STUDIA MATHEMATICA 165 (1) (2004)

A characterization of ()-algebras of type F
by

W. ZELAZKO (Warszawa)

Abstract. We prove that a real or complex unital F-algebra is a Q-algebra if and
only if all its maximal one-sided ideals are closed.

A topological algebra is a real or complex algebra A which is a topo-
logical vector space (t.v.s.) and the multiplication (x,y) — zy is a jointly
continuous map from A x A to A.

A unital topological algebra A is called a Q-algebra if the set (group)
G(A) of all its invertible elements is open.

An F-algebra (an algebra of type F) is a topological algebra which is an
F-space, i.e. a complete metrizable t.v.s. The topology of an F-space X can
be given by means of an F-norm, i.e. a map z — ||z|| from X to the set of
non-negative real numbers such that

(i) ||z|]] > 0 and ||z|| = 0 iff x =0,
(i) flz +yll <zl + llyl,
(iii) the map (A, z) — [|[Az]| from Kx X to X is jointly continuous (K = R

or C).
The metric (distance) of an F-space X is given by means of ||z—y||, =,y € X.
We shall also write x,, — xg if lim,, ||z, — x¢|| = 0.

For further information on F-spaces the reader is referred to [2] and [5],
and for more information on F-algebras, to [3]-[6].

M. Akkar and C. Nacir ([1, Proposition 17]) proved that a commutative
unital F-algebra has all maximal ideals closed if and only if it is a ()-algebra.
In this paper we extend this result to the non-commutative case. The result
seems to be new even in the case of an m-convex By-algebra (a locally
convex F-algebra whose topology can be given by means of a family of
submultiplicative homogeneous seminorms, cf. [3], [4] or [6]). In the case of
a commutative m-convex algebra this result is contained in the main result

of [7].
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The (unital) topological algebras with all maximal one-sided ideals closed
are also called Mallios algebras, thus our result says that a unital F-algebra
is a Mallios algebra if and only if it is a Q-algebra.

We start our proof with the following simple lemma.

LEMMA 1. Let A be a real or complex F-algebra with unity e. Then for
given u,v € A and € > 0 there is a positive § = 0(e,u,v) such that

(1) |lz—e|| <& implies |uzv—uv| <e.

This follows immediately from the fact that the map = — uzv is contin-
uous at x = e.
We shall use the following notation. Let a = (a,) be a sequence of
elements of A. For all integers k and m with 1 < k < m, we put
AmQm—1...a if k< m,
oy = e L
ak if kK =m,
m ARAka1 - -G If K < m,
o = { e
ag if k =m.
The following is our crucial lemma. Similarly to [1] (see also [8]) we shall
be using infinite products of elements of A.

LEMMA 2. Let A be a real or complex F-algebra with unity e. Then for
every sequence (z;) C A with x; — e and sequence (y;) C A, there is a
subsequence a; = xy,, ki < k;j for i < j, such that for each natural k the
limits

(2) Uy = lilm uékﬂ)(a) (= Iign Akt iQfpim1 - - - Of)
and
(3) vy = lign v,ik+i)(a) (= lizm AkQk41 - - - Qhtq)

exist and satisfy

(4) lilgn ug = lilgn vE = e,
and moreover, for each natural k and non-negative integer i, we have
(5) o ®)ur — o )i (@) < 27 ¢,
(6) o (0) = v (@ 0 < 270,
where b; = yx, and b= (b;).
Proof. In choosing the subsequences a; = ag, and b; = yi,, and an

auxiliary sequence of positive numbers d;, which is necessary to obtain (5)
and (6), we proceed by induction. First we choose a; and by arbitrarily, say
ay = x1,b1 = y1, and using Lemma 1, we choose d; so that ||z —e| < &;
implies ||byza; — bra;|| < 271 and ||a;xb; — a1b1]| < 271. Suppose now that
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we have chosen ay,...,a,,b1,...,b, (a; = x,,b; = yg,) and 61,...,d, so
that for all n > m > k > 1 the following relations hold (they are well defined
in spite of the fact that we do not know yet the whole sequences a = (a;)
and b= (b;)):

(7) lug™ (@) — uf™ V(@) < 27,
(8) log™ (a) — of™ P (a)]| < 27,
(9) le — uf’}) (a)]| < B,
(10) le — v’ (@) < B,
(1) 0< 8, <min{s(2", v (b),uf™ (@), 627, 0" (@), u™ (b)) :
1 <k<m},

where 6(e, v, u) is given by Lemma 1.

By (9) and (10), there are d7,...,d,, > 0 such that
(12) le = ul™ (@) + 6 < 6y le— v (@) + 6, < 6

for1<k<m<n.

We want to find an index j > k&, such that setting a,41 = z; and
bn+1 = yj, and choosing d,41 in a suitable way, the conditions (7)—(11)
will be satisfied with n replaced by n 4+ 1. For m < n these conditions are
satisfied by the inductive assumption, so that we have to consider the case
m = n + 1 only. Since x; — e, we can find ¢’ > k,, so that for each ¢ > ',

(13)  [ul (@) — 2l (@) < &, o (@) = oY, (@)zi]| < 6,
for 1 <k <n, and
(14) lle — ]| < dp.

There is also an index i > 4’ such that
(15)  [luf” (@) = wiuf” (@) < 270D, flof (@) — o (@) < 27,
(16) lan — zia,]| < 9~ (n+1)

for all ¢ > 4" and k = 1,...,n — 1. We now put j = i and an41 = z;,
bn+1 = y;. Inequalities (9), (10), (12) and (13) imply

n+1
le = u" V(@) = le = ani1u™, (@)

< lle = ul™, @) + [[ul™, (@) = aps1ul™, (@)
< lle —uf™, (@) + 8 < 5

and similarly
1
lle — v+ (a)]| < o
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for 1 <k < n. Thus (9) and (10) hold if we replace n by n + 1, except for
the case k = n. If k = n both inequalities read |le — ap41| < J5, and this
follows from (14) since j = ¢”. Similarly, (7) and (8) form =n+1and k <n
follow from (15), and for k = n from (16). In order to obtain 6,41, one can
simply define it to be any number satisfying (11) with m = n + 1, since the
right-hand expression is now well defined. This completes the induction.

Having defined the sequences a and b, observe now that for a fixed nat-
ural k, inequality (7) implies

A7) [lul™(a) — u”(a)|
m m-+1 n—1 n
< ul™ (@) = u{" (@) + - + w7V (@) — i (a)|
<9 (mtl) 4 o=(m+2) 4 .4 9o-n ~9=Mm  for ;> k> 1.

Thus (ug) (a))72, is a Cauchy sequence converging to some element uy, in A,
and (2) follows. Similarly, (8) implies (3). Since u,(ck)(a) = ag, the estimate
(17) implies
lax —ui™(a)|| < 2%  for n > k,
and by letting n — oo we obtain
(18) llag, = up]| < 27F,
and similarly
(19) o — vgll <275,

Since (ay) is a subsequence of (zy) and x — e, inequalities (18) and (19)
imply (4).
In order to obtain (5) write

(20) ol )ul™ (@) — o (0)u ()

FE 0 @t — o 0)u ().

Inequalities (10), (11), and Lemma 1 imply that the right-hand side of (20)
is estimated from above by 2~ (+% for all n > k +i+ 1. Letting n — oo, we
obtain (5). The proof of (6) is analogous.

= [lv

We can now prove our main result.

THEOREM. Let A be a real or complex F-algebra with unity e. Then A
is a Q-algebra if and only if all its one-sided maximal ideals are closed.

Proof. If Ais a Q-algebra and I a proper (i.e. # A) left or right maximal
ideal, then I is disjoint from the set G(A) which is a neighbourhood of the
unity. Thus the closure I is also disjoint from G(A), and so is a proper ideal.
Hence I = I by the maximality of I.
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It remains to show that if A is not a Q-algebra, then it contains either a
dense left ideal or a dense right ideal I, for then any maximal ideal containing
I is dense and so non-closed. Since A is not a QQ-algebra, there is a sequence
(z;) of non-invertible elements tending to e. By passing to a subsequence if
necessary, we can assume that no x; is left invertible (otherwise we could
either consider A with the reversed multiplication x o y = yx, or treat the
case when no x; is right invertible in an analogous way).

By Lemma 2, we find a subsequence (a;) of (z;) such that the ele-
ments v given by (3) are convergent for all k, and limgvr = e. If no
vk is left invertible, then the left ideals I, = Avy are proper and satisfy
Iy = Aagviy1 C Avgyr = Ipyq. Thus J = UZ’;l Iy, is also a proper left ideal
and vg € J for all natural k. For every x in A, we have xvy € J and xvp — x
by (4). Consequently, J is dense and we are done.

Consider now the case when vy, € G (A), the set of left invertible
elements in A, for some kg, so that dvg, = e for some d in A. In this case
we have e = dvy, = day,ak,+1 - ax—1vVk, and so vy is left invertible for all
k > ko. It is not right invertible, except for at most one index k. For, if
v, and vg, are right invertible, and so invertible, and ko < k1 < ko, then
Vky = Oy = * Olog—1Vky, a0d Qg * - Qfy—1 = Uklvk_;q is an invertible element
in A. Thus there is a ¢ in A with cag, ---ax,—1 = e, which is impossible,
since ag,—1 is not left invertible.

In this situation we can start our proof again with a new sequence x; =
vk, +i of left invertible, but not right invertible elements, tending to e. As
above, we consider a subsequence (a;) of (x;) such that the conclusion of
Lemma 2 is satisfied. If no u; given by (2) is right invertible, we put, as
above, J = J,—; upA. This is a proper dense right ideal and we are done.

It remains to show that the elements u; cannot be right invertible. For if
some uy, is right invertible, then, as above, so are all uy for k > kg. Without
loss of generality we can assume that all u; are right invertible. Denote by
b; the left inverse of a;, and by ¢j the right inverse of uy. By (5), since
b - - - bgtiGk+i - - - axr = e, we obtain

o) (Byuy, — ef] < 270D,

Thus for a fixed k, we have lim,, v,gm)(b)uk = e, which implies that
lim,,, v,(cm)(b)ukck = c¢;. But v,gm)(b)ukck = U,(Cm)(b), so that lim,, v,gm)(b) =
¢k, and thus cpuy = lim,, v,im)(b)u/z€ = e. Consequently, uy is left invertible,
and hence invertible for all k. Writing uy = agur+1, we obtain ag = uku;il,
so that ay is also invertible. This is a contradiction, since no ay is right
invertible.

From the proofs of the Theorem and of Lemma 2 we can obtain the
following corollary which will be useful in the forthcoming paper [9], where
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we show that a unital F-algebra has all one-sided ideals closed if and only
if it is noetherian.

COROLLARY. Let A be a real or complex F-algebra with unity e.

(i) Let (zy,) be a sequence of non-invertible elements of A tending to e.
Then there is a subsequence (a;) of (x,) such that for each natural
k the infinite products uy and v, given by (2) and (3) exist, and
lim ug = limvg = e.

(ii) If A is not a Q-algebra, then there is a sequence (a;) C A with a; — e
such that either ;= Av; or Use, wiA is a proper one-sided dense
ideal.

We do not know whether an F-algebra A which is not a Q-algebra
must contain both left and right dense proper ideals. The answer would
be negative if there existed proper Q);-algebras (and @Q,-algebras), i.e. non-
Q-algebras for which the set G;(A) (resp. G,(A)) is open. On the other
hand, the answer would be affirmative, and the proof of our theorem would
be much simpler, if in every non-Q-algebra of type F there were a sequence
(z;) of non-invertible, pairwise commuting elements tending to the unity,
i.e. if no non-Q-algebra of type F' contained a maximal commutative sub-
algebra which were also a non-Q-algebra. In that case, no proper Q;- and
Q-algebras would exist.

Our result does not extend to the non-metrizable case. In [8, Example 7]
we give an example of a complete commutative unital topological algebra
which is not a QQ-algebra but it has all ideals closed.
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