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Weierstrass division theorem in quasianalytic local rings
by

ABDELHAFED ELKHADIRI and HASSAN SFOULI (Kénitra)

Abstract. The main result of this paper is the following: if the Weierstrass division
theorem is valid in a quasianalytic differentiable system, then this system is contained in
the system of analytic germs. This result has already been known for particular examples,
such as the quasianalytic Denjoy—Carleman classes.

Introduction. The Weierstrass division theorem is one of the central
theorems in local real analytic geometry. It was successfully used to study
the geometry of semianalytic and subanalytic sets by Lojasiewicz [4], [5].
It was also used in [3] with methods of model theory to give a proof of
Gabrielov’s theorem concerning the complement of a subanalytic set. In this
paper, we consider the problem of extending the Weierstrass division theo-
rem to rings of germs, at the origin of R™, of smooth quasianalytic functions
(without flat functions). The first result on this problem was obtained by
Childress [2] in a specific situation. He showed that, for the particular case
of the quasianalytic Denjoy—Carleman class, if the Weierstrass division the-
orem is true in a fixed quasianalytic class, then the class is analytic. In this
paper we extend the result of Childress to any quasianalytic local ring of
germs of smooth functions. More precisely, let (Cp,)nen be such that each C,,
is a quasianalytic local subring of the ring of germs, at the origin of R", of
C*® functions. For each n € N, C,, contains the local ring of germs of Nash
functions and is closed under taking partial derivatives. We also suppose that
the system (Cp,)nen is closed under composition. We prove that if the Weier-
strass division theorem holds for Cs, then for each n € N, C,, is contained in
the ring of germs, at the origin of R™, of real analytic functions.

1. Quasianalytic differentiable systems. Let X = (X1,...,X,,) be
an n-tuple of distinct indeterminates with n € N. The ring of formal series
in X1,...,X, over a field K will be denoted by K[[X]], and the subring of
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R[[X]] of formal series which converge in some neighborhood of the origin in
R™ will be denoted by R(X).

Denote by A,, (resp. &,) the ring of real-analytic (resp. smooth) function
germs at the origin of R", and by N, the ring of germs, at the origin in R", of
Nash functions. Clearly, N,, C A,, C &, for all n € N, and A,, is isomorphic
to R(Xl, v ,Xn>

DEFINITION 1.1. A differentiable system is a sequence
C={Cp; neN}
such that, for each n € N, C,, is a local subring of &, and the following hold:
(C1) N;, C€C, C &
(C2) if p1,...,¢pn € Cp, are such that ¢1(0) =--- = ¢,(0) =0, then for

every [ € C, the composition f(p1,...,¢,) belongs to Cp,;
(C3) 9f/0x; € Cy, for every f € Cp and each i = 1,...,n.

Let
“:Cp — R[[X]]
be the map which associates to each f € C, its Taylor expansion. We consider
the following condition:

(C4) ~ is an injective homomorphism.

DEFINITION 1.2. A differentiable system is called quasianalytic if the
condition (C4) holds.

We say that the Weierstrass division theorem holds in the differentiable
quasianalytic system (C,), if the following condition is satisfied, for each
n e€N:

(Wy,) If f € C, and f(0,X,) € R[[X,]] is nonzero of order d, then for
every g € Cp, there are g € C, and r; € Cp,_1,1=1,...,d—1, such
that

9=aqf + (ra1 X+ + o).
The following theorem is an extension of the main result of Childress’
paper [2].
THEOREM 1. Assume that (W3) holds in the differentiable quasianalytic
system (Cp)nen. Then Cp, C A, for every n € N.

2. Proof of Theorem 1. For the proof of Theorem 1 we need a few
lemmas.

LEMMA 2.1. Under the hypothesis of Theorem 1, we have
Ci1 C A,.
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Proof. Let f € Cy. Introduce a new variable T" and put
9(X1,T) = f(X1 +T).
We have g € Co. By (W3), there are g € C3 and 79, r; € C2 such that
(2.1)  g(X1,T) = (T? + Y?)q(X1, Y1, T) + ri (X1, Y1)T + ro(X1, V7).
This yields the formal equation
(22)  §(X1,T) = (T + YP)a(X1, Y1, T) + 71( X1, Y1) T + 7o (X1, Y3)
and then, after setting T' = Y7,

~

(2.3) f(X1+iY1) = 70(X1, Y1) +dVim (X, V7).
We put
(2.4) u(X1,Y1) =79(X1,Y1) and o(X1,Y1) =Yir (X1, V7).
Note that, by (2.1) with Y3 =T =0,
f(X1) = g9(X1,0) = ro(X7,0) = u(X1,0).

Hence, if u is proved to be analytic, f will be analytic as well.
From (2.3), we have the Cauchy—Riemann equalities
ou ov ov ou
—— =75 and 5 =—7.
0X; oYy 0X1 oY1
Then, by quasianalyticity, these equalities are satisfied by the functions u
and v themselves.
The function given by F(X; + iY1) = w(X1,Y1) + w(X1,Y7) is then
holomorphic in a neighborhood of the origin in C. Then v and v belong
to Ay, and hence f € A;. m

Let f € R[[X1,..., X,]] and S"~! be the unit sphere of R". If £ € S*~1,
write fe(t) = (€) € R[],

LEMMA 2.2 ([1]). Let f € R[[Xq,...,X,]]. Assume that fe(t) € R(t) for
each € € S"7L. Then f € R(Xy,...,X,).

Proof of Theorem 1. Assume that (W3) holds for the system (C,),. Let
f € C,. For each £ € S* !, we have fe € C1. By Lemma 2.1, fe € R(t) for
each £ € S"~ 1. Hence by Lemma 2.2, f € R(X1,...,X,) ~A,. =

3. On the Taylor map. Let (C,), be a quasianalytic system. The
purpose of this section is to prove the following:

THEOREM 2. For every n > 3, the injection - : C, — R[[X]] is not
surjective.

LEMMA 3.1. Assume that = : C3 — R[[X1, X2, X3]] is surjective. Then
(W3) holds for the system (Cp,)r.
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Proof. Let f € C3 with f(0,0, X3) € R[[X3]] nonzero of order d. Then

for every g € Cs there are ¢ € R[[X1, X2, X3]] and r, € R[[X1,X3]], i =
1,...,d — 1, such that

G=df+ g X§ ),
By hypothesis, there exists ¢ € C3 such that ¢ = ¢’ and there are rq_1,...,79
in Cy such that 7; =7} for all i = 0,...,d — 1. Since the system is quasiana-
lytic, we have

g=af + (rg1 X§ '+ + o),
which proves the lemma. =

Proof of Theorem 2. If ~: C3 — R[[X1, X3, X3]] were surjective, then, by
Lemma 3.1, (W3) would hold and, by Theorem 1, C,, C A, for each n € N,
which contradicts the hypothesis of surjectivity. m

We do not know if the conclusion of Theorem 2 holds for the case 1 <
n < 2.
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