
STUDIA MATHEMATICA 185 (1) (2008)

The random paving property for

uniformly bounded matrices

by

Joel A. Tropp (Pasadena, CA)

Abstract. This note presents a new proof of an important result due to Bourgain
and Tzafriri that provides a partial solution to the Kadison–Singer problem. The result
shows that every unit-norm matrix whose entries are relatively small in comparison with
its dimension can be paved by a partition of constant size. That is, the coordinates can
be partitioned into a constant number of blocks so that the restriction of the matrix to
each block of coordinates has norm less than one half. The original proof of Bourgain and
Tzafriri involves a long, delicate calculation. The new proof relies on the systematic use
of symmetrization and (noncommutative) Khinchin inequalities to estimate the norms of
some random matrices.

1. Introduction. This note presents a new proof of a result about the
paving problem for matrices. Suppose that A is an n × n matrix. We say
that A has an (m, ε)-paving if there exists a partition of the set {1, . . . , n}
into m blocks {σ1, . . . , σm} so that

∥

∥

∥

m
∑

j=1

Pσj
APσj

∥

∥

∥
≤ ε‖A‖

where Pσj
denotes the diagonal projector onto the coordinates listed in σj .

Since every projector in this note is diagonal, we omit the qualification from
here onward. As usual, ‖·‖ is the norm on linear operators mapping ℓn

2 to
itself.

The fundamental question concerns the paving of matrices with a zero
diagonal (i.e., hollow matrices).

Problem 1 (Paving problem). Fix ε ∈ (0, 1). Is there a constant m =
m(ε) so that , for sufficiently large n, every hollow n × n matrix has an

(m, ε)-paving?
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Anderson [And79] has shown that the paving problem is equivalent with
the Kadison–Singer problem, a major open question in operator theory. It is
closely related to significant problems in harmonic analysis and other areas
of mathematics and engineering. See [CT06] for an intriguing discussion.

At present, the strongest results on the paving problem are due to Bour-
gain and Tzafriri [BT91]. For a fixed ε, they established that

(1) every hollow matrix of size n × n can be paved with at most m =
O(log n) blocks,

(2) every square matrix whose entries are relatively small compared with
its dimension can be paved with a constant number of blocks.

Let us present a precise statement of their second result. We use the notation
JnK := {1, . . . , n}.

Theorem 2 (Bourgain–Tzafriri). Fix γ > 0 and ε ∈ (0, 1). There exists

a positive integer m = m(γ, ε) so that , for all n ≥ N(γ, ε), the following

statement holds. Suppose that A is an n×n unit-norm matrix with uniformly

bounded entries:

|ajk| ≤
1

(log n)1+γ
for j, k = 1, . . . , n.

Then there is a partition of the set JnK into m blocks {σ1, . . . , σm} such that

∥

∥

∥

m
∑

j=1

Pσj
APσj

∥

∥

∥
≤ ε

where Pσj
is the projector onto the coordinates listed in σj. The number m

satisfies the bound
m ≤ Cε−C/min{1,γ}

where C is a positive universal constant.

The proof of this result published in [BT91] hinges on a long and delicate
calculation of the supremum of a random process. This computation involves
a difficult metric entropy bound based on some subtle iteration arguments.

This note shows that the central step in the known proof can be re-
placed by another approach based on symmetrization and noncommutative
Khinchin inequalities. This method for studying random matrices is adapted
from Rudelson’s article [Rud99]. Even though it is simple and elegant, it
leads to sharp bounds in many cases. By itself, Rudelson’s technique is
not strong enough, so we must also invoke a method from Bourgain and
Tzafriri’s proof to complete the argument. As we go along, we indicate the
provenance of various parts of the argument.

2. Problem simplifications. Let us begin with some problem simpli-
fications. The reductions in this section were all proposed by Bourgain and
Tzafriri; we provide proofs for completeness.
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The overall strategy is to construct the paving with probabilistic tools.
The first proposition shows that we can lever a moment estimate for the
norm of a random submatrix to build a paving. The idea is to permute
the coordinates randomly and divide them into blocks. The moment bound
shows that, if we restrict the matrix to the coordinates in a random block,
then it has small spectral norm.

Proposition 3 (Random paving principle). Fix an integer m, and let

n = km for an integer k. Let A be an n×n unit-norm matrix , and suppose

that P is a projector onto exactly k coordinates, chosen uniformly at random

from the set JnK. If , for p ≥ log n, we have the estimate

(E ‖PAP ‖p)1/p ≤ ε,

then there exists a partition of the set JnK into m blocks {σ1, . . . , σm}, each

of size k, such that
∥

∥

∥

m
∑

j=1

Pσj
APσj

∥

∥

∥
≤ 3ε

where Pσj
is the projector onto the coordinates listed in σj.

Proof. Consider a random permutation π on the set JnK. For j=1, . . . , m,
define

σj(π) = {π(jk − k + 1), π(jk − k + 2), . . . , π(jk)}.
For each j, the projector Pσj(π) onto the coordinates in σj(π) is a restriction
to k coordinates, chosen uniformly at random. The hypothesis implies that

E max
j=1,...,m

‖Pσj(π)APσj(π)‖p ≤ mεp.

There must exist a permutation π0 for which the left-hand side is smaller
than its expectation. For the partition with blocks σj = σj(π0), we have

∥

∥

∥

m
∑

j=1

Pσj
APσj

∥

∥

∥
= max

j
‖Pσj

APσj
‖ ≤ m1/pε.

The equality holds because the coordinate blocks are disjoint. Finally, we
have m1/p ≤ e because m ≤ n and p ≥ log n.

This proposition shows that it is sufficient to study the restriction to
a random set of coordinates of size k. Although this dependent coordinate
model is conceptually simple, it would lead to severe inconveniences later
in the proof. We prefer instead to study an independent coordinate model
for the projector where the expected number of coordinates equals k. Fortu-
nately, the two models are equivalent for our purposes.

Proposition 4 (Random coordinate models). Fix an integer m, and

let n = km for an integer k. Let A be an n × n matrix. Suppose that P is
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a projector onto k coordinates, chosen uniformly at random from JnK, and

suppose that R is a projector onto a random set of coordinates from JnK,
where each coordinate appears independently with probability k/n. For p > 0,

(E ‖PAP ‖p)1/p ≤ (2 E ‖RAR‖p)1/p.

The reduction to the independent coordinate model also appears in Bour-
gain and Tzafriri’s paper with a different proof. The following attractive
argument is drawn from [CR06, Sec. 3].

Proof. For a coordinate projector R, denote by σ(R) the set of coordi-
nates onto which it projects. We can make the following computation:

P{‖RAR‖p > t} ≥
n

∑

j=k

P{‖RAR‖p > t | #σ(R) = j} · P{#σ(R) = j}

≥ P{‖RAR‖p > t | #σ(R) = k} ·
n

∑

j=k

P{#σ(R) = j}

≥ 1

2
P{‖PAP ‖p > t}.

The second inequality holds because the spectral norm of a submatrix is
smaller than the spectral norm of the matrix. The third inequality relies
on the fact [JS68, Thm. 3.2] that the medians of the binomial distribution
binomial(k/n, n) lie between k − 1 and k. Integrate with respect to t to
complete the argument.

3. The main result. On account of these simplifications, it suffices to
prove the following theorem. In what follows, Rδ denotes a square, diagonal
matrix whose diagonal entries are independent and identically distributed
0-1 random variables with common mean δ. The dimensions of Rδ conform
to its context.

Theorem 5. Fix γ > 0 and ε ∈ (0, 1). There exists a positive integer

m = m(γ, ε) so that , for all n ≥ N(γ, ε), the following statement holds.

Suppose that A is an n×n unit-norm matrix with uniformly bounded entries:

|ajk| ≤
1

(log n)1+γ
for j, k = 1, . . . , n.

Let δ = 1/m. For p = 2 · ⌈log n⌉, we have

(3.1) (E ‖RδARδ‖p)1/p ≤ ε.

The number m satisfies the bound

m ≤ (0.01ε)−2(1+γ)/γ.

An example of Bourgain and Tzafriri shows that the number γ cannot be
removed from the bound (log n)−(1+γ) on the matrix entries [BT91, Ex. 2.2].
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Fix δ ∈ (0, 1). For each n ≥ N(δ), they exhibit an n×n matrix A with unit
norm and bounded entries:

|ajk| ≤
2 log(1/δ)

log n
.

For this matrix, E ‖RδARδ‖ ≥ 1/2. In particular, it has no constant-size
random paving when ε is small.

Proof of Theorem 2 from Theorem 5. Fix γ and ε. Let m be the integer
guaranteed by Theorem 5, and assume that n is sufficiently large. Suppose
we are given an n×n matrix with unit norm and uniformly bounded entries.
If necessary, augment the matrix with zero rows and columns so that its
dimension is a multiple of m.

Apply Proposition 4 to transfer the estimate (3.1) to the dependent co-
ordinate model. The random paving principle shows that the augmented
matrix has an (m, 6ε)-paving. Discard the zero rows and columns to com-
plete the proof of Theorem 2.

4. Proof of Theorem 5. In this section, we establish Theorem 5. The
proofs of the supporting results are postponed to the subsequent sections.

Fix γ > 0 and ε ∈ (0, 1). We assume for convenience that n ≥ 8, and we
suppose that A is an n × n matrix with unit norm and uniformly bounded
entries:

|ajk| ≤
1

(log n)1+γ
=: µ.

In what follows, the symbol µ always abbreviates the uniform bound. Finally,
set p = 2 · ⌈log n⌉.

The major task in the proof is to obtain an estimate for the quantity

E(̺) := (E ‖R̺AR̺‖p)1/p,

where ̺ is not too small. This estimation is accomplished with decoupling,
symmetrization, and noncommutative Khinchin inequalities. This approach
is adapted from work of Rudelson [Rud99] and Rudelson–Vershynin [RV07].
Given this estimate for E(̺), we extrapolate the value of E(m−1) for a
large constant m = m(γ, ε). This step relies on an elegant method due to
Bourgain and Tzafriri.

Before continuing, we instate a few more pieces of notation. The symbol
‖·‖1,2 denotes the norm of an operator mapping ℓn

1 to ℓn
2 . For a matrix X

expressed in the standard basis, ‖X‖1,2 is the maximum ℓn
2 norm achieved

by a column of X. The norm ‖X‖max calculates the maximum absolute
value of an entry of X.

4.1. Step 1: Decoupling. As in Bourgain and Tzafriri’s work, the first
step involves a classical decoupling argument. First, we must remove the
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diagonal of the matrix. Since the entries of A do not exceed µ, it follows
that ‖diag A‖ ≤ µ. Define

B =
1

1 + µ
(A − diag A).

Note that B has a zero diagonal and that ‖B‖ ≤ 1. Furthermore,

|bjk| < µ for j, k = 1, . . . , n.

With this definition,

E(̺) ≤ ‖diag A‖ + (1 + µ)(E ‖R̺BR̺‖p)1/p.

The expectation on the right-hand side cannot exceed one, so we have

E(̺) ≤ 2µ + (E ‖R̺BR̺‖p)1/p.

Now, we may replace the projector R̺ by a pair of independent projectors
by invoking the following result.

Proposition 6. Let B be a square matrix with a zero diagonal , and let

p ≥ 1. Then

(E ‖R̺BR̺‖p)1/p ≤ 20(E ‖R̺BR
′
̺‖

p
)1/p,

where the two random projectors on the right-hand side are independent.

See [BT87, Prop. 1.1] or [LT91, Sec. 4.4] for the simple proof.
We apply Proposition 6 to reach

(4.1) E(̺) ≤ 2µ + 20(E ‖R̺BR
′
̺‖

p
)1/p.

4.2. Step 2: Norm of a random restriction. The next step of the proof is
to develop a bound on the spectral norm of a matrix that has been restricted
to a random subset of its columns. The following result is due to Rudelson
and Vershynin [RV07], with some inessential modifications by the author.

Proposition 7 (Rudelson–Vershynin). Let X be an n× n matrix , and

suppose that p ≥ 2 log n ≥ 2. Then

(E ‖XR̺‖p)1/p ≤ 3
√

p (E ‖XR̺‖p
1,2)

1/p +
√

̺ ‖X‖.
The proof of Proposition 7 depends on a lemma of Rudelson that bounds

the norm of a Rademacher sum of rank-one, self-adjoint matrices [Rud99].
This lemma, in turn, hinges on the noncommutative Khinchin inequality
[LP86], [Buc01]. See Section 5 for the details.

To account for the influence of R′
̺, we apply Proposition 7 with X =

R̺B. Inequality (4.1) becomes

E(̺) ≤ 2µ + 60
√

p (E ‖R̺BR
′
̺‖p

1,2)
1/p + 20

√
̺ (E ‖R̺B‖p)1/p.

We invoke Proposition 7 again with X = B∗ to reach

E(̺) ≤ 2µ+60
√

p (E ‖R̺BR
′
̺‖p

1,2)
1/p+60

√
̺p (E ‖B∗

R̺‖p
1,2)

1/p+20̺‖B∗‖.
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Discard the projector R′
̺ from the first expectation by means of the obser-

vation

‖R̺BR
′
̺‖1,2 ≤ ‖R̺B‖1,2.

In words, the maximum column norm of a matrix exceeds the maximum
column norm of any submatrix. We also have the bound

‖B∗
R̺‖1,2 ≤ ‖B∗‖1,2 ≤ ‖B∗‖ ≤ 1

because the spectral norm dominates the maximum ℓn
2 norm of a column.

The inequality ̺ ≤ √
̺ yields

(4.2) E(̺) ≤ 2µ + 60
√

p (E ‖R̺B‖p
1,2)

1/p + 80
√

̺p.

4.3. Step 3: Estimate of maximum column norm. To complete our es-
timate of E(̺), we must bound the remaining expectation. The following
result does the job.

Proposition 8. Let X be an n × n matrix , and suppose that p ≥
2 log n ≥ 4. Then

(E ‖R̺X‖p
1,2)

1/p ≤ 3
√

p ‖X‖max +
√

̺ ‖X‖1,2.

The proof of Proposition 8 uses only classical methods, including sym-
metrization and scalar Khinchin inequalities. A related bound appears inside
the proof of Proposition 2.5 in [BT91]. Turn to Section 6 for the argument.

Apply Proposition 8 to the remaining expectation in (4.2) to find that

E(̺) ≤ 2µ + 180p‖B‖max + 60
√

̺p ‖B‖1,2 + 80
√

̺p.

As above, the maximum column norm ‖B‖1,2 is not greater than 1. The
entries of B are uniformly bounded by µ. Recall p = 2 · ⌈log n⌉ to conclude
that

(4.3) E(̺) ≤ 550µ log n + 250
√

̺ log n,

taking into account ⌈log n⌉ ≤ 1.5 log n whenever n ≥ 8.

The result in (4.3) is not quite strong enough to establish Theorem 5. In
the theorem, the relation between the size m of the paving and the propor-
tion δ of columns is δ = 1/m. The parameter ̺ also represents the proportion
of columns selected. Unfortunately, when we set ̺ = 1/m, we find that the
bound in (4.3) is trivial unless ̺ is smaller than c/log n, which suggests
that m grows logarithmically with n. To prove the result, however, we must
obtain a bound for m that is independent of dimension.

4.4. Step 4: Extrapolation. To finish the argument, we require a remark-
able fact uncovered by Bourgain and Tzafriri in their work. Roughly speak-
ing, the value of E(̺)p is comparable with a polynomial of low degree. It
is possible to use inequality (4.3) to estimate the coefficients of this poly-
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nomial. We can then extrapolate to obtain a nontrivial estimate of E(δ)p,
where δ is a small constant.

Proposition 9 (Bourgain–Tzafriri). Let X be an n × n matrix with

‖X‖ ≤ 1. Suppose that p is an even integer with p ≥ 2 log n. Choose param-

eters δ ∈ (0, 1) and ̺ ∈ (0, 0.5). For each λ ∈ (0, 1),

(E ‖RδXRδ‖p)1/p ≤ 60[δλ + ̺−λ(E ‖R̺XR̺‖p)1/p].

The proof depends essentially on a result of V. A. Markov that bounds
the coefficients of a polynomial in terms of its maximum value. See Section
7 for the details.

Recall now that

µ ≤ 1

(log n)1+γ
.

Set the proportion ̺ = (log n)−1−2γ, and introduce these quantities into
(4.3) to obtain

(E ‖R̺AR̺‖p)1/p ≤ 800(log n)−γ .

Proposition 9 shows that

(E ‖RδARδ‖p)1/p ≤ 60δλ + 48000(log n)λ(1+2γ)−γ

for every value of λ in (0, 1). Make the selection λ = γ/(2 + 2γ). Since the
exponent on the logarithm is strictly negative, it follows for sufficiently large
n that

(E ‖RδARδ‖p)1/p ≤ 100 δγ/(2+2γ).

To make the right-hand side less than a parameter ε, it suffices that δ ≤
(0.01ε)2(1+γ)/γ. Therefore, any value

m ≥ (0.01ε)−2(1+γ)/γ

is enough to establish Theorem 5.

5. Proof of random restriction estimate. In this section, we estab-
lish Proposition 7. The difficult part of the estimation is performed with the
noncommutative Khinchin inequality. This result was originally discovered
by Lust-Piquard [LP86]. We require a sharp version due to Buchholz [Buc01]
that provides the optimal order of growth in the constant.

Before continuing, we state a few definitions. Given a matrix X, let
σ(X) denote the vector of its singular values, listed in weakly decreasing
order. The Schatten p-norm ‖·‖Sp

is calculated as

‖X‖Sp
= ‖σ(X)‖p,

where ‖·‖p denotes the ℓp vector norm.
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A Rademacher random variable takes the two values ±1 with equal prob-
ability. A Rademacher sequence is a sequence of independent Rademacher
variables.

Proposition 10 (Noncommutative Khinchin inequality). Let {Xj} be

a finite sequence of matrices of the same dimension, and let {εj} be a

Rademacher sequence. For each p ≥ 2,

(5.1)
[

E

∥

∥

∥

∑

j

εjXj

∥

∥

∥

p

Sp

]1/p

≤ Cp max
{∥

∥

∥

(

∑

j

XjX
∗
j

)1/2∥
∥

∥

Sp

,
∥

∥

∥

(

∑

j

X
∗
j Xj)

1/2
∥

∥

∥

Sp

}

,

where Cp ≤ 2−0.25
√

π/e
√

p.

This proposition is a corollary of Theorem 5 of [Buc01]. In this work,
Buchholz shows that the noncommutative Khinchin inequality holds with a
Gaussian sequence in place of the Rademacher sequence. He computes the
optimal constant when p is an even integer:

C2n =

(

(2n)!

2nn!

)1/2n

.

One extends this result to other values of p using Stirling’s approximation
and an interpolation argument. The inequality for Rademacher variables
follows from the contraction principle.

In an important paper [Rud99], Rudelson showed how to use the non-
commutative Khinchin inequality to study the moments of a Rademacher
sum of rank-one matrices.

Lemma 11 (Rudelson). Suppose that x1, . . . , xn are the columns of a

matrix X. For any p ≥ 2 log n,

(

E

∥

∥

∥

n
∑

j=1

εjxjx
∗
j

∥

∥

∥

p)1/p
≤ 1.5

√
p ‖X‖1,2‖X‖,

where {εj} is a Rademacher sequence.

Proof. First, bound the spectral norm by the Schatten p-norm:

E :=
(

E

∥

∥

∥

n
∑

j=1

εjxjx
∗
j

∥

∥

∥

p)1/p
≤

(

E

∥

∥

∥

n
∑

j=1

εjxjx
∗
j

∥

∥

∥

p

Sp

)1/p
.

Apply the noncommutative Khinchin inequality to obtain

E ≤ Cp

∥

∥

∥

(

n
∑

j=1

‖xj‖2
2xjx

∗
j

)1/2∥
∥

∥

Sp

.
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The rank of the matrix inside the norm does not exceed n, so we can bound
the Schatten p-norm by the spectral norm if we pay a factor of n1/p, which
does not exceed

√
e. Afterward, pull the square root out of the norm to find

E ≤ Cp

√
e
∥

∥

∥

n
∑

j=1

‖xj‖2
2xjx

∗
j

∥

∥

∥

1/2
.

The summands are positive semidefinite, so the spectral norm of the sum
increases monotonically with each scalar coefficient. Therefore, we may re-
place each coefficient by maxj ‖xj‖2

2 and use the homogeneity of the norm
to obtain

E ≤ Cp

√
emax

j
‖xj‖2

∥

∥

∥

n
∑

j=1

xjx
∗
j

∥

∥

∥

1/2
.

The maximum can be rewritten as ‖X‖1,2, and the spectral norm can be
expressed as

∥

∥

∥

n
∑

j=1

xjx
∗
j

∥

∥

∥

1/2
= ‖XX

∗‖1/2 = ‖X‖.

Recall that Cp ≤ 2−0.25
√

π/e
√

p to complete the proof.

Recently, Rudelson and Vershynin showed how Lemma 11 implies a
bound on the moments of the norm of a matrix that is compressed to a
random subset of columns [RV07].

Proposition 12 (Rudelson–Vershynin). Let X be a matrix with n
columns, and suppose that p ≥ 2 log n ≥ 2. Then

(E ‖XR̺‖p)1/p ≤ 3
√

p (E ‖XR̺‖p
1,2)

1/p +
√

̺ ‖X‖.
In words, a random compression of a matrix gets its share of the spectral

norm plus another component that depends on the total number of columns
and on the ℓn

2 norms of the columns.

Proof. Let us begin with an overview of the proof. First, we express the
random compression as a random sum. Then we symmetrize the sum and
apply Rudelson’s lemma to obtain an upper bound involving the value we
are trying to estimate. Finally, we solve an algebraic relation to obtain an
explicit estimate for the moment.

We seek a bound for

E := (E ‖XR̺‖p)1/p.

First, observe that

E2 = (E ‖XR̺X
∗‖p/2)2/p =

(

E

∥

∥

∥

n
∑

j=1

̺jxjx
∗
j

∥

∥

∥

p/2)2/p
,
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where {̺j} is a sequence of independent 0-1 random variables with common
mean ̺. Subtract the mean, and apply the triangle inequality (once for the
spectral norm and once for the Lp/2 norm):

E2 ≤
(

E

∥

∥

∥

n
∑

j=1

(̺j − ̺)xjx
∗
j

∥

∥

∥

p/2)2/p
+ ̺

∥

∥

∥

n
∑

j=1

xjx
∗
j

∥

∥

∥
.

In the sum, write ̺ = E ̺′j , where {̺′j} is an independent copy of the se-
quence {̺j}. Draw the expectation out of the norm with Jensen’s inequality:

E2 ≤
(

E

∥

∥

∥

n
∑

j=1

(̺j − ̺′j)xjx
∗
j

∥

∥

∥

p/2)2/p
+ ̺‖XX

∗‖.

The random variables ̺j − ̺′j are symmetric and independent, so we may
symmetrize them using the standard method, Lemma 6.1 of [LT91]:

E2 ≤
(

E

∥

∥

∥

n
∑

j=1

εj(̺j − ̺′j)xjx
∗
j

∥

∥

∥

p/2)2/p
+ ̺‖X‖2,

where {εj} is a Rademacher sequence. Apply the triangle inequality again
and use the identical distribution of the sequences to obtain

E2 ≤ 2
(

E

∥

∥

∥

n
∑

j=1

εj̺jxjx
∗
j

∥

∥

∥

p/2)2/p
+ ̺‖X‖2.

Writing Ω = {j : ̺j = 1}, we see that

E2 ≤ 2
[

EΩ

(

Eε

∥

∥

∥

∑

Ω

εjxjx
∗
j

∥

∥

∥

p/2)(2/p)(p/2)]2/p
+ ̺‖X‖2.

Here, Eε is the partial expectation with respect to {εj}, holding the other
random variables fixed.

To estimate the square brackets, invoke Rudelson’s lemma, conditional
on Ω. The matrix in the statement of the lemma is XR̺, resulting in

E2 ≤ 3
√

p [E(‖XR̺‖1,2‖XR̺‖)p/2]2/p + ̺‖X‖2.

Apply the Cauchy–Schwarz inequality to find that

E2 ≤ 3
√

p (E ‖XR̺‖p
1,2)

1/p(E ‖XR̺‖p)1/p + ̺‖X‖2.

This inequality takes the form E2 ≤ bE + c. Select the larger root of the
quadratic and use the subadditivity of the square root:

E ≤ b +
√

b2 + 4c

2
≤ b +

√
c.

This yields the conclusion.
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6. Proof of maximum column norm estimate. This section estab-
lishes the moment bound for the maximum column norm of a matrix that
has been restricted to a random set of its rows. We use an approach that
is analogous to the argument in Proposition 12. In this case, we require
only the scalar Khinchin inequality to perform the estimation. Bourgain
and Tzafriri’s proof of Proposition 2.5 in [BT91] contains a similar bound,
developed with a similar argument.

Proposition 13. Assume that X has n columns, and suppose p ≥
2 log n ≥ 4. Then

(E ‖R̺X‖p
1,2)

1/p ≤ 21.5√p ‖X‖max +
√

̺ ‖X‖1,2.

In words, the B(ℓn
1 , ℓn

2 ) norm of a matrix that has been compressed to a
random set of rows gets its share of the total, plus an additional component
that depends on the number of columns and the magnitude of the largest
entry in the matrix.

Proof. Our strategy is the same as in the proof of Proposition 12, so
we pass lightly over the details. Let {̺j} be a sequence of independent 0-1
random variables with common mean ̺. We seek a bound for

E2 := (E ‖R̺X‖p
1,2)

2/p =
(

E max
k=1,...,n

∣

∣

∣

∑

j

̺j |xjk|2
∣

∣

∣

p/2)2/p
.

We abbreviate q = p/2 and also yjk = |xjk|2.
First, center and symmetrize the selectors (in the following calculation,

{̺′j} is an independent copy of the sequence {̺j}, and {εj} is a Rademacher
sequence, independent of everything else):

E2 ≤
(

E max
k

∣

∣

∣

∑

j

(̺j − ̺)yjk

∣

∣

∣

q)1/q
+ ̺max

k

∣

∣

∣

∑

j

yjk

∣

∣

∣

≤
(

E max
k

∣

∣

∣

∑

j

(̺j − ̺′j)yjk

∣

∣

∣

q)1/q
+ ̺‖X‖2

1,2

=
(

E max
k

∣

∣

∣

∑

j

εj(̺j − ̺′j)yjk

∣

∣

∣

q)1/q
+ ̺‖X‖2

1,2

≤ 2
(

E max
k

∣

∣

∣

∑

j

εj̺jyjk

∣

∣

∣

q)1/q
+ ̺‖X‖2

1,2.

The first step uses the triangle inequality; the second uses ̺ = E ̺′j and
Jensen’s inequality; the third follows from the standard symmetrization,
Lemma 6.1 of [LT91]. In the last step, we invoked the triangle inequality
and the identical distribution of the two sequences.
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Next, bound the maximum by a sum and introduce conditional expec-
tations:

E2 ≤ 2
(

E̺

∑

k

Eε

∣

∣

∣

∑

j

εj̺jyjk

∣

∣

∣

q)1/q
+ ̺‖X‖2

1,2.

Here, Eε denotes partial expectation with respect to {εj}, holding the other
random variables fixed. Since q ≥ 2, we may apply the scalar Khinchin
inequality to the inner expectation to obtain

E2 ≤ 2Cq

(

E̺

∑

k

∣

∣

∣

∑

j

̺jy
2
jk

∣

∣

∣

q/2)1/q
+ ̺‖X‖2

1,2,

where Cq ≤ 20.25e−1/2√q. The value of the constant follows from work of
Haagerup [Haa82], combined with Stirling’s approximation.

Bound the outer sum, which ranges over n indices, by a maximum:

E2 ≤ 21.25e−1/2n1/q√q
(

E̺ max
k

∣

∣

∣

∑

j

̺jy
2
jk

∣

∣

∣

q/2)1/q
+ ̺‖X‖2

1,2.

Since q ≥ log n, we have n1/q ≤ e, which implies that the leading constant
is less than four. Use Hölder’s inequality to bound the sum, and then apply
Hölder’s inequality again to double the exponent:

E2 < 4
√

q(max
j,k

yjk)
1/2

(

E̺ max
k

∣

∣

∣

∑

j

̺jyjk

∣

∣

∣

q/2)1/q
+ ̺‖X‖2

1,2

≤ 4
√

q(max
j,k

yjk)
1/2

(

E̺ max
k

∣

∣

∣

∑

j

̺jyjk

∣

∣

∣

q)1/2q
+ ̺‖X‖2

1,2.

Recall that q = p/2 and that yjk = |xjk|2. Observe that we have obtained a
copy of E on the right-hand side, so

E2 ≤ 21.5√p ‖X‖maxE + ̺‖X‖2
1,2.

As in the proof of Proposition 12, we take the larger root of the quadratic
and invoke the subadditivity of the square root to reach

E ≤ 21.5√p ‖X‖max +
√

̺ ‖X‖1,2.

This is the advertised conclusion.

7. Proof of extrapolation bound. This section summarizes the ar-
gument of Bourgain and Tzafriri that leads to the extrapolation result. The
key to the proof is an observation due to V. A. Markov that estimates the co-
efficients of an arbitrary polynomial in terms of its maximum value [Tim63,
Sec. 2.9].
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Proposition 14 (Markov). Let r(t) =
∑d

k=0 ckt
k. The coefficients of

the polynomial r satisfy the inequality

|ck| ≤
dk

k!
max
|t|≤1

|r(t)| ≤ ed max
|t|≤1

|r(t)|

for each k = 0, 1, . . . , d.

The proof depends on the minimax property of the Chebyshev polyno-
mial of degree d, combined with a careful determination of its coefficients.

Proposition 15 (Bourgain–Tzafriri). Let p be an even integer with p ≥
2 log n. Suppose that X is an n×n matrix with ‖X‖ ≤ 1. Choose parameters

δ ∈ (0, 1) and ̺ ∈ (0, 0.5). For each λ ∈ (0, 1),

(E ‖RδXRδ‖p)1/p ≤ 60[δλ + ̺−λ(E ‖R̺XR̺‖p)1/p].

For self-adjoint matrices, the constant is halved.

Proof. We assume that X is self-adjoint. For general X, apply the final
bound to each half of the Cartesian decomposition

X =
X + X∗

2
+

i(X − X∗)

2i
.

This yields the same result with constants doubled.
Consider the function

F (s) = E ‖RsXRs‖p with 0 ≤ s ≤ 1.

Note that F (s) ≤ 1 because ‖RsXRs‖ ≤ ‖X‖ ≤ 1. Furthermore, F in-
creases monotonically.

Next, we show that F is comparable with a polynomial. Use the facts
that p is even, that p ≥ log n, and that rank X ≤ n to check the inequalities

F (s) ≤ E trace(RsXRs)
p ≤ epF (s).

It is easy to see that the central member is a polynomial of maximum degree
p in the variable s. Indeed, one may expand the product and compute the
expectation using the fact that the diagonal entries of Rs are independent
0-1 random variables of mean s. Therefore,

E trace(RsXRs)
p =

p
∑

k=1

cks
k

for (unknown) coefficients c1, . . . , cp. The polynomial has no constant term
because R0 = 0.

We must develop some information about this polynomial. Make the
change of variables s = ̺t2 to see that

∣

∣

∣

p
∑

k=1

ck̺
kt2k

∣

∣

∣
≤ epF (̺t2) ≤ epF (̺) when |t| ≤ 1.
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The second inequality follows from the monotonicity of F . The polynomial
on the left-hand side has degree 2p in the variable t, so Proposition 14 results
in

|ck|̺k ≤ e3pF (̺) for k = 1, . . . , p.

From this, it also follows that |ck| ≤ e3p by taking ̺ = 1.
Finally, we directly evaluate the polynomial at δ using the facts we have

uncovered. For an arbitrary value of λ in (0, 1), we have

F (δ) ≤
∣

∣

∣

d
∑

k=1

ckδ
k
∣

∣

∣
≤

⌊λp⌋
∑

k=1

|ck| +
p

∑

k=1+⌊λp⌋

|ck|δk ≤ e3pF (̺)

⌊λp⌋
∑

k=1

̺−k + pe3pδλp

≤ 2e3p̺−λpF (̺) + pe3pδλp

because ̺ ≤ 0.5. Since x 7→ x1/p is subadditive, we conclude that

F (δ)1/p ≤ 21/pe3̺−λF (̺)1/p + p1/pe3δλ.

A numerical calculation shows that both the leading terms are less than 30,
irrespective of p.

Acknowledgments. I wish to thank Roman Vershynin for encouraging
me to study the paving problem.
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[LP86] F. Lust-Piquard, Inégalités de Khintchine dans Cp (1 < p < ∞), C. R. Acad.

Sci. Paris Sér. I Math. 303 (1986), 289–292.



82 J. A. Tropp

[Rud99] M. Rudelson, Random vectors in the isotropic position, J. Funct. Anal. 164
(1999), 60–72.

[RV07] M. Rudelson and R. Vershynin, Sampling from large matrices: An approach

through geometric functional analysis, J. Assoc. Comput. Mach. 54 (2007), no.
4, art 21.

[Tim63] A. F. Timan, Theory of Approximation of Functions of a Real Variable, Perga-
mon, 1963; Russian original: Gos. Izdat. Fiz.-Mat. Lit., Moscow, 1960.

Applied & Computational Mathematics, MC 217-50
California Institute of Technology
1200 E. California Blvd.
Pasadena, CA 91125-5000, U.S.A.
E-mail: jtropp@acm.caltech.edu

Received February 28, 2007

Revised version December 24, 2007 (6114)


