknowledgements. I wish to express my gratitude to the referee for the suggestions which improved an earlier version of this paper.

## References

[CoW] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
[Ga] J. B. Garnett, Bounded Analytic Functions, Academic Press, 1981.
[GMP] M. Geiss, P. F. X. Müller and V. Pillwein, A remark on extrapolation of rearrangement operators on dyadic $H^{s}, 0<s \leq 1$, Studia Math. 171 (2005), 196-205.
[Jo] P. W. Jones, Carleson measures and the Fefferman-Stein decomposition of $\operatorname{BMO}(\mathbb{R})$, Ann. of Math. 111 (1980) 197-208.
[Mu] P. F. X. Müller, Rearrangements of the Haar system that preserve BMO, Proc. London Math. Soc. 75 (1997), 600-618.
[Sem] E. Semyonov, On the boundedness of operators rearranging the Haar system in the space $L_{p}$, Integral Equations Operator Theory 6 (1983), 385-404.
[Sm] K. Smela, Subsequences of the Haar basis consisting of full levels in $H_{p}$ for $0<$ $p<\infty$, Proc. Amer. Math. Soc. 135 (2007), 1709-1716.
[We] F. Weisz, Martingale Hardy Spaces and their Applications in Fourier Analysis, Springer, Berlin, 1994.
[W1] P. Wojtaszczyk, $H_{p}$-spaces, $p \leq 1$, and spline systems, Studia Math. 77 (1984), 289-320.
[W2] -, Uniqueness of unconditional bases in quasi-Banach spaces with applications to Hardy spaces, II, Israel J. Math. 97 (1997), 253-280.

Department of Mathematics and Applied Physics
Rzeszów University of Technology
W. Pola 2

35-959 Rzeszów, Poland
E-mail: smelakrz@prz.edu.pl

Received February 26, 2008
Revised version June 24, 2008

