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A characterization of Q-algebras of type F

by

W. Żelazko (Warszawa)

Abstract. We prove that a real or complex unital F -algebra is a Q-algebra if and
only if all its maximal one-sided ideals are closed.

A topological algebra is a real or complex algebra A which is a topo-
logical vector space (t.v.s.) and the multiplication (x, y) 7→ xy is a jointly
continuous map from A× A to A.

A unital topological algebra A is called a Q-algebra if the set (group)
G(A) of all its invertible elements is open.

An F -algebra (an algebra of type F ) is a topological algebra which is an
F -space, i.e. a complete metrizable t.v.s. The topology of an F -space X can
be given by means of an F -norm, i.e. a map x 7→ ‖x‖ from X to the set of
non-negative real numbers such that

(i) ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0,
(ii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖,
(iii) the map (λ, x) 7→ ‖λx‖ fromK×X toX is jointly continuous (K = R

or C).

The metric (distance) of an F -spaceX is given by means of ‖x−y‖, x, y ∈ X.
We shall also write xn → x0 if limn ‖xn − x0‖ = 0.

For further information on F -spaces the reader is referred to [2] and [5],
and for more information on F -algebras, to [3]–[6].

M. Akkar and C. Nacir ([1, Proposition 17]) proved that a commutative
unital F -algebra has all maximal ideals closed if and only if it is a Q-algebra.
In this paper we extend this result to the non-commutative case. The result
seems to be new even in the case of an m-convex B0-algebra (a locally
convex F -algebra whose topology can be given by means of a family of
submultiplicative homogeneous seminorms, cf. [3], [4] or [6]). In the case of
a commutative m-convex algebra this result is contained in the main result
of [7].
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The (unital) topological algebras with all maximal one-sided ideals closed
are also called Mallios algebras, thus our result says that a unital F -algebra
is a Mallios algebra if and only if it is a Q-algebra.

We start our proof with the following simple lemma.

Lemma 1. Let A be a real or complex F -algebra with unity e. Then for
given u, v ∈ A and ε > 0 there is a positive δ = δ(ε, u, v) such that

(1) ‖x− e‖ < δ implies ‖uxv − uv‖ < ε.

This follows immediately from the fact that the map x 7→ uxv is contin-
uous at x = e.

We shall use the following notation. Let a = (an) be a sequence of
elements of A. For all integers k and m with 1 ≤ k ≤ m, we put

u
(m)
k (a) =

{
amam−1 . . . ak if k < m,

ak if k = m,

v
(m)
k (a) =

{
akak+1 . . . am if k < m,

ak if k = m.

The following is our crucial lemma. Similarly to [1] (see also [8]) we shall
be using infinite products of elements of A.

Lemma 2. Let A be a real or complex F-algebra with unity e. Then for
every sequence (xi) ⊂ A with xi → e and sequence (yi) ⊂ A, there is a
subsequence ai = xki , ki < kj for i < j, such that for each natural k the
limits

(2) uk = lim
i
u

(k+i)
k (a) (= lim

i
ak+iak+i−1 . . . ak)

and

(3) vk = lim
i
v

(k+i)
k (a) (= lim

i
akak+1 . . . ak+i)

exist and satisfy

(4) lim
k
uk = lim

k
vk = e,

and moreover , for each natural k and non-negative integer i, we have

‖v(k+i)
k (b)uk − v(k+i)

k (b)u(k+i)
k (a)‖ ≤ 2−(k+i),(5)

‖vku(k+i)
k (b)− v(k+i)

k (a)u(k+i)
k (b)‖ ≤ 2−(k+i),(6)

where bi = yki and b = (bi).

Proof. In choosing the subsequences ai = aki and bi = yki , and an
auxiliary sequence of positive numbers δi, which is necessary to obtain (5)
and (6), we proceed by induction. First we choose a1 and b1 arbitrarily, say
a1 = x1, b1 = y1, and using Lemma 1, we choose δ1 so that ‖x − e‖ < δ1

implies ‖b1xa1 − b1a1‖ < 2−1 and ‖a1xb1 − a1b1‖ < 2−1. Suppose now that
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we have chosen a1, . . . , an, b1, . . . , bn (ai = xki , bi = yki) and δ1, . . . , δn so
that for all n ≥ m > k ≥ 1 the following relations hold (they are well defined
in spite of the fact that we do not know yet the whole sequences a = (ai)
and b = (bi)):

‖u(m)
k (a)− u(m−1)

k (a)‖ < 2−m,(7)

‖v(m)
k (a)− v(m−1)

k (a)‖ < 2−m,(8)

‖e− u(m)
k+1(a)‖ < δk,(9)

‖e− v(m)
k+1(a)‖ < δk,(10)

(11) 0 < δm < min{δ(2−m, v(m)
k (b), u(m)

k (a)), δ(2−m, v(m)
k (a), u(m)

k (b)) :

1 ≤ k ≤ m},
where δ(ε, v, u) is given by Lemma 1.

By (9) and (10), there are δ′1, . . . , δ
′
n > 0 such that

(12) ‖e− u(m)
k+1(a)‖+ δ′k < δk, ‖e− v(m)

k+1(a)‖+ δ′k < δk

for 1 ≤ k < m ≤ n.
We want to find an index j > kn such that setting an+1 = xj and

bn+1 = yj , and choosing δn+1 in a suitable way, the conditions (7)–(11)
will be satisfied with n replaced by n + 1. For m ≤ n these conditions are
satisfied by the inductive assumption, so that we have to consider the case
m = n+ 1 only. Since xi → e, we can find i′ > kn so that for each i ≥ i′,
(13) ‖u(n)

k+1(a)− xiu(n)
k+1(a)‖ < δ′k, ‖v(n)

k+1(a)− v(n)
k+1(a)xi‖ < δ′k

for 1 ≤ k < n, and

(14) ‖e− xi‖ < δn.

There is also an index i′′ ≥ i′ such that

‖u(n)
k (a)− xiu(n)

k (a)‖ < 2−(n+1), ‖v(n)
k (a)− v(n)

k (a)xi‖ < 2−(n+1),(15)

‖an − xian‖ < 2−(n+1)(16)

for all i ≥ i′′ and k = 1, . . . , n − 1. We now put j = i′′ and an+1 = xj ,
bn+1 = yj . Inequalities (9), (10), (12) and (13) imply

‖e− u(n+1)
k+1 (a)‖ = ‖e− an+1u

(n)
k+1(a)‖

≤ ‖e− u(n)
k+1(a)‖+ ‖u(n)

k+1(a)− an+1u
(n)
k+1(a)‖

≤ ‖e− u(n)
k+1(a)‖+ δ′k < δk

and similarly

‖e− v(n+1)
k+1 (a)‖ < δk
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for 1 ≤ k < n. Thus (9) and (10) hold if we replace n by n + 1, except for
the case k = n. If k = n both inequalities read ‖e − an+1‖ < δn, and this
follows from (14) since j = i′′. Similarly, (7) and (8) for m = n+1 and k < n
follow from (15), and for k = n from (16). In order to obtain δn+1, one can
simply define it to be any number satisfying (11) with m = n+ 1, since the
right-hand expression is now well defined. This completes the induction.

Having defined the sequences a and b, observe now that for a fixed nat-
ural k, inequality (7) implies

(17) ‖u(m)
k (a)− u(n)

k (a)‖
≤ ‖u(m)

k (a)− u(m+1)
k (a)‖+ · · ·+ ‖u(n−1)

k (a)− u(n)
k (a)‖

≤ 2−(m+1) + 2−(m+2) + · · ·+ 2−n < 2−m for n > m ≥ k ≥ 1.

Thus (u(i)
k (a))∞i=k is a Cauchy sequence converging to some element uk in A,

and (2) follows. Similarly, (8) implies (3). Since u(k)
k (a) = ak, the estimate

(17) implies

‖ak − u(n)
k (a)‖ < 2−k for n ≥ k,

and by letting n→∞ we obtain

(18) ‖ak − uk‖ ≤ 2−k,

and similarly

(19) ‖ak − vk‖ ≤ 2−k.

Since (ak) is a subsequence of (xk) and xk → e, inequalities (18) and (19)
imply (4).

In order to obtain (5) write

(20) ‖v(k+i)
k (b)u(n)

k (a)− v(k+i)
k (b)u(k+i)

k (a)‖
= ‖v(k+i)

k (b)u(n)
k+i+1(a)u(k+i)

k − v(k+i)
k (b)u(k+i)

k (a)‖.
Inequalities (10), (11), and Lemma 1 imply that the right-hand side of (20)
is estimated from above by 2−(k+i) for all n ≥ k+ i+ 1. Letting n→∞, we
obtain (5). The proof of (6) is analogous.

We can now prove our main result.

Theorem. Let A be a real or complex F -algebra with unity e. Then A
is a Q-algebra if and only if all its one-sided maximal ideals are closed.

Proof. If A is a Q-algebra and I a proper (i.e. 6= A) left or right maximal
ideal, then I is disjoint from the set G(A) which is a neighbourhood of the
unity. Thus the closure I is also disjoint from G(A), and so is a proper ideal.
Hence I = I by the maximality of I.
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It remains to show that if A is not a Q-algebra, then it contains either a
dense left ideal or a dense right ideal I, for then any maximal ideal containing
I is dense and so non-closed. Since A is not a Q-algebra, there is a sequence
(xi) of non-invertible elements tending to e. By passing to a subsequence if
necessary, we can assume that no xi is left invertible (otherwise we could
either consider A with the reversed multiplication x ◦ y = yx, or treat the
case when no xi is right invertible in an analogous way).

By Lemma 2, we find a subsequence (ai) of (xi) such that the ele-
ments vk given by (3) are convergent for all k, and limk vk = e. If no
vk is left invertible, then the left ideals Ik = Avk are proper and satisfy
Ik = Aakvk+1 ⊂ Avk+1 = Ik+1. Thus J =

⋃∞
k=1 Ik is also a proper left ideal

and vk ∈ J for all natural k. For every x in A, we have xvk ∈ J and xvk → x
by (4). Consequently, J is dense and we are done.

Consider now the case when vk0 ∈ G(l)(A), the set of left invertible
elements in A, for some k0, so that dvk0 = e for some d in A. In this case
we have e = dvk0 = dak0ak0+1 · · · ak−1vk, and so vk is left invertible for all
k ≥ k0. It is not right invertible, except for at most one index k1. For, if
vk1 and vk2 are right invertible, and so invertible, and k0 ≤ k1 < k2, then
vk1 = ak1 · · · ak2−1vk2 , and ak1 · · · ak2−1 = vk1v

−1
k2−1 is an invertible element

in A. Thus there is a c in A with cak1 · · · ak2−1 = e, which is impossible,
since ak2−1 is not left invertible.

In this situation we can start our proof again with a new sequence xi =
vk1+i of left invertible, but not right invertible elements, tending to e. As
above, we consider a subsequence (ai) of (xi) such that the conclusion of
Lemma 2 is satisfied. If no uk given by (2) is right invertible, we put, as
above, J =

⋃∞
k=1 ukA. This is a proper dense right ideal and we are done.

It remains to show that the elements ui cannot be right invertible. For if
some uk0 is right invertible, then, as above, so are all uk for k ≥ k0. Without
loss of generality we can assume that all ui are right invertible. Denote by
bi the left inverse of ai, and by ck the right inverse of uk. By (5), since
bk · · · bk+iak+i · · · ak = e, we obtain

‖v(k+i)
k (b)uk − e‖ ≤ 2−(k+i).

Thus for a fixed k, we have limm v
(m)
k (b)uk = e, which implies that

limm v
(m)
k (b)ukck = ck. But v(m)

k (b)ukck = v
(m)
k (b), so that limm v

(m)
k (b) =

ck, and thus ckuk = limm v
(m)
k (b)uk = e. Consequently, uk is left invertible,

and hence invertible for all k. Writing uk = akuk+1, we obtain ak = uku
−1
k+1,

so that ak is also invertible. This is a contradiction, since no ak is right
invertible.

From the proofs of the Theorem and of Lemma 2 we can obtain the
following corollary which will be useful in the forthcoming paper [9], where
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we show that a unital F -algebra has all one-sided ideals closed if and only
if it is noetherian.

Corollary. Let A be a real or complex F -algebra with unity e.

(i) Let (xn) be a sequence of non-invertible elements of A tending to e.
Then there is a subsequence (ai) of (xn) such that for each natural
k the infinite products uk and vk given by (2) and (3) exist , and
limuk = lim vk = e.

(ii) If A is not a Q-algebra, then there is a sequence (ai) ⊂ A with ai → e
such that either

⋃∞
i=1 Avi or

⋃∞
i=1 uiA is a proper one-sided dense

ideal.

We do not know whether an F -algebra A which is not a Q-algebra
must contain both left and right dense proper ideals. The answer would
be negative if there existed proper Ql-algebras (and Qr-algebras), i.e. non-
Q-algebras for which the set Gl(A) (resp. Gr(A)) is open. On the other
hand, the answer would be affirmative, and the proof of our theorem would
be much simpler, if in every non-Q-algebra of type F there were a sequence
(xi) of non-invertible, pairwise commuting elements tending to the unity,
i.e. if no non-Q-algebra of type F contained a maximal commutative sub-
algebra which were also a non-Q-algebra. In that case, no proper Ql- and
Qr-algebras would exist.

Our result does not extend to the non-metrizable case. In [8, Example 7]
we give an example of a complete commutative unital topological algebra
which is not a Q-algebra but it has all ideals closed.
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