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Polynomially convex hulls of families of arcs

by

Zbigniew Słodkowski (Chicago, IL)

Abstract. The paper is devoted to the study of polynomially convex hulls of compact
subsets of C2, fibered over the boundary of the unit disc, such that all fibers are simple arcs
in the plane and their endpoints form boundaries of two closed, not intersecting analytic
discs. The principal question concerned is under what additional condition such a hull is a
bordered topological hypersurface and, in particular, is foliated by a unique holomorphic
motion. One of the main results asserts that this happens when the family of arcs satisfies
the Continuous Cone Condition.

0. Motivation. The subject of this paper has originated from the fol-
lowing result of the author. (Throughout the paper, D will denote the open
unit disc in the complex plane C, centered at 0; D(a,R) will stand for the
disc of radius R, centered at a.)

Theorem 0.1 ([Sł 1]). Let X ⊂ ∂D×C be a compact set with all fibers
Xζ = {w ∈ C : (ζ, w) ∈ X}, ζ ∈ ∂D, nonempty , connected and simply
connected. Let Y := X̂ (the polynomial hull of X) and S := the topological
boundary of Y \ X relative to D × C. Then either Y = X or Y \ X can
be represented as union of a family of analytic discs (= graphs of bounded
analytic functions f : D → C). Furthermore S has a unique foliation by
such analytic discs.

The problems considered in this paper center around the following ques-
tion. Assuming all Xζ ’s are simple arcs, when is Y = X̂ a topological hyper-
surface? In case X is a C2-regular surface this is a consequence of Forstneric
[F]. On the other hand, Example 5.1 below shows that the hull of a family
of arcs may have a nonempty interior. In view of these observations the task
we undertake in this paper is that of finding minimal regularity assumptions
for the hull Y to be a topological hypersurface.

Apart from the intrinsic interest of this question for the study of poly-
nomial hulls, our motivation comes also from the possibility of applications
to constructions of holomorphic motions as suggested by [Sł 3]. The method
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2 Z. Słodkowski

used by the author in [Sł 3] to give the proof of the “extended lambda-
lemma”, alternative to that of [Sł 2], was based on the following construc-
tion. For some R > 0, the disc D(0, R) in each fiber {ζ} × C was covered
by a family of arcs Xa

ζ (which formed a foliation apart from (ζ, 0)) and
the hull of

⋃
ζ∈bD{ζ} × Xa

ζ has been shown to admit, for each a, a unique
holomorphic motion tracing it. The union of all these partial holomorphic
motions for different a’s yielded a holomorphic motion of C over D. The con-
nection with the problems of this paper comes from the observation that if
the hull Y a = X̂a is a topological hypersurface, then it must have a unique
foliation by analytic discs, i.e. it is traced by a unique holomorphic mo-
tion. (Cf. Corollary 2.1 below.) If the same conclusion is obtained under low
enough regularity assumptions on Xa, the outlined method of construction
of holomorphic motions will become sufficiently general and flexible.

In the present paper we concentrate on the study of hulls, postponing
applications to holomorphic motions for another occasion.

1. Outline of results. We will denote by A(D) the algebra of all func-
tions holomorphic on the unit disc D and continuously extensible to D.

With the exception of Section 2, we will consider families of arcs of the
following kind.

Basic situation 1.1. X is a compact subset of bD × C such that

(i) there exist two functions a, b ∈ A(D) satisfying a(z) 6= b(z) for all
z ∈ D;

(ii) for every ζ ∈ bD, the fiber Xζ is a simple topological arc joining a(ζ)
and b(ζ).

We will denote by Y the polynomially convex hull of X.

To this basic set-up we will be adding more regularity assumptions on
arcs Xζ depending on the results in question.

In Section 3 we assume that all Xζ ’s are K-quasiarcs with a uniform con-
stant K. While we will show later that Y does not have to be a hypersurface
(Example 5.1), we prove (Theorem 3.1) that the boundary of Y = X̂ in C2

is a union of two topological hypersurfaces, each bordered by (the union
of) X and the end-discs a, b, and whose fibers are quasiarcs with a uniform
constant. As a corollary, such a hull is a hypersurface if and only if it has
empty interior in C2.

A technical condition on the position of the end-discs a, b (cf. Definition,
Section 3) has to be assumed in this result. The role of this condition is to
ensure that the end-discs a, b are contained in the boundary of the hull Y .
We show in Section 5 that if this condition is omitted, then the part overD of
the end-disc a or b might be contained in the interior of Y (cf. Example 5.2).
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In Section 4 we assume that arcs Xζ , ζ ∈ bD, satisfy the following
(one-sided) Continuous Cone Condition.

Continuous Cone Condition 1.2. There is a function x(ζ, w) =
exp(iψ(ζ, w)), for ζ ∈ bD, w ∈ Xζ , with ψ : X → R continuous, and
positive numbers α, β > 0, such that the cones

C(ζ, w) = {v = w + reiθx(ζ, w) : |θ| ≤ α, 0 ≤ r ≤ β}
satisfy

C(ζ, w) ∩Xζ = {w}, (ζ, w) ∈ X,
C(ζ, a(ζ)) ∩ C(ζ, b(ζ)) = ∅, ζ ∈ bD.

Under this assumption the hull of X turns out to be a topological hyper-
surface (Theorem 4.1). Its fibers must be quasiarcs by the already mentioned
Theorem 3.1, but one can prove, in fact, that they also satisfy the Contin-
uous Cone Condition.

In the proof, a crucial role is played by functions with vanishing mean
oscillation, or, more precisely, by so-called quasicontinuous functions (i.e.
the class L∞ ∩ VMO). We prove in Section 2 (Proposition 2.3) that the
boundary values of analytic discs in the hull of X such that every Xζ ,
ζ ∈ bD, is nowhere dense in C are quasicontinuous functions. This enables
us to apply the techniques of VMO in the context of Section 4.

Once we know that the hull Y is a hypersurface and so is traced by a
unique holomorphic motion over D, it is natural to ask when this motion
can be extended to a continuous isotopy over D. We show (cf. Example 5.3)
that even if X is a continuous family of uniformly C1-regular arcs (in fact
real-analytic), its hull Y may contain two analytic discs which, while disjoint
(by necessity) over D and extending continuously over D, have nevertheless
nonempty intersection over bD. We postpone investigation of sufficient con-
ditions to another paper.

2. Some properties of hulls with connected fibers. In this section
we collect several auxiliary facts about hulls of sets X whose boundary fibers
Xζ are connected and simply connected, but not necessarily arcs.

Corollary 2.1. Let Y = X̂ be as in Theorem 0.1. Assume that it has
a nowhere dense fiber Ya for some a ∈ D. Then no two distinct analytic
discs contained in Y can intersect over D. If there are two analytic discs in
Y intersecting over D, then Y has nonempty interior in C2.

Proof. By Theorem 0.1, S can be foliated by analytic discs; choose one
such foliation and let

(z, w) 7→ fz(w) : D × Sa → C
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be the corresponding holomorphic motion. In particular

fz(Sa) = Sz, z ∈ D; fa = idSa .

(In fact, our proof shows that the foliation of S is unique.) Define Ua =
C \ Sa. By the “extended lambda lemma” (cf. [Sł 2, Theorem 1.3]), there is
a holomorphic motion Fz of Ua disjoint from S, i.e.

(z, w) 7→ Fz(w) : D × Ua → C, Fz(Sa) ∩ Sz = ∅, z ∈ D.
Let g ∈ A(D) be any analytic disc in Y . Set b := g(a). We now define

two holomorphic motions of Ua ∪ {b},
(z, w) 7→ F jz (w) : D × (Ua ∪ {b})→ C, j = 1, 2,

by letting F jz |Ua = Fz, j = 1, 2, F 1
z (b) := g(z), F 2

z (b) := fz(b), z ∈ D.
Since F 1, F 2 are two holomorphic motions of Ua∪{b} which are identical on
the dense subset Ua, the standard lambda lemma [MSS] implies that they
are equal, in particular g(z) = fz(b), which implies the uniqueness of the
disc g. Consequently, distinct discs have to be disjoint.

Thus, if there are two intersecting analytic discs, at least one fiber, say
Ya, a ∈ D, contains a nonempty open set, say V . Then the set {(z, Fz(w)) :
z ∈ D, w ∈ V } is a nonempty open subset of Y .

We will denote clusters as follows:

Cl(g, ζ) = {w ∈ C : ∃(zn) ⊂ D, lim zn = ζ, lim g(zn) = w}.
Proposition 2.2. Let Xj , j = 1, 2, be compact subsets of bD×C with

connected and simply connected fibers. Assume that X1,X2 are disjoint , and
furthermore, there are two functions g1, g2 ∈ H∞(D) such that

Cl(gj, ζ) ⊂ Xj
ζ , j = 1, 2, ζ ∈ bD, g1(z) 6= g2(z), z ∈ D.(2.1)

Then the polynomial hulls Y 1 = X̂1 and Y 2 = X̂2 are disjoint.

Proof. Seeing that z 7→ Y j(z) : D → 2C, j = 1, 2, are upper semicontin-
uous set-valued functions such that Y 1(ζ) ∩ Y 2(ζ) = ∅ for |ζ| = 1 (because
Y j(ζ) = Xj(ζ) for |ζ| = 1), we conclude that there is 0 < r0 < 1 such that

Y 1(rζ) ∩ Y 2(rζ) = ∅, r ∈ [r0, 1), |ζ| = 1.(2.2)

For each j = 1, 2, the function gj constitutes a holomorphic motion of one
point gj(0). On the other hand, as in the last proof, there is also a holo-
morphic motion of U j

0 , tracing the sets U j
z := C \ Y j

z , z ∈ D (cf. [Sł 2]).
Altogether, they give a holomorphic motion of the set U j

0 ∪ {gj(0)}, which,
by [Sł 2], can be extended to a holomorphic motion of C. Restricting it
to Y j

0 , we obtain a motion with the following properties:

(z, w) 7→ f jz (w) : D × Y j
0 → C,

(2.3)
f jz (Y j

0 ) = Y j
z , f jz (gj(0)) = gj(z), z ∈ D.
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By (2.2), for every (w1, w2) ∈ Y 1
0 × Y 2

0 the function

ζ 7→ f1
rζ(w1)− f2

rζ(w2) : bD → C \ {0}
does not vanish, and has a well defined winding number, which we denote by
n(w1, w2). By the uniform continuity of the motions f j on compact subsets
of D×C, due to the lambda lemma (cf. [MSS]), the function n : Y 1

0 ×Y 2
0 → Z

is continuous, and so constant, as Y 1
0 × Y 2

0 is connected. On the other hand
n(g1(0), g2(0)) = ind(g1 − g2) = 0, by the assumption (2.1).

Thus f1
z (w1) 6= f2

z (w2) for |z| ≤ r. As r → 1− 0, and since our holomor-
phic motions trace Y 1 \X1 and Y 2 \X2, we conclude that Y 1 and Y 2 are
disjoint.

Proposition 2.3. Let X be a compact subset of bD×C with connected ,
simply connected and nowhere dense (in C) fibers. Then for any analytic
disc in Y of the form graph(f), f ∈ H∞(D), its boundary values f∗ are
quasicontinuous, i.e. f∗ ∈ QC = L∞ ∩ VMO.

Proof. Since fibers of X are simply connected and nowhere dense, we
can apply a parametrized version of Mergelian’s theorem (cf. [F, Lemma 7]
or see [Sł 4]) for a more direct proof using decomposition of unity) to show
that for every ε > 0 there is a polynomial in z

pN (eiθ, z) =
N∑

j=0

kj(eiθ)zj

such that |z−pN (eiθ, z)| < ε for (eiθ, z) ∈ X, where k0, . . . , kN : bD → C are
continuous functions. Set FN (eiθ) :=

∑N
j=0 kj(e

iθ)f(eiθ)j , defined a.e. on bD.
Denote by C the algebra of continuous functions on bD. Since H∞ + C is
a closed subalgebra of L∞ (cf. [G, Theorem IX.2.2]), it contains fN , N =
1, 2, . . . , as well as their uniform limit f , since ‖f − fN‖ < ε. We conclude
that f ∈ (H∞ + C) ∩ (H∞ + C), which is equal to QC by [G, Theorem
IX.2.3].

3. Hulls with quasiarc boundary fibers

Definition. Let X, a, b be as in Basic Situation 1.1. We say that X
satisfies the Continuous Cone Condition along the disc a if there are positive
numbers α, β and a continuous function x : bD → bD such that α ∈ (0, π/2)
and C(ζ) ∩Xζ = {a(ζ)} for ζ ∈ bD, where

C(ζ) := {z = a(ζ) + reiθx(ζ) : 0 ≤ r ≤ β, θ ∈ [−α, α]}.
Theorem 3.1. Let X, a, b be as in Basic Situation 1.1. Assume that

X satisfies the Continuous Cone Condition along the discs a, b and that
all fibers Xζ , ζ ∈ bD, are quasiarcs with a uniform constant K. Then the
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boundary (in C2) of the polynomial hull Y of X is the union of two topo-
logical hypersurfaces Σ1, Σ2, whose fibers (over z ∈ D) are quasiarcs with
a uniform constant , and with X ∪ graph(a) ∪ graph(b) as their common
boundary. Thus, if Y has empty interior , then it is a topological hypersur-
face Y = Σ1 = Σ2.

Proof. Let Ca(ζ), Cb(ζ) denote continuous families of (truncated) cones
as in the above definition, that is,

Ca(ζ) := {z = a(ζ) + reiθx(ζ) : 0 ≤ r ≤ β, θ ∈ [−α, α]},
Cb(ζ) := {z = b(ζ) + reiθy(ζ) : 0 ≤ r ≤ β, θ ∈ [−α, α]}.

The conditions

Ca(ζ) ∩Xζ = {a(ζ)}, Cb(ζ) ∩Xζ = {b(ζ)}, for ζ ∈ bD,(3.1)

and the assumed properties of X imply that x, y (which do not vanish) are
of index zero. We can also assume without loss of generality (by diminishing
α and β if necessary) that x and y are C∞ smooth. Then the functions

x̃(ζ) := exp[−T (arg x(ζ)) + i arg x(ζ)],

ỹ(ζ) := exp[−T (arg y(ζ)) + i arg y(ζ)]

(where the branches of “arg” are chosen continuous, hence smooth, and
T of a function denotes its conjugate function with mean zero, i.e. T is
the Hilbert operator) are smooth and have smooth holomorphic extensions
to D. Consequently, the functions

a+
r

2‖x̃‖∞
x̃, b+

r

2‖ỹ‖∞
ỹ(3.2)

belong to A(D). Furthermore, they are continuous selections, over bD, of the
set-valued functions Ca(ζ), Cb(ζ), respectively. If we now choose functions
g0, h0 ∈ C∞ ∩ A(D) so that they approximate the functions (3.2) closely
enough in the uniform norm, then there are real numbers δ, η such that

g0(ζ) ∈ IntCa(ζ), h0(ζ) ∈ IntCb(ζ),(3.3)

0 < s := min{|g0(ζ)− a(ζ)|, |h0(ζ)− b(ζ)| : ζ ∈ bD},(3.4)

Ca2η(ζ) ⊂ Ca(ζ), Cb2η(ζ) ⊂ Cb(ζ), ζ ∈ bD,(3.5)

where

Ca2η(z) := {w = a(z) + reiθ(g0(z)− a(z)) : 0 ≤ r ≤ 1, |θ| ≤ 2η},
Cb2η(z) := {w = b(z) + reiθ(h0(z)− b(z)) : 0 ≤ r ≤ 1, |θ| ≤ 2η}.

Observe that for 0 < r ≤ 1 and |θ| ≤ 2η, the functions z 7→ w : D → C
defined by w = a(z) + reiθ(g0(z)− a(z)) (which cover Ca

2η(z) \ {a(z)} have
graphs (overD) disjoint from that of a, and boundary values disjoint fromX,
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and so by Proposition 2.2 their graphs are disjoint from Y = X̂. Thus

Ca2η(z) ∩ Yz = {a(z)}, Cb2η(z) ∩ Yz = {b(z)}.
By (3.1), (3.5) and Janiszewski’s Theorem, for r < minz∈D |a(z)− b(z)|

the following sets are connected and simply connected:

Ca2η(z) ∪ Yz ∪ Cb2η(z), z ∈ D,(3.6)

{(z, w) ∈ D × C : w ∈ Ca2η(z) ∪ Yz ∪ Cb2η(z)}.(3.7)

Furthermore the functions

g±2η
0 = a+

1
2
e±2iη(g0 − a), h±2η

0 = b+
1
2
e±2iη(h0 − a)

have graphs contained in the boundary of the set (3.6). Define further

p1 :=
a+ b

2
+ iχ

a− b
2

, p2 :=
a+ b

2
− iχ a− b

2
,

where χ is a positive constant large enough so that p1(z), p2(z) do not belong
to (3.6) for any z ∈ D.

The following assertion is now topologically obvious.

Assertion 1. There exist two families of simple smooth arcs γ1
ζ , γ

2
ζ ,

for ζ ∈ bD, such that

(i) γ1
ζ has endpoints g2η

0 (ζ), h−2η
0 (ζ) and γ2

ζ has endpoints h2η
0 (ζ),

g−2η
0 (ζ), with the orientation indicated by the order of endpoints,

while

(3.8) γ1
ζ ∪ γ2

ζ ⊂ C \ [Ca2η(ζ) ∪Xζ ∪ Cb2η(ζ)], ζ ∈ bD;

(ii)
⋃
ζ∈bD{ζ} × γ1

ζ and
⋃
ζ∈bD{ζ} × γ2

ζ are C2-smooth surfaces;
(iii) for every ζ ∈ bD, the point p1 (resp. p2) belongs to the bounded

connected component of the complement of γ1
ζ ∪Ca2η(ζ)∪Xζ∪Cb2η(ζ)

(resp. γ2
ζ ∪Ca2η(ζ)∪Xζ ∪Cb2η(ζ)) and these components are disjoint.

The arcs γ can be constructed by standard ODE techniques similarly to
[Sł 2, Section 2]. We omit further details.

It is easy to see that the arcs γ have uniformly bounded quasiarc con-
stants. Consider yet the following circular and straight arcs:

σ±a (ζ) := {a(ζ) + (1/2)e±iθ(g0 − a)(ζ) : η ≤ θ ≤ 2η},
τ±a (ζ) := {a(ζ) + se±iη(g0 − a)(ζ) : 0 ≤ s ≤ 1},

as well as σ±b (ζ), τ±b (ζ), defined analogously.

Assertion 2. The paths

X1
ζ := Xζ ∪ τ+

a (ζ) ∪ σ+
a (ζ) ∪ γ1

ζ ∪ σ−a (ζ) ∪ τ−a (ζ),

X2
ζ := Xζ ∪ τ+

b (ζ) ∪ σ+
b (ζ) ∪ γ2

ζ ∪ σ−b (ζ) ∪ τ−b (ζ)
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are Jordan curves and quasicircles with a uniform constant, for ζ ∈ bD.
Furthermore

X1
ζ ∩X2

ζ = Xζ , ζ ∈ bD.

In addition, the bounded connected components of C \ X1
ζ and C \ X2

ζ are
disjoint and contain p1 and p2 respectively.

We omit the details. (They are elementary but somewhat delicate since
a Jordan curve which is the union of several quasiarcs does not have to be
a quasicircle in general.)

Now we let

X1 :=
⋃

ζ∈bD
{ζ} ×X1

ζ , X2 :=
⋃

ζ∈bD
{ζ} ×X2

ζ ,

Y 1 := X̂1, Y 2 := X̂2.

We will first prove that Y = Y 1 ∩ Y 2 and then deduce from this the
required properties of Y . Denote by U j , j = 1, 2, the interior of Y j relative
to D×C. By Assertion 2 the set U j contains a constant analytic section pj ,
which by [Sł 1, Lemma 4.6] implies that

(U j)ζ = IntY j
ζ = Y j

ζ \X
j
ζ , j = 1, 2, ζ ∈ bD.

This means that Sj \ Sj = Xj , j = 1, 2, where Sj = the boundary of Y j

relative to D × C, i.e. Sj =
⋃
z∈D{z} × bY

j
z .

Assertion 3. Sj , j = 1, 2, has a unique foliation by analytic discs.
Furthermore, all fibers of Sj = Sj ∪ Xj , j = 1, 2, are quasicircles with a
uniform constant , hence Jordan curves.

With the exception of the statement that Sj is a bordered hypersurface,
all the properties follow from [Sł 1, Theorems 1.1 and 7.1]. To conclude that
Sj is a bordered hypersurface, one has to review the proof of Theorem 7.2
in [Sł 1] and to realize that the Continuous Cone Condition was used there
only to ensure that (in the present notation) Sj \ Sj ⊂ Xj , which in our
case is ensured by the specific construction (in particular IntY j

z for z ∈ D
admits a constant selection pj).

Consider S1 and the following four pairwise disjoint continuous analytic
discs contained in S1:

a, gη0 = a+ (1/2)eiη(g0− a), h−η0 = b+ (1/2)e−iη(h0− b), b.(3.9)

It is now clear, by Assertion 3, that the complement of these four discs in
S1 is a union of four connected components, pairwise disjoint, which we can
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label S1
1 , S

1
2 , S

1
3 , S

1
4 , such that

S1
1 \ S1

1 = gr(a) + gr(gη0), S1
2 \ S1

2 = gr(gη0) + gr(h−η0 ),

S1
3 \ S1

3 = gr(h−η0 ) + gr(b), S1
4 \ S1

4 = gr(b) + gr(a),

(where “gr” stands for graph) and their fibers over bD are as follows:

(S1
1)ζ = τ+

a (ζ), (S1
2)ζ = σ+

a (ζ) ∪ γ1
ζ ∪ σ−b (ζ),

(S1
3)ζ = τ−b (ζ), (S1

4)ζ = Xζ .
(3.10)

Assertion 4. S1
1 ∪ S1

2 ∪ S1
3 is disjoint from Y 2.

Since S1
2 is foliated by analytic discs, it is contained in the polynomial

hull of the compact set
⋃

|ζ|=1

{ζ} × (σ+
a (ζ) ∪ γ1

ζ ∪ σ−b (ζ)),(3.11)

which is disjoint from

Y 2|bD =
⋃

|ζ|=1

{ζ} × X̂2
ζ ,(3.12)

because, by Assertion 2, X1
ζ ∩ X2

ζ = Xζ and (X̂1
ζ \ X1

ζ ) ∩ (X̂2
ζ \ X2

ζ ) = ∅
for ζ ∈ bD. Note that gη0 and a are two disjoint continuous analytic discs
with boundaries in the sets (3.11) and (3.12) respectively, and so by Propo-
sition 2.2 the hulls of the two sets are disjoint, in particular S1

2 and Y 2 are
disjoint. As for S1

1 , since its boundary fibers (S1
1)ζ are straight line segments

joining the two disjoint continuous analytic discs a and gη0 , by the classical
linear Riemann–Hilbert problem every analytic disc with boundary values in
these segments must be of the form ta+ (1− t)gη0 , 0 < t < 1. For t ∈ (0, 1],
such a disc is disjoint from the graph of a, and by the properties of the
cones Caζ , its boundary is disjoint from the fibers Y 2

ζ , |ζ| = 1, and so, by
Proposition 2.2, the discs ta + (1 − t)gη0 , 0 < t ≤ 1, are disjoint from the
hull Y 2. Since every point of S1

1 belongs to one of these discs, S1
1 ∩ Y 2 = ∅.

The argument that S1
3 ∩ Y 2 = ∅ is identical. The proof of Assertion 4 is

complete. On the other hand, as (S1
4)ζ = Xζ , we get S1

4 ⊂ Y = X̂. Since

bY 1
z = S1

z = (S1
1 ∪ S1

2 ∪ S1
3)z ∪ (S1

4)z, z ∈ D,
we infer, in view of Assertion 4, that bY 1

z ∩ Y 2
z ⊂ Yz, z ∈ D, and by a

symmetrical argument, bY 2
z ∩Y 1

z ⊂ Yz, z ∈ D. Put K = Yz and L = Y 1
z ∩Y 2

z .
By the above remarks, bL = (bY 1

z ∩ Y 2
z ) ∪ (bY 2

z ∩ Y 1
z ) ⊂ bK. Furthermore,

K is connected and simply connected, K ⊂ L and L is simply connected as
the intersection of two simply connected compact sets Y 1

z and Y 2
z .
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Exercise. Let K and L be two planar compact sets such that K ⊂ L
and bL ⊂ bK. Then K = L.

This proves the desired relation Y = Y 1 ∩ Y 2.
Let now Σ1 = S1

4 , and let Σ2 be the object constructed in the identical
way for Y 2. By Assertion 3, and the discussion following it, Σ1, Σ2 are
two bordered topological hypersurfaces, homeomorphic to D × [0, 1], with
common boundary surface gr(a) ∪ gr(b) ∪ X, and with all fibers Σ1

z , Σ
2
z ,

z ∈ D, quasicircles with a uniform constant.
As observed in the proof of Corollary 2.1, if the hull Y has empty interior

in C2, then all fibers Yz , z ∈ D, have empty interior in the plane. But if the
boundary of a nowhere dense planar compact Yz is the union of two Jordan
arcs Σ1

z and Σ2
z with common endpoints, these arcs have to be identical.

Thus Σ1
z = Σ2.

4. Application of the Continuous Cone Condition. The following
is the main result of this section.

Theorem 4.1. Let X =
⋃{eiθ} × Xeiθ be a continuous family of arcs,

as in Basic Situation 1.1. Assume the arcs satisfy the Continuous Cone
Condition 1.2. Then the polynomial hull Y = X̂ is a (bordered) topologi-
cal hypersurface all of whose fibers Yz, z ∈ D, are K-quasicircles (with a
uniform K).

We will derive this theorem from the following lemma.

Lemma 4.2. Let X satisfy the conditions of the above theorem. Let L ⊂
bD×C be a compact set with simply connected fibers containing X. Assume
that the family of cones for X given by the Continuous Cone Condition
satisfies

C(ζ, w) ∩ Lζ = {w}, (ζ, w) ∈ X.
Then Y = X̂ is contained in the topological boundary of the hull L̂.

Proof of Theorem 4.1. Applying the lemma with L = X we see that
Y = X̂ is contained in its own boundary, i.e. is nowhere dense, and so by
Theorem 3.1 the hull Y is a topological hypersurface with quasiarc fibers.
Note that Theorem 3.1 is applicable, because by the remarks in [Sł 1, proof
of Lemma 6.4], arcs satisfying the Continuous Cone Condition are quasiarcs
with a uniform constant.

The proof of the lemma will use in a crucial way the properties of the
class of quasicontinuous functions, denoted QC, which was introduced by
Sarason as

QC := (H∞ + C) ∩ (H∞ + C).
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All these spaces are spaces of functions on the unit circle bD = {|z| = 1}. In
particular, C denotes the space of all continuous complex-valued functions
on bD. Below we list the properties of QC we are going to use. Some of them
are slightly adapted; otherwise their proofs are in Garnett [G, Chapter IX].

Proposition 4.3. (a) QC is a closed (commutative) C∗-subalgebra
of L∞.

(b) QC = L∞ ∩ VMO.
(c) If g ∈ QC and ψ(ζ, w) is a continuous function with compact domain

containing almost all points (ζ, g(ζ)), ζ ∈ bD, then the function
χ(ζ) := ψ(ζ, g(ζ)), ζ ∈ bD, belongs to QC.

(d) (Asymptotic multiplicativity of the Poisson integral) For p, q ∈ QC
and r := pq ∈ QC, let p(z), q(z), r(z) denote the values at z of the
Poisson integrals of p, q, r respectively. Then

lim
|z|→1−0

|p(z)q(z)− r(z)| = 0.

(e) If p, q ∈ QC and ψ : D(0, R)×D(0, R)→ C is a continuous function,
where R ≥ ‖p‖∞, ‖q‖∞, put χ(ζ) := ψ(p(ζ), q(ζ)), ζ ∈ bD, a.e. |dζ|,
and let χ(z), |z| < 1, denote the value of the Poisson integral at z.
Then

(4.1) lim
|z|→1−0

(ψ(p(z), q(z))− χ(z)) = 0.

Proof of (e). For ε > 0, there is a polynomial in w,w, z, z, say ψε, such
that

|ψ(w, v)− ψε(w, v)| ≤ ε, (w, v) ∈ D(0, R)×D(0, R).(4.2)

Put χε(ζ) := ψε(p(ζ), q(ζ)), and let χε(z), |z| < 1, denote the Poisson inte-
gral. Since Poisson integral is asymptotically multiplicative on the algebra
QC (properties (d) and (a) above), and is obviously additive, we deduce
by a finite number of applications that the asymptotic formula holds for
polynomials:

lim
|z|→1−0

(ψε(p(z), q(z))− χε(z)) = 0.(4.3)

Applying this together with

|χ(w, v)− χε(w, v)| ≤ ε, (w, v) ∈ D(0, R)×D(0, R),

we conclude by the triangle inequality that

lim sup
|z|→1−0

|ψ(p(z), q(z))− χ(z)| ≤ 2ε,

for every ε > 0.

The next proposition restates classical results (cf. [G, Lemma IV.3.3 and
remarks afterwards]), with slightly different emphasis. Below, by 6 (a, b),
where a, b ∈ C \ {0}, we mean the unoriented angle between vectors a, b.
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Proposition 4.4. (a) If χ ∈ BMO satisfies χ = w+ũ+C, C a constant ,
with ‖w‖∞ < η < π/2 and ‖u‖∞ < ∆ < ∞, then there is g ∈
H∞ ∩ (H∞)−1 such that

6 (g(ζ), eiχ(ζ)) < η, a.e. |dζ|, ζ ∈ bD,(4.4)

e−∆ ≤ |g(z)| ≤ e∆, z ∈ D.(4.5)

Furthermore 6 (g(z), eiχ(z)) < η for z ∈ D, where χ(z) is the Poisson
integral of χ(ζ), ζ ∈ bD, at z ∈ D.

(b) If χ ∈ VMO, then for every η > 0, there are ∆ < ∞ and g ∈
H∞ ∩ (H∞)−1 such that the same conditions (4.4), (4.5) hold.

Proof. (a) Put g(ζ) := exp[u(ζ) + iv(ζ) + iC], ζ ∈ bD, where v = ũ
denotes the conjugate function. Then g ∈ H∞, and |g(z)| = expu(z) ∈
[e−∆, e∆] for z ∈ D. Now

6 (g(ζ), eiχ(ζ)) = 6 (g(ζ)/|g(ζ)|, eiχ(ζ)) = 6 (eiv(ζ)+iC , eiχ(ζ))

= 6 (ei[v(ζ)+C−χ(ζ)], 1) = 6 (e−iw(ζ), 1) ≤ |w(ζ)| < η.

(b) By [G, Theorem IV.5.2] there are continuous functions χ1, χ2 such
that χ = χ1+χ̃2. Let χ3 be a smooth function such that supbD |χ1−χ3| < η.
Then χ̃3 is a continuous, in particular bounded, function. Set now w =
χ1 − χ3 and u = χ2 − χ̃3. Then ‖w‖∞ < η and

‖u‖∞ ≤ ‖χ2‖∞ + ‖χ̃3‖∞ =: ∆ <∞.
One can verifiy that χ = (χ1 − χ3) + (χ2 − χ̃3)̃ + χ3(0) = w + ũ+ C. The
conclusion follows from part (a).

Let C(ζ, w) be a continuous family of cones as in Theorem 4.1 and % > 0.
We define the truncated family of cones C% by the formula

C%(ζ, w) = C(ζ, w) ∩D(0, %).

Lemma 4.5. Let C(ζ, w) be a continuous cone family as in Theorem 4.1.
Then there is a positive number % such that for every ζ ∈ bD, if K is a
compact subset of S%ζ :=

⋃
w∈Xζ C

%(ζ, w) and is disjoint from Xζ , then its

hull K̂ is disjoint from Xζ as well.

This lemma seems to be intuitively obvious, but the proof that we have
is rather long. Since it uses methods extraneous to the rest of the paper, we
publish it in a separate note [Sł 5].

Proof of Lemma 4.2. Let C(ζ, w), x(ζ, w), ψ(ζ, w) be as in the Contin-
uous Cone Condition 1.2. For the rest of the proof assume, however, that
C(ζ, w) is already replaced by its truncation C%(ζ, w), so that the conclusion
of Lemma 4.5 holds (i.e. β = %). Fix an arbitrary point y0 = (z0, w0) ∈ Y \X;
we are going to show it is in the topological boundary of L̂ in C2. Let
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gr(f) ⊂ Y with f ∈ H∞ be an analytic disc such that f(z0) = w0. By Propo-
sition 2.3, f ∈ QC ∩ H∞, and by Proposition 4.3(c) the function χ(ζ) :=
ψ(ζ, f(ζ)), ζ ∈ bD, belongs to QC as well. In particular, χ ∈ VMO. Select-
ing η ∈ (0, α) in Proposition 4.4(b), we obtain a function g ∈ H∞∩ (H∞)−1

and ∆ <∞ such that

e−∆ ≤ |g(z)| ≤ e∆, z ∈ D,(4.6)
6 (g(ζ), x(ζ, f(ζ))) < η, a.e. |dζ|,(4.7)

6 (g(z), eiχ(z)) < η, z ∈ D.(4.8)

Let now gt = f + tg for 0 < t ≤ e−∆β. By (4.6) and (4.7),

gt(ζ) ∈ C(ζ, f(ζ)), a.e. |dζ|, 0 < t ≤ e−∆β,
that is, whenever the nontangential limit values f(ζ), g(ζ) both exist, but
in order to apply Proposition 2.2 we need a more precise relationship, in the
sense of cluster values. We recall that (w1, . . . , wn) are joint cluster values
at ζ ∈ bD of functions f1, . . . , fn ∈ H∞ if there is a sequence (zk)∞k=1 ⊂ D
such that lim zk = ζ and limk fj(zk) = wj , j = 1, . . . , n. We then write
(w1, . . . , wn) ∈ Cl(f1, . . . , fn; ζ).

Assertion. For every (w1, w2) ∈ Cl(f, gt; ζ), ζ ∈ bD, and for t ∈
(0, βe−∆),

w2 ∈ C(ζ, w1), |w2 − w1| ≥ te−2∆.

Before proving the Assertion, we show that it implies the lemma. We
claim

hull(Cl(gt, ζ)) ∩ Lζ = ∅, ζ ∈ bD.(4.9)

Define K := Cl(gt, ζ). Observe first that

K = {w2 : (w1, w2) ∈ Cl(f, gt; ζ), w1 ∈ Cl(f, ζ)} ⊂ Sζ ,(4.10)

where Sζ =
⋃{C(ζ, w1) : w1 ∈ Xζ}, because of the Assertion and the

inclusion Cl(f, ζ) ⊂ Xζ , ζ ∈ bD. On the other hand, by the same Assertion
and the relation C(ζ, w1) ∩ Lζ = w1 we obtain

K ∩ Lζ = ∅.(4.11)

By this relation, if Lζ ∩ K̂ 6= ∅, then (seeing that Lζ is connected) it
must be contained in one of the connected open components, say V , of
K̂ \ K. But then Xζ ⊂ Lζ ⊂ V ⊂ K̂, contrary to the disjointness of Xζ

and K̂, stated in Lemma 4.5. Applying Proposition 2.2 with X1 := L and
X2
ζ := hull(Cl(gt, ζ)), ζ ∈ bD, we conclude that gr(gt) is disjoint from L̂.

On the other hand limt→0(z0, gt(z0)) = (z0, f(z0)) = (z0, w0) (fixed at the
beginning of the proof). Thus (z0, w0) is in the boundary of L̂, ie. Y ⊂ bL̂.

It remains to prove the Assertion. By the obvious properties of joint
clusters, if (w1, w2) ∈ Cl(f, gt; ζ), then there is w such that (w1, w,w2) ∈
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Cl(f, g, gt; ζ), hence w2 = w1 + tw. Fix a continuous extension

ψ1 : D ×D(0, R)→ R
of the given function ψ : X → R, where R > sup |f |. With χ(z), z ∈ D,
denoting the Poisson integral of χ(ζ), we obtain, by Proposition 4.3(e),

lim
n→∞

[ψ1(zn, f(zn))− χ(zn)] = 0

for every (zn)n ⊂ D with |zn| → 1. Applying this to (zn) such that zn → ζ,
f(zn)→ w1, g(zn)→ w, gt(zn)→ w1 + tw = w2, we have

lim
n→∞

ψ1(zn, f(zn)) = ψ(ζ, w1), limχ(zn) = ψ(ζ, w1),

and by (4.8), 6 (g(zn), eiχ(zn)) < η , hence 6 (w, eiψ(ζ,w1)) < η. Since, by (4.6),

|w2 − w1| = t|w| = lim |tg(zn)| ∈ [te−2∆, 1],

we obtain the Assertion.

5. Examples. In this section we give several examples which put the
earlier results in perspective.

The first example shows that the conclusions of Theorem 3.1 cannot
be strengthened, that is, the hull of a family of quasicircles Xζ satisfying
the Continuous Cone Condition at the endpoints might have, in general,
nonempty interior.

Example 5.1. There is a compact subset X of bD×C satisfying all the
assumptions of Theorem 3.1 such that X̂ \X contains two intersecting ana-
lytic discs, and so is not a topological hypersurface. (In fact it has nonempty
interior by Corollary 2.1.) Furthermore, the arcs Xζ are bilipschitz images
of an interval (with a uniform constant), in particular, rectifiable.

We will now describe the example, and in the two assertions that follow,
prove its properties.

Construction. We obtain our arcs as bilipschitz images of an interval.
The maps will be rotations by a varying angle dependent on the distance to
the origin.

Assertion 1. Let Φ(w) := weis(|w|) for w ∈ C\{0} and Φ(0) = 0, where
s : (0,∞) → R is an L∞loc function. Then Φ : C → C is quasiconformal if
and only if it is bilipschitz , which holds if and only if supr∈(0,∞) rs

′(r) <∞.

This follows immediately from the computation of the derivatives:

∂wΦ = eis(|w|)[1 + (i/2)|w|s′(|w|)], ∂wΦ = eis(|w|)(i/2)s′(|w|)w2|w|−1.

Consider now any function g, holomorphic on D, with g(0) = 0 and such
that ζ = 1 is the only zero of g on the circumference bD; for example g(z) :=
z(z−1). (We choose these assumptions for the sake of simplicity; our example
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can be substantially generalized.) Let A(ζ) denote the continuous branch of
argument of g(ζ) on bD \ {1} with A(ζ) ∈ (0,∞) and limζ→1A(ζ) = 0.
For our choice of g, A is bounded, say by C. Let now Φζ(w) := weis(ζ,|w|)

for w 6= 0 and Φζ(0) := 0, where s(ζ, r) is defined, for a given ζ ∈ bD, as
a piecewise linear function on [0,∞), interpolating the values s(ζ, 0) = 0,
s(ζ, |g(ζ)|) = A(ζ), s(ζ, 2|g(ζ)|) = 0, s(ζ, r) = 0 for r ≥ 2|g(ζ)|.

Assertion 2. The maps Φζ : C→ C, ζ ∈ bD, form a continuous family
of uniformly bilipschitz maps such that Φζ(|g(ζ)|) = g(ζ) on bD.

The last equation is the essential feature of the construction; the uni-
form bilipschitz property holds because r|s′(ζ, r)| ≤ rA(ζ)|g(ζ)|−1 ≤ 2C on
[0, 2|g(ζ)|], and is 0 otherwise.

We can now define X. We choose a number b > supbD 2|g(ζ)| and let
a = −b. Set Xz := Φζ([a, b]). We obtain a continuous family of simple arcs
joining the constant analytic discs a and b such that 0, g(ζ) ∈ Xζ for ζ ∈ bD.
Thus the constant analytic disc 0 and the graph of g, which are contained
in the hull of X, intersect at (0, 0), and so the hull has nonempty inte-
rior. Observe that the Continuous Cone Condition holds at the endpoints
a, b, because all the arcs are contained in the strip {a ≤ <w ≤ b}. All
the remaining assumptions of Theorem 3.1 are satisfied. We omit further
details.

In the situation of Theorem 3.1 the fact that the given end-discs a, b were
shown to be contained in the boundary of this hull, played an essential role
in the proof of its properties. We will now show that without assuming the
Continuous Cone Condition at the “end” disc a, the disc might be contained
in the interior of the hull.

Example 5.2. There is a compact subset X of bD×C satisfying all the
asumptions of Theorem 3.1 except for the Continuous Cone Condition at one
end-disc, say a, such that the disc a is disjoint from (bY )\X. Consequently,
bY cannot be the union of two topological hypersurfaces having the disc a
as common part of their boundaries.

The construction is an easy modification of the last one. Retaining the
meaning of the symbols Φζ : C → C, ζ ∈ bD, g(ζ), and b (together with
the underlying choices of A and s(·)), we now set Xz := Φζ([0, b]). Here
one end-disc b still satisfies the end-disc cone condition while the other, the
constant disc a := 0, does not, as it intersects over D with the disc g. By
Corollary 2.1 both discs are contained in X ∪ IntY , and so the Continuous
Cone Condition fails along a = 0.

It follows from Corollary 2.1 that if the hull Y of a family of arcs X is a
topological hypersurface, then no two analytic discs in Y \X can intersect
(over D). The next example shows that, in contrast, the boundaries of two
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closed analytic discs contained in a hypersurface might intersect (over bD),
even if they are continuous at bD, and even if the assumptions of Theorem
4.1 are satisfied. We denote by τ(ζ, w) the unit tangent vector to Xζ at w,
oriented from a to b.

Example 5.3. There is a family of arcs (Xζ) satisfying the assumptions
of Basic Situation 1.1, with all arcs uniformly of class C1, and with τ(ζ, w)
continuous onX, such that Y = X̂ is a topological hypersurface and contains
two continuous analytic discs intersecting over the boundary bD.

Construction. Choose a continuous function φ : [−1, 0] → [0,∞) such
that

φ(−1) = 0 = φ(0), φ(x) > 0, −1 < x < 0,(5.1)

lim
x→0

x−1φ(x) = 0,(5.2)

and define a domain Ω by Ω := {z = x+ iy ∈ C : |y| < φ(x)}. Then Ω is a
Jordan domain.

Let f : D → Ω be the homeomorphic extension of the inverse Riemann
mapping function D → Ω, partially normalized by the condition f(−1) =
−1, f(1) = 0. Define x(ζ) = <f(ζ) and y(ζ) = =f(ζ). It follows from (5.1)
and (5.2) that

x(1) = 0, −1 ≤ x(ζ) < 0, ζ ∈ bD \ {1},(5.3)

lim
ζ→1

y(ζ)(ζ) = 0.(5.4)

Fix a ≥ 2, b ≥ 1. We will construct Xζ ’s by Lagrange interpolation,
requiring that Xζ ’s are graphs of cubics y = y(x), over −a ≤ x ≤ b, passing
through the four points

−a, x(ζ) + iy(ζ), 0, b,

if ζ 6= 1, and setting X1 = [−a, b]. This leads to the parametrization

γ(ζ, t) = t+ iχ(ζ)(t+ a)t(t− b), t ∈ [−a, b],
where χ(1) = 0, and

χ(ζ) = (y)(ζ)[(a+ x(ζ))(x(ζ)− b)]−1, ζ 6= 1.

Using (5.3), (5.4) and the assumptions on a, b, we infer that χ is a continuous
function on bD with χ(1) = 0. Clearly γ : bD × [−a, b]→ C is a continuous
function, and for every ζ ∈ bD,

t 7→ γ(ζ, t) : [−a, b]→ C

is a Cω homeomorphism onto a real-analytic arc, which we define to be Xζ .
One can check that γ(x(ζ)) = y(ζ) and γ(0) = 0; hence f and g = 0 are two
analytic discs in Y = X̂ which intersect at (1, 0).
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Observe that ∂tγ(ζ, t) is continuous on bD × [−a, b], because it equals
1 + iχ(ζ)(3t2 + 2at − 2tb − ab). Since |∂γ/∂t| ≥ 1, the unit tangent vector
field τ(ζ, w) is continuous on X. Hence, the assumptions of Theorem 4.1 are
satisfied and so Y is a topological hypersurface.
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