STUDIA MATHEMATICA 185 (1) (2008)

On the spectrum of the operator which is a composition
of integration and substitution

by

IaNAT DOMANOV (Donetsk and Praha)

Abstract. Let ¢ : [0,1] — [0, 1] be a nondecreasing continuous function such that

¢(z) > x for all z € (0,1). Let the operator V, : f(z) — Sj(z) f(t) dt be defined on L2[0, 1].
We prove that V,, has a finite number of nonzero eigenvalues if and only if ¢(0) > 0 and
¢(1 —e) =1 for some 0 < £ < 1. Also, we show that the spectral trace of the operator Vj
always equals 1.

1. Introduction. It is well known that the Volterra integration operator
Vi f(z) — §j f(t)dt defined on Ly[0, 1] is quasinilpotent, i.e., (V) = {0}.
Let ¢ € C[0,1] be such that ¢(0) = 0. It was pointed out in [9] and [10] that
the operator V;; defined by

$(x)
(1.1) Vi fa)— | ft)at

0

is quasinilpotent on C[0, 1] whenever ¢(z) < z for all z € [0, 1].

Let ¢ : [0,1] — [0,1] be a measurable function and let Vj, : L,[0,1] —
Lpy[0,1] (1 < p < 00) be defined by (1.1). It was proved in [11] and [13] that
Vi is quasinilpotent on L, |0, 1] if and only if ¢(x) < x for almost all z € [0, 1].
It was noted in [13] and proved in [15] that the spectral radius of Ve (defined
on L,[0,1] or C[0,1]) is 1 —a (0 < o < 1). The detailed investigation of the
spectrum of the operator V,« was done in [1], where it was shown that the
point spectrum op,(Vya) of Via is simple and op (Vi) = {(1 — a)a™ 1} .
The oscillation properties of the eigenfunctions of V,« were also investigated
in [1].

The aim of this paper is to prove the following theorem.
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THEOREM 1.1. Let ¢ : [0,1] — [0,1] be a nondecreasing continuous
function such that ¢(x) > x for all x € (0,1), and Vi be defined on Lo[0, 1]
by (1.1). Set also op(Vy) \ {0} = {M\}y—; (1 Sw < 00). Then:

(1) w < oo if and only if $(0) > 0 and ¢(1 —¢) =1 for some 0 < € < 1;
(2) lim, .o Z|/\n|>s An = 1;
(3) 21 |An|1e < 0o for all e > 0.

The paper is organized as follows.

In Section 2 we recall some classical results on trace class operators,
Fredholm determinants and entire functions. In Section 3 we calculate the
Fredholm determinant Dy, () of the operator V. In Section 4 we estimate
the order of growth of Dy, (A) and prove Theorem 1.1. It turns out that the
matrix trace of Vi is not defined, but the spectral trace of V; does not depend
on ¢ and always equals 1. This contrasts with the fact that o, (V) = 0. We
also find the spectral (= matrix) traces of the Vq? and qu’. In Section 5 we
assume that ¢ : [0,1] — [0,1] is a strictly increasing continuous function
such that card{z : ¢(x) = 2} < oo and describe the spectrum of Vj. Then
we consider V;, defined on the space L,[0, 1].

2. Preliminaries. Here we recall some facts about trace class operators,
Fredholm determinants and entire functions.

2.1. Let K be a compact operator defined on an infinite-dimensional
Hilbert space $). Let s, (K) (n > 1) be the eigenvalues of K K*. The operator
K is said to be of class Sy if Y 07 | sp(K)P < oco. The trace tr K of an
operator K € S; is defined as its matriz trace: tr K = Y 7 | (Ken, en),
where {e,}7° ; is some orthonormal basis. It is known that tr K does not
depend on the choice of {e,}?° and the series Y~ ,(Key,ey,) converges
absolutely. The celebrated theorem of Lidskii (see [4]) says that the matrix
trace of an operator K € S; is equal to its spectral trace, which is defined
as the sum of the eigenvalues of K (counted with algebraic multiplicity):

w

(2.1) tr K = i(K@n,en) = Z)\n, w < oo.

Let K be an integral operator, (K f)(z) = Sé E(x,t)f(t)dt on L0, 1]. Tt
is well known (see [4]) that if k(x, ) is a continuous function on [0, 1] x [0, 1],

then K € S; and tr K is given by the integral over the diagonal:

1
(2.2) tr K =\ k(t,t) dt.
0
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2.2. Now let k(zx,t) be a bounded function on [0, 1] x [0, 1]. Define

(2.3) Drc(\) = f: D" 4am

where Ag := 1 and

1 1
Ap =\ Kt ) dty . dt,
0 0
(2.4) E(t1,t1) k(t1,tn)
K(ty,... ty) = det : : :
k(tn,t1) ... Kk(tn,tn)

for n > 1. The function Dg () is called the Fredholm determinant of K.
Recall (see [6, 8, 12]) that

-

t1t

Cy

S (t1,. . tp)dty ... dt, n>1.

tn—1

1
(2.5) A =n!|
0

M

Moreover, Dg () is an entire function of A of order ¢ < 2, and D (u*) =0
if and only if \* := 1/p* € o, (K); moreover, the multiplicity of u* as a root
of the Fredholm determinant of K is equal to the algebraic multiplicity of
the eigenvalue \*.

2.3. From Hadamard’s theorem ([7, Th. 1, p. 26]) and Lindel6f’s theo-
rem ([7, Th. 3, p. 33]), we get the following

THEOREM 2.1. Let f(z) be an entire function of order oy <1 and type
o < 00. Let also {an}¥_, (w < 00) be all roots of f(z) and f(0) = 1. Then

(i) if oy =1, 0p = 0 and Y., _;1/]an| < oo, then w = oo, f(z) =
[ (1= z/an) and 3277 1/an = —f'(0);
(ii) if of <1, then f(z) =11, _1(1 — z/an) and >y 4 1/a, = —f'(0);
(iii) if oy =0, then > ;1 1/|an|® < oo for each e > 0;
(iv) if oy =1, 05 =0 and Y7, 1/|an| = oo, then

f(z) =e* H (1 — i)ez/a" and limsup

an T—00

1
lan|<r

n=1
In particular,

limsup( > ai> = —a=—f"(0).

ree lan|<r n

(v) >on4 1/|an|' ™8 < 0o for each ¢ > 0.
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3. The Fredholm determinant of the operator V. We begin with
an auxiliary lemma.

LEMMA 3.1. Let A = (a;;)} ;-1 be an n x n matriz all of whose elements
are 0 or 1 and a;; =1 for 1 < j <i <n. Then

1, a;—1;=0 for2<i<n,
det A = | | —a; = '
1) {0, otherwise.

Proof. The proof is trivial. =

THEOREM 3.2. Let ¢ : [0,1] — [0,1] be a nondecreasing continuous
function such that ¢(x) > x for all x € (0,1). Let Vi, be defined on L[0, 1]
by (1.1). Then

1 1 1
(3.1) Dy, (A

2 _1+Z ")\”S Voo dtedn

0g(t1)  ¢(tn—1)
Proof. 1t is clear that (Vyf)(x) = 8(1) k(x,t)f(t)dt =: (K f)(z), where

k(z,t) = x(¢(x) — 1) = {(1) zg; i i

Assume that 0 <t; <--- <t, <1. Then k(t;,t;) =1for 1 < j <i<nand
the matrix (k(t;,1;));';=; satisfies the assumptions of Lemma 3.1. Hence,
K(t1,...,ty) = [1io(1 — k(ti—1,t;)). Further, using (2.3)-(2.5) we get

111 1 n
An:n!SH... S [1Q = ki) dtn .. dty = n) S Ldt,...dt,
0ty to tn—11=2 2n
where
'QTL = {(t177tn) :0 S tl S S tn S 17k(t17t2) == k(tn—htn) :O}

={(t1,...,tn) : 0<t1 < @(t1) <ta < P(t2) < -+ < P(tp—1) < tn, <1}

That is,
11 1

An:n!S S S dtn...dty, n>1.
0p(t1)  d(tn-1)
This completes the proof. m

4. The spectrum of the operator Vy. The following proposition
immediately follows from Theorem 3.2.

PROPOSITION 4.1. Let ¢ : [0,1] — [0,1] be a nondecreasing continuous
function such that ¢(x) > = for all x € (0,1). Then op,(Vy) NR_ = 0.



Composition of integration and substitution 53

LEMMA 4.2. Suppose ¢ : [0,1] — [0,1] is a nondecreasing continuous
function and ¢(x) > = for x € (0,1). Then the following conditions are
equivalent:

(i) ¢(0) >0 and ¢(1 —e) =1 for some 0 < & < 1;

(ii) there ezists a unique N = N(¢) € {2,3,...} such that ¢™(x) =

¢(p(...p(x))) = 1 for all x € [0,1] and ¢ "1(zg) # 1 for some
xo € [O, 1).
Proof. The proof is left to the reader. m

THEOREM 4.3. Let ¢ : [0,1] — [0, 1] be a nondecreasing continuous func-
tion such that ¢(x) > z for all x € (0,1). Suppose also that ¢(0) > 0,
(1 —e) = 1 for some 0 < € < 1, and N = N(¢) is determined by
Lemma 4.2(ii). Then

(1) op(Vy) = {0} U{A1,..., AN}, with all A, # 0;

(2) Eomi A= 1.

Proof. It is easily shown that 0 € o,(V}). Using Theorem 3.2, we get

00 1 1 1
Dy,(\) =1+ AuA", where A, =(-1)"{ | ... | dt,...dt.
n=1 0¢(t1 O(tn—1)

)
It is easily shown that ¢" 1(t;) < t, < 1. Since ¢"(z) = 1 for n > N, it
follows that A, = 0 for n > N + 1. Therefore DV¢(/\) is a polynomial of

degree N and (1) is proved. Further note that Dy, (\) = Hflvﬂ(l — A ay).
Thus

Let ay, ; € C[0,1] (1 <i < n). Define

{Zi"‘-’g,f}:ﬁ [ o | dea...de.

B1(z) B2(w1) Brn(zn_1)
So { %t ..., a”} is a function of z. It is clear that
/81 /Bn
(4.1) {011’”'7ai—l?ai7ai-&-l"”?an}_’_{al"”,ai—lj ’Vi’ai—i-l"”,an}
B Bi—1' B Bit1 Bn B1 Bi—1’ i Bit1 Bn
_ {061 Q-1 Oy + Yi Ol an}
B Bic B i Bin] T B
_ {al Qo1 Vi Qg1 an}
B Bici Bi Biv B

The following lemmas are needed.
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LEMMA 4.4. Let0<e1 <eg <1 and

wl('r)ﬂ T € [0751]7
Y(x) =S Yo(z), z € [e1,e2],
1/)3(113), xT € [62,1],

be a strictly increasing continuous function such that (e

= g9. Let also ag = by = cop = 1 and ay, by, c, di (k =

k-fold integrals defined by

— (01 (A1 — (>
k:' 0707"'7 0 b k:' 61’51"'

Ck::{l?w?)?”.?d}i%}? dktz

E9 €9 €9

Then

n

Z%szan k1,

k=0 =0

Proof. Using (4.1), we get

_ 1 (0 (0
62707”’0
e P 1 €2 €1
—{0,0,.., {5
1 & 1/13¢
+{52’0+81+ "0’

=: K, + L, + M,

|

L4
0707"'7

1)

K

(8

n=12....

o

)
70

61,0,...

By definition K, = a,. Further, again using (4.1), we get
€9 € € €
Ln:{; 1 ¢1}+{2¢2 1+¢2?/)

170707"'70

g2 P2 €1 Y1
=bia,— .
1Qn 1+{€17€1707 0

+{€2 o €1+¢2 (0

)
€1

€1

7"70

51761’6170 61’07“

=brap—1 + baan_2 + {

n
= E bran—x,
k=1

' 0 6’00

)
b

€2 P2 Yo P2 Y

€1 ey’ e g1’ 077

(8
5

€1

b

(8

"0

1

b

|

(4
"0

}:...

1 and Y(e2)
,...) be the



Composition of integration and substitution

1 ¢ 1
Mn: b 17w17"'7w1 + 7€27¢27w7"'7w
g2 070 0 eg'e1 070 0

L 43 v G
+{82752707”'70}

1 3 81+Ez+¢3¢ 1/1}

=cC10p-1+c1Lp_1 + e
5276270 €1 e’;‘g’O7 70
=c1ap—1+c1Llp—1 + c2an—2+caly_2

1
n 7¢371/13781+62+¢37¢7m71/1
€y €9 €90 e €9 0 0

n n—1
== E Ckn—k + E ckLn—k
k=1 k=1

n n

n —k
= E Ckn—k + E ck ) bian g
k=1 1

k=1 =
Finally, we obtain

n

n n n—k
= Coan + ¥ bkn_k + Y Chn_k+ Yk Y bian_p—|
k=1 k=1 k=1 =1
n

n—k
= E Ck E bian 1. =
k=0  1=0

LEMMA 4.5. Let0<e<1/4, 8> 1, and

z, T € [0,5],
ws,ﬂ@) = €+(1_2€)17ﬁ(m_€)ﬂ7 T e [671_6]7
x, ze[l—el].
Then
L 1 1/’6,6 1/’5,ﬂ
1) e {10, o)
(29" (1—2e)(2e) !
ol (n—1)!
= (1 —2¢)!(2e)" B
+lz; D4+ ptr. gy "ThEe
Moreover,
d,, < const(g, 3) <4;') , n=12 ...,

where const(e, 3) does not depend on n.

55
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Proof. Substituting 1. g for ¢(z) in Lemma 4.4, we get (4.2). Indeed,
it is easily proved that a; = ¢ = e/l (I = 0,1,...n). Define by(x) :=
(1—2¢)'F(z —e)?, ¢ha(x) := £ + by (), and

b(z) == {1/’2,...,%}, 1=2.3,....

9 9
—_——

l

Then by (z) = SZ’Z(I) by(t) dt. Tt can easily be checked (by induction on [)
that

~ (1 = 2e)l=B==B (g — &)+ ++F'

bi(z) = . 1=2,3,....
(@) A+8)...(L+ B+ +pT)
Since by = by(1 — ¢), we see that
(4.3) bo=1, by=1-—2
DAY/
b = (1= 2) 1=2.3,....

14+8)...(1+B8+---+ 31y
Using Lemma 4.4, we get

n

(4.4) chzblan - I—Zblzckan Kl
k=0 1= =0 k=0

ko on—k-l
_Zb 5_7
k: (n—Fk—1)!

n—l

B gnt (n—=1D)!

- ;b’ (n—1)! ; Kl(n—1—F)!

=30
2

Substituting (4.3) for b; in (4.4) we get (4.2).
To estimate d,, taking into account the inequality of arithmetic and
geometric means, we obtain

(45) (1+08)--- (14 8+---+ 71 > 282322 1pt-1/2 = ngl=Di/4,

Hence,

n=12....

2_1 1
(1—2o)t7 1\ (1—2e)
s \gm) < Twm o

Let N be a number such that

1\’ 2\
(W) <<1_2€> forl > N
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(for example, N = [4logs(1/(2¢) — 1)] + 2). Then b < (2¢)"/I! for | > N.
Using (4.4), we get, for n > N,

d_zblzsnl Z —1
N

(2e)" n! 1—2¢
n! Zl!(n—l)!( 2e )

IN

n—l!
=N+

<G (1) S s B S

< (4¢) <<1—2€> +1>'
n! 2e
This completes the proof. m
LEMMA 4.6. Let 3> 1 and
26148 = 4y (a), ve[0,1/2),
bp(x) == 5 p

27z —1/2)°P +1/2 = ¢po(x), =€ [1/2,1].
Let ag = by = 1 and ay, bk, and di, (K = 1,2...) be the k-fold integrals
defined by

ak:{l/z wl wl}, bk:{ 1 1/}2 1/}2 },

0’07770 1/2°1/2°°7771/2
du — 1 wﬁ wﬁ
k - 00’0 [
Then
(4.6) dn = bian_, n=12...,

Bl=n/24n) /4

n!
Proof. Substituting 1/2 for £; and 1 for 3 in Lemma 4.4, we get (4.6).
Further, it is not hard to prove that a; = b; = 1/2 and

a=b=2B+1)- B+ F1) "t forl>2.
Now, by (4.5), a; < 27/3U=DU/A4]) and

dyn < , n=12....

n 9—n+l

2 l
d, < ZZ; 5(171)1/4“ Ig(nflfl)(nfl)/4(n _ l)!

_2UN b saienppenpzenya BTN
nl l'(n—l) n! '
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PROPOSITION 4.7. Let ¢ : [0,1] — [0,1] be a nondecreasing continuous
function.
(1) If ¢(x) > x for x € (0,1) then the order of Dy, (\) does not exceed 1,
and if it equals 1, Dy, ()) is of minimal type;
(2) if for some 0 <a<b<1,

b
-, x € [0,a],

o(z) Zfa,b(x) = Cll_b b—a
1—a’ 1=

for x €0, 1], then the order of Dy, ()\) equals 0.

x € [a,1],

Proof. (1) Taking into account Theorem 3.2, we obtain

Dy,(\) =1+ (-1)"A,\", where A,= {(1) ;;}
n=1

Since ¢(x) > x for each 0 < ¢ < 1/4, it follows that there exists § > 1 such
that ¢(z) > wgé(x) Using Lemma 4.5, we get

11 1 1 1 1
A, =d, = sy <{ s e _}
{0 ¢ ¢} 0" 5" U

= {1 Ve 11)5’5} < const(g, ) (45)71.

000’770 n!

Therefore the order of growth of Dy, (A) does not exceed 1. Assume that
this order is 1. Then the type of Dy, () does not exceed 4¢ for each ¢ < 1/4.
Thus Dy, () is of minimal type.

(2) Since ¢(x) > fap(x) for some 0 < a < b < 1, it follows that there
exists # > 1 such that ¢(z) > 1/15_1(37). Using Lemma 4.6, we get

11 1 1 1 1
An:dn: I sy =1y
{0 6 ¢} = {0 ;! %1}

_ 1 wﬂ wﬁ _ ﬁ(fn2/2+n)/4
00 _ .

0 n!

Therefore the order of growth of Dy, () equals 0. m

THEOREM 4.8. Let ¢ : [0,1] — [0,1] be a nondecreasing continuous
function such that ¢(x) > x for all x € (0,1). Suppose that either $(0) =0
or (1 —e) # 1 for all0 <e < 1. Then

(1) op(V) \ {0} =: {A1, Ao, ... } is an infinite set;

(2) lime—o D215, j5e An = 1

(3) >¥_, | At < o0 for all e > 0.
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Proof. Using Theorem 3.2, we get

O7¢7"'7¢

It is easy to see that if either ¢(0) =0 or ¢p(1 —¢) #1forall 0 < e < 1,
then A;,, > 0 for n > 0. Therefore Dy, ()) is not a polynomial in A\. Now we
apply Proposition 4.7(1). Suppose that the order of Dy, () is less than 1;
then using Theorem 2.1(ii), we get Dy, (\) = [];;_;(1—X/ayn). Since Dy, ())
is not a polynomial, it follows that w = oo and > 2 Ay = > o0 1/a, =
—A1/Ap = 1. Now suppose that the order of Dy, (A) is 1; then Dy, (A)
is of minimal type. Thus the spectrum of V, is an infinite set. Now, the
application of Theorem 2.1(i), (iv) yields (2).

(3) follows from Theorem 2.1. m

= 11 1
Dy,(\) =1+ Z(—l)nAn)\", where A, = { }
n=1

Now we are ready to prove the main result of the paper.

Proof of Theorem 1.1. (1) follows from Theorem 4.3(1) and Theo-
rem 4.8(1).
(2)—(3) follow from Theorem 4.3(2) and Theorem 4.8(2)—(3). m

THEOREM 4.9. Let ¢ : [0,1] — [0,1] be a nondecreasing continuous
function and for some 0 < a < b < 1,

b
— T, ZUG[O,(I],
a

@231 b-a
1-a' ' "T1-a
for all x € [0,1]. Suppose that either ¢(0) = 0 or ¢(1 —¢e) # 1 for all
0<e<1. Then
(1) op(Vp) \ {0} =: (A1, A2, ...) is an infinite set;
(2) X An =15
(3) D02y A < o0 for all e > 0.

Proof. (1) follows from Theorem 4.8(1). By Proposition 4.7(2), the or-
der of Dy, (A) equals 0. Thus (2) and (3) follow from (ii) and (iii) of Theo-
rem 2.1. =

x € [a, 1],

REMARK 4.10. (i) Suppose ¢ is strictly increasing and ¢(z) > = for all
€ (0,1). Assume that also ¢ € C'[0,1] and (¢')""/? € Luo[0, 1]. We claim
that Vi € S1. Indeed, let ¢ := (Sé((;b’(s))l/z ds)~! and let W, and T, be the
linear operators on Lo[0, 1] defined by
(Wo)(@) = § (& O) 210 dt,  (Tuf)w) = f(ef (6/()) /2 ds).

0 0
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It can easily be checked (see [2]-[3]) that T;, and T} ! are bounded operators
and ¢V =T, "W Ty. Hence (see [5]),

sn(We) > | Tl ~HIT5 I sn(eVa) = [Tl ~HIT, I e ﬁ
Further,
#(@) 1 T 1
VaVin@) = | | fs)dsdt=\¢'(t)| f(s)dsdt = (WeWj f)(x).
0 ¢-1(t) 0 t

Thus 5,(Vy) = 5,(Wy) > HT¢H_1HT¢_1H_1 W Hence, V4 & S;.

(ii) Since Vi & Sy, it follows that the matrix trace of the operator Vg
is not defined. Hence we cannot use (2.1)—(2.2) to prove Theorem 4.9(2).
Nevertheless, (2.1)—(2.2) hold for K = V,, and the orthonormal basis {e, }52;
defined by: e; = 1, gy, := €2™"* and eg, 11 := e 2™ (n = 1,2,...). Indeed,
since Y o7 | (sinnx)/n = (v — x)/2 for x € (0,2m), it follows that

00 1
Z(Vqﬁem en) = S¢<1‘) dx
n=0 0

—2ming(z) _ 2minx
ar +( De da:)

© o oring(z) _ —2minx 1
(e 1e S
2min 5 —2min

0

X

o) da > isin(27m(¢(a:)—x)) ;
0

™n

Further, Sé X(¢(z)—z) dr = 1. Thus formulas (2.1)—(2.2) hold. This contrasts
with the fact that > > ((Vien, en) = 00.

(iii) Theorem 1.1 states that the spectral trace of an operator Vy al-
ways equals 1. This also contrasts with the fact that the operator V, is
quasinilpotent.

To estimate the spectral radius r(Vy) we recall (see [14]) some results on
integral operators with nonnegative kernels. Let (K f)(z) = Sé k(z,t)f(t)dt
and k(x,t) > 0 for (x,t) € [0,1]x]0, 1]. If there exist @ > 0 and a nonnegative
function f such that (K f)(z) > af(z) for z € [0,1], then r(K) € op(K)
and r(K) > a.

PROPOSITION 4.11. Let ¢ : [0,1] — [0,1] be a strictly increasing contin-
uous function such that ¢(x) > x for all x € [0,1]. Write o,(Vy) = { \n}i_y
(w < o0). Then
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(1) r(Vy) > x%gf](cb(x) —x), 1(Vy) € op(Vs).

Suppose moreover that $(0) = 0. Then w = oo and

ZV: Sgb t)dt —1;

3) ZA% =1- 3§¢>(t)¢>—1(t) dt.
n=1 0
Proof. (1) Let fo(z) =1— x(a—x), a € (0,1). Then

_Jo, (0,07 (a)]
Wera@ = {808 N el - o)
and (1) is proved.

(2), (3) It is easy to check that ¢—!(z) is well defined and

(Vi)(= =§x (G(x) — ¢~ (1) f(t) dt =: \ kalw, t) F(£) dt,
0 0
1 @(x) 1

Vi) =\x(@* @) —t) | (¢(s) — 67 () ds f(t) dt =: | ks(,t) f(t) dt.
0 ¢72@) 0

Further, k2 and k3 are continuous functions on [0, 1] x [0, 1]. Hence, V(f €S
and Vdf’ € S;. Now if we recall (2.2), we get

[e') 1 1 1
DN =kt t)dt = (¢(t) — 7 (1)) dt = 2\ p(t) dt — 1
n=1 0 0 0
o 1 1 o(t)
SN =kt tyat={ | (¢(s) =o' (1)) ds
n=1 0 0¢—2(t)

1

= (s(t)8*(t) — 207" (1) p(t) + 6" (1) (1)) dlt
0

EXAMPLE 4.12. Let ¢(z) = 2% (0 < o < 1). It can be proved by direct
calculations that

1
Dy (A _1+Z ”)\”H... | dtn...dn

Ot(ll tn 1
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B o n " n(nfl)/2<1_a)n B 0 B Y
B z:: A (1-a). ..(l—a”)_H<1 (1—04)04”‘1)'

n=1

Hence, o (Vo) = {(1—a)a™ 1} | and each eigenvalue of V,a is of algebraic
multiplicity one. Further,

- n— (1_a)6
Z(l—a) —1 and Z 1—Oé 1 —W<OO
n=1

for each € > 0.

5. Some generalizations
5.1. The following lemma can be proved by direct calculations.

LEMMA 5.1. Let A be a compact operator defined on a Hilbert space $).
Let 9 = @le 9 and A; .= PA . $H; — 9;, where P; be the orthogonal
projection in §) onto $);. Suppose that {@2:1 ﬁj}le is invariant for A. Then
1/X is an eigenvalue of A of algebraic multiplicity m > 1 if and only if 1/\
is an eigenvalue of A; of algebraic multiplicity m; > 0 and Zle m; = m.

Proof. The proof is omitted. m

THEOREM 5.2. Let ¢ : [0,1] — [0,1] be a stmctly increasing continuous
function. Let {z : ¢(z) = z, z € (0,1)} = {a;}*=}, where 0 < ay < --- <
ap—1 <1 (k>2). Define ap :=0, ap := 1, and

¢i(x) = (p(z(a; — ai-1) + aj—1) — a;-1)/(a; — a;—1), 1<i<k,

1—}—2 {0 b ;Z} if pi(x) > x for x € (0,1),

1 if pi(x) <z for x € (0,1).

Dy, (A) ==

Then

(1) 1/X € 0p(Vy) if and only if Hle Dy, ((a; — ai-1)A) = 0;
(2) the algebraic multiplicity of the eigenvalue 1/ is equal to the multi-
plicity of X as a root of the entire function Hle Dvd)i((ai —a;i—1)A).

Proof. Set $) := L2[0,1], $; := Ls[ai—1,a;] and
f($)7 T e [ai—lvaiL
P : —
f@) {0, x & a1, ail,
A:=Vy, Aj:=PBAlg,
T {f(ﬂﬂ)a z € [a;-1,ai
0, x & ai—1, a;l

P’i:ﬁ_’ﬁiv

} = f((ai —ai-1)r +ai—1), Ti:9H— 9.
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It follows easily that @;':1 9; (= L2[0,a,]) is invariant for A and

o(x)
A - {f(l’)v T € [ai—laai]} )V rwadt, e faio,al),
‘o, x & lai—1,a;] an—1
07 x g [ai—17ai]7
T — aj—1
Tt () — f<— - ) velaivalpig g,
07 X ¢ [a/i—hai]’

EAﬂ“i_l = (a; — a;j—1)Vy,.
The application of Theorem 3.2 yields
1/X € op(Ai) & 1/X € op((ai — ai-1)Vy,) < Dy, ((a; — ai—1)A) = 0.
Now applying Lemma 5.1 completes the proof. m

COROLLARY 5.3. Suppose ¢ satisfies the conditions of Theorem 5.2 and
mes{z : ¢(x) > x, x € [0,1]} > 0. Set also op(Vy) \ {0} = {M\}y_; 1 <w
< 00). Then

(1) w < oo if and only if (0) >0, p(1 —e) =1 for some 0 < e < 1 and
¢(x) > x for all x € (0,1);
(2) limeo 37}y, (5c An = mes{z : ¢(z) > 2, z € [0, 1]}.

Proof. (1) follows from Theorems 4.3, 4.8, 5.2.
(2) By definition, put

Q2 :={i:¢(x) >z for x € [a;_1,a;]} = {i: ¢i(x) > x for x € [0, 1]},
UP(V@) = {)\m}#:l, 1<w< o0, 1€ §.
By Theorem 5.2,

iy = op(Ve) = | op((ai — aii) Vi) = [ J (@i — aim) {Din iy

i€ ic
By Theorem 4.8,
lim > Ain=1.
|>\in|>5

Thus

li — a1 .

EI_I% An Z(az a; 1) il_r)% Z Ain

[An|>e i€f? [Ain|>e
= Z(ai —a;—1) =mes{z : ¢(x) >z, z €[0,1]}. m
i€f2

REMARK 5.4. It is interesting to note that the case of nonincreasing
function ¢ can be more multifarious. In particular, if ¢ is a strictly decreasing
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continuous function such that ¢(0) =1, ¢(1) = 0 and ¢(¢(x)) = « then V,
is a selfadjoint operator in L2[0, 1]. For example,

_ 20t
UP(VI_I) B { (2’/2 + 1)7T}n:1
and
— 2(-1)" 27 1 :
2 Guiin sq g melriloeza)

5.2. In this subsection we consider an operator Vj defined on L,[0, 1]
(1<p<o0).

Let A; be a bounded operator defined on Banach space X; (i = 1,2).
Recall that A, is said to be quasisimilar to Ao if there exist deformations
K:X,— Xsand L: X5 — X1 (i.e. R(K) = Xa, ker K = {0}, R(L) = X1,
ker L. = {0}) such that A;L = LAy and KA; = AsK. It is clear that
op(A1) = op(A).

PROPOSITION 5.5. Let ¢ : [0,1] — [0, 1] be a strictly increasing contin-
uous function such that $(0) =0 and ¢(1) = 1. Let Ay denote an operator
Vi defined on L,[0,1] (1 < p < 00) and let Ay denote Vi, defined on La[0, 1].
Then Ay is quasisimilar to Az, and hence op(A1) = op(A2).

Proof. Set K :=Vy: Ly[0,1] — L2[0,1], L := Vy : L3[0,1] — L,[0,1]. Tt
is clear that K and L are deformations and AL = LAy, KA1 = AsK. u

5.3. Now we consider the operator
o(x)
(Vo) (@) :=q(x) | ft)w(t)dt

0

defined on Ly[0, 1]. The proof of the following theorem is similar to the proof
of Theorem 3.2.

THEOREM 5.6. Let ¢ : [0,1] — [0,1] be a nondecreasing continuous
function such that ¢(x) > x for all x € (0,1). Let q,w € L]0, 1]. Then

quﬁ,q,w (A)

o) 1 1 1
=14+>_ (=0maf U at)wtn) . gta)w(tn) dty .. dty.
n=1 0¢(t1)  é(tn-1)

COROLLARY 5.7. Under the assumptions of Theorem 5.6 suppose that
g(x)w(x) > 0 for a.a. x € [0,1]. Then op(Vyqw) \ {0} is a finite set if and
only if ¢(0) > 0 and ¢(1 —¢e) =1 for some 0 < e < 1.
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