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Mod 2 normal numbers and skew products

by

Geon Ho Choe (Daejeon), Toshihiro Hamachi (Fukuoka) and
Hitoshi Nakada (Yokohama)

Abstract. Let E be an interval in the unit interval [0, 1). For each x ∈ [0, 1) define
dn(x) ∈ {0, 1} by dn(x) :=

∑n
i=1 1E({2i−1x}) (mod 2), where {t} is the fractional part of t.

Then x is called a normal number mod 2 with respect to E if N−1∑N
n=1 dn(x) converges

to 1/2. It is shown that for any interval E 6= (1/6, 5/6) a.e. x is a normal number mod 2

with respect to E. For E = (1/6, 5/6) it is proved that N−1∑N
n=1 dn(x) converges a.e.

and the limit equals 1/3 or 2/3 depending on x.

1. Introduction. Let (X,µ) be a probability space and let T : X → X
be an ergodic transformation. Given a measurable subset E ⊂ X, we con-
sider the binary sequence dn(x) ∈ {0, 1} defined by

dn(x) :=
n∑

i=1

1E(T i−1x) (mod 2),

where 1E is the characteristic function of E. The mod 2 normality problem
is to investigate the convergence of

lim
N→∞

1

N

N∑

n=1

dn(x)

to the limit 1/2 or the convergence of

lim
N→∞

1

N

N∑

n=1

en(x)

to the limit 0, where en(x) = exp(πidn(x)).
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When T is given by an irrational translation on the unit interval [0, 1),
i.e., Tx = {x+ θ}, θ irrational, the problem was first investigated by Veech
[14] using Furstenberg’s idea on coboundaries (see [6]). Let E be an interval.
Define

µθ(E) = lim
N→∞

1

N

N∑

n=1

dn(x)

if the limit exists. Let t be the length of E. It can be shown that for arbitrary
θ if t ∈ 2Z · θ + Z then µθ(E) exists but it may not be equal to 1/2. And
for arbitrary θ and t at least one of µθ(E) or µθ([0, 1]\E) is 1/2, the limit
existing. Veech proved that µθ(E) exists for every interval E if and only if
θ has bounded partial quotients in its continued fraction expansion, and in
this case if t 6∈ 2Z · θ + Z then µθ(E) = 1/2. For closely related results, see
[8], [9], [11], [13], [15].

In this article we are interested in the case that X = [0, 1) and Tx =
{2x}, where {t} is the fractional part of t. Set inclusions and identities are
understood modulo measure zero sets.

Definition 1.1. Let E be a measurable subset of [0, 1). For x ∈ [0, 1)
define dn(x) ∈ {0, 1} as above. Then x is called a normal number mod 2 with

respect to E if N−1
∑N

n=1 dn(x) converges to 1/2.

We state the main result that will be proved in Section 3.

Main Theorem. (i) For any interval E 6= (1/6, 5/6) a.e. x ∈ [0, 1) is
a normal number mod 2 with respect to E.

(ii) For E = (1/6, 5/6) a.e. x ∈ [0, 1) is not a normal number mod 2
with respect to E. More precisely , for E = (1/6, 5/6) we have

lim
N→∞

1

N

N∑

n=1

dn =
2

3
for a.e. x ∈

[
1

3
,

2

3

]
,

lim
N→∞

1

N

N∑

n=1

dn =
1

3
for a.e. x ∈

[
0,

1

3

]
∪
[

2

3
, 1

]
.

2. Z2-extensions. Let T be ergodic on a probability space (X,µ). It
is not necessarily invertible. Let G be a compact abelian group. Suppose
that φ : X → G is measurable. Define a skew product Tφ on X × G by
Tφ(x, y) = (Tx, φ(x) + y). It is also called a G-extension of T by φ.

Definition 2.1. A function φ : X → G is called a G-coboundary if there
exists a measurable function q : X → G satisfying φ(x) = q(x)− q(Tx).

From now on we consider the case G = Z2 = {0, 1}. Put φ = 1E .

Define Vφ on L2(X) by (Vφf)(x) = eπiφ(x)f(Tx). Since (Vφ)n1 = en, von
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Neumann’s Mean Ergodic Theorem implies that N−1
∑N

n=1 en converges to
the orthogonal projection of 1 onto the subspace H = {h : Vφh = h}. Now
for the pointwise convergence the following is known. For the proof see [3].

Fact 2.2. (i) Suppose that Tφ : X × Z2 → X × Z2 is ergodic. Then for
a.e. x,

lim
N→∞

1

N

N∑

n=1

en(x) = 0.

(ii) Suppose that Tφ is not ergodic. Then for a.e. x,

lim
N→∞

1

N

N∑

n=1

en(x) = h(x)
�

X

h dµ,

where eπiφ(x) = h(x)h(Tx) and h(x) ∈ {±1} for a.e. x.

If φ is a coboundary then it is possible that H is not trivial and the
limit is not zero (see [5]). In this paper we investigate for which E the skew
product is ergodic. The following fact is well known.

Fact 2.3. Let T be ergodic on X. Suppose φ(x) ∈ Z2, or equivalently
φ = 1E for some measurable subset E. Then the following are equivalent :

(i) Tφ is not ergodic on X × Z2.
(ii) There exists a Z2-valued measurable function q such that φ(x) =

q(x) + q(Tx) (mod 2). In this case, q = 1F for some measurable F .
(iii) E = F 4 T−1F for some measurable F , where 4 denotes the sym-

metric difference.

The following fact is a special case of a well known result (see Zimmer [16]
and also [10], [7]). We give a proof for the sake of completeness. Throughout
the rest of the article addition is done modulo 2.

Fact 2.4. Let T be ergodic on X and let φ be Z2-valued on X. If Tφ
is not ergodic, then it has exactly two ergodic components, each having the
same measure. In this case the two ergodic components of Tφ are {(x, q(x)) :
x ∈ X} and {(x, 1 + q(x)) : x ∈ X}, where q is Z2-valued and φ(x) =
q(x) + q(Tx).

Proof. Since Tφ is not ergodic, Fact 2.3 implies that φ is a coboundary.
Define Q and S on X ×Z2 by Q(x, y) = (x, q(x) + y) and S(x, y) = (Tx, y).
Then Q−1 = Q and Q ◦ Tφ = S ◦Q. Note that Tφ is isomorphic to S, which
has two ergodic components X × {0} and X × {1}. Therefore the ergodic
components of Tφ are Q(X × {0}) = {(x, q(x)) : x ∈ X} and Q(X × {1}) =
{(x, 1 + q(x)) : x ∈ X}.
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3. Construction of piecewise linear maps. In this section we study
Z2-extensions of T : x 7→ {2x} on X = [0, 1) from the viewpoint of interval
mappings. The subsets X0 = X × {0} and X1 = X × {1} are identified
with the intervals [0, 1) and [1, 2), respectively, and Tφ is regarded as being

defined on X̃ = [0, 2). The new interval map on X̃ induced from Tφ is

denoted by T̃φ. If T̃φ is not ergodic, then it has two ergodic components in

X̃, each having Lebesgue measure 1.
More precisely, for a measurable subset E ⊂ [0, 1), put φ = 1E . Recall

that Tφ(x, i) = (Tx, i + φ(x)), i ∈ {0, 1}. Define ψ : X × {0, 1} → [0, 2) by
ψ(x, i) = x+ i. For u ∈ [0, 2) let

T̃φ(u) = ψ ◦ Tφ ◦ ψ−1(u).

Then T̃φ preserves Lebesgue measure and satisfies

T̃φ(u) =

{ {2u}+ 1E(u), 0 ≤ u < 1,

{2u}+ 1− 1E(u− 1), 1 ≤ u < 2.

Example 3.1 (An ergodic skew product). Take E = [1/2, 1] and φ = 1E .

Then T̃φ can be regarded as the piecewise linear map given in Fig. 1. Note
that it is ergodic. See the Folklore Theorem given in [1].

0 1 2

1

2

Fig. 1. An ergodic skew product Tφ generated by the interval E = [1/2, 1) ⊂ X = [0, 1)

is regarded as an interval map T̃φ on X̃ = [0, 2).

Example 3.2 (A nonergodic skew product). Take E = [1/4, 3/4] and
φ = 1E . Put F = [1/2, 1] and q = 1F . Then E = F 4 T−1F and φ is

a coboundary. Then T̃φ can be regarded as the piecewise linear map given
in Fig. 2. It has two ergodic components: [0, 1/2) ∪ [3/2, 2) and [1/2, 3/2).
This can be seen from Fact 2.4.

Let J be an interval and τ be a piecewise C2 mapping on J . Assume
that infx∈J1 |τ ′(x)| > 1, where J1 = {x ∈ J : τ ′(x) exists}. The points of
J − J1 are called the points of discontinuity. For x ∈ J , let Λ(x) be the set

of limit points of τn(x), that is, Λ(x) =
⋂∞
N=1 {τn(x) : n ≥ N}. Note that

τ(Λ(x)) = Λ(x). Li and Yorke [12] proved the following.
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Fig. 2. A nonergodic skew product Tφ generated by the interval E = [1/4, 3/4) ⊂ X =

[0, 1) is regarded as an interval map T̃φ on X̃ = [0, 2). It has two ergodic components:

K1 = [1/2, 3/2] and K2 = X̃ −K1.

Fact 3.3. For a.e. x, Λ(x) is the union of (one or more) intervals of
positive length. Furthermore, there is a finite collection of sets L1, . . . , Ln,
where each Li is a union of finitely many disjoint intervals, such that for
a.e. x, Λ(x) is one of the sets Li. (The sets Li are ergodic components of τ .)
If i 6= j then Li ∩ Lj contains at most a finite number of points and each
Li contains in its interior a point of discontinuity of τ and/or τ ′. For each
Li there exists a unique absolutely continuous τ -invariant measure µi such
that µi(Li) = 1 and µi(Lj) = 0 for j 6= i.

Remark 3.4. Suppose that E is an interval. Then we have the following:

(i) T̃φ is piecewise linear and satisfies T̃ ′φ(x) = 2 except at finitely many

points. (ii) If T̃φ is not ergodic, then an ergodic component is a union of
finitely many disjoint intervals. More precisely, if E = F 4 T−1F , then
Fact 2.4 implies that the ergodic components are given by ([0, 1)\F )∪(F+1)
and F ∪ ([1, 2) \ (F + 1)).

Proposition 3.5. Suppose E is a finite union of nonempty open inter-
vals such that E ⊂ [0, 1/2) or E ⊂ [1/2, 1). Then Tφ is ergodic.

Proof. First, consider the case E ⊂ [1/2, 1). We regard Tφ as a map T̃φ
on [0, 2). Note that an ergodic component has Lebesgue measure 1 or 2.

Since E is a union of finitely many intervals, T̃φ is an interval map on
[0, 2) that satisfies the condition from Fact 3.3. This implies that an ergodic

component of T̃φ is a union of finitely many intervals. Thus [0, 1/2n) is in

an ergodic component of T̃φ for sufficiently large n. This implies that this

ergodic component contains (0, 1). Note that the intersection of T̃φ([0, 1))
and [1, 2) is of positive measure. Consequently, the Lebesgue measure of the



58 G. H. Choe et al.

ergodic component is greater than 1, which implies that the measure is equal
to 2. Thus there is only one ergodic component.

Next, consider E ⊂ [0, 1/2). In this case we start with (1− 1/2n, 1), and
proceed as before.

The following example shows that the above theorem cannot be extended
to general measurable sets.

Example 3.6. Put I = [3/4, 1) and F =
⋃∞
k=0 2−kI. Let q = 1F . Then

q(x) + q(Tx) = 1E(x) (mod 2) for E = F 4 T−1F ⊂ [1/2, 7/8]. In this case
Tφ is not ergodic.

Using T̃φ we obtain the following result. A similar result was also ob-
tained by Ahn [2]. His proof uses the argument previously employed in [3],
[4], where the problem was investigated for intervals with dyadic rational
endpoints.

Proposition 3.7. Let E be an interval in [0, 1) of length less than 1,
and let φ = 1E. Then Tφ is not ergodic if and only if E = (1/4, 3/4) or
E = (1/6, 5/6).

Proof. If E = (1/4, 3/4) or E = (1/6, 5/6), then E = F 4 T−1F for
F = (1/3, 2/3) or F = (1/2, 1), respectively. So Tφ is not ergodic by
Fact 2.3. Conversely, assume that Tφ is not ergodic. Choose F such that
E = F 4 T−1F . Note that F is a disjoint union of n intervals for some
n ≥ 1 by Fact 3.3. Here a set of the form (α, β) ∪ (β, γ) is regarded as a
single interval (α, γ). We may assume that F ⊂ (δ, 1) for some δ > 0 by
taking its complement if necessary. Note that

T−1F ⊂ (δ/2, 1/2) ∪ (1/2 + δ/2, 1).

Since F has 2n boundary points, T−1F has 4n boundary points, hence
the interval F 4 T−1F has at least 2n boundary points. This is possible
only if n = 1, so F is an interval of the form F = (a, b), a > 0. Then
(a, b)4((a/2, b/2) ∪ (1/2 + a/2, 1/2 + b/2)) is an interval only if (i) a = b/2
and b = 1/2 +a/2, or (ii) a = b/2 and b = 1/2 + b/2. Thus we have a = 1/3,
b = 2/3 or a = 1/2, b = 1, which gives E = (1/6, 5/6), F = (1/3, 2/3) or
E = (1/4, 3/4), F = (1/2, 1), respectively.

Corollary 3.8. Let E be of the form E = [0, a)∪ [b, 1), 0 < a < b < 1.
Assume that Tφ is not ergodic, where φ = 1E. Then Tψ is ergodic, where
ψ = 1B , B = (a, b). Hence (a, b) 6= (1/6, 5/6) and (a, b) 6= (1/4, 3/4).

Proof of Main Theorem. First, Proposition 3.7 implies that for any in-
terval E such that E 6= (1/6, 5/6) and E 6= (1/4, 3/4) almost every x is a
normal number mod 2 with respect to E.
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Next, consider E = [1/4, 3/4]. Put F = [1/2, 1). Then E = F 4 T−1F ,

and φ(x) = 1E(x) = q(x)+q(Tx) (mod 2), where q = 1F . Then � 1
0 e

πiq dx = 0,

and Fact 2.2(ii) implies limN→∞N−1
∑N

n=1 dn = 1/2 for a.e. x. In this case
we have mod 2 normality with respect to E even though 1E is a coboundary.

There remains the only exceptional case E = [1/6, 5/6] for which the
normality mod 2 with respect to E does not hold. Put F = [1/3, 2/3]. Then

E = F 4 T−1F . Now use � 1
0 e

πiq dx = 1/3.

Remark 3.9. Fig. 3 illustrates the fact that E = [1/6, 5/6] gives a
coboundary.

0 1 2
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2

Fig. 3. A nonergodic skew product Tφ generated by the interval E = [1/6, 5/6] ⊂ X =

[0, 1) is regarded as an interval map T̃φ on X̃ = [0, 2). It has two ergodic components:

K1 = [0, 1/3] ∪ [2/3, 1] ∪ [4/3, 5/3] and K2 = X̃ −K1.
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