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Zero sums of products of Toeplitz and Hankel operators on
the Hardy space

by

Young Joo Lee (Gwangju)

Abstract. On the Hardy space of the unit disk, we consider operators which are
finite sums of products of a Toeplitz operator and a Hankel operator. We then give char-
acterizations for such operators to be zero. Our results extend several known results using
completely different arguments.

1. Introduction. Let T be the boundary of the unit disk in the complex
plane C and σ be the normalized Lebesgue measure on T. We let L2 =
L2(T, σ) denote the usual Lebesgue space of T. The Hardy space H2 is the
closure of the polynomials in L2. Let P denote the orthogonal projection
from L2 onto H2. For a function u ∈ L∞(T), the Toeplitz operator Tu and
(little) Hankel operator Hu with symbol u are defined respectively by

Tuf = P (uf) and Huf = PJ(uf)

for f ∈ H2. Here J is the unitary operator on L2 defined by Jf(z) =
z̄f(z̄). Then clearly Tu and Hu are bounded linear operators on H2. See [9,
Chapter 10] for details.

For decades, algebraic properties of Toeplitz and Hankel operators have
been studied. First Brown and Halmos [1] obtained a complete description
of (semi)commuting Toeplitz operators. Also, they studied the problem of
when a product of two Toeplitz operators is another Toeplitz operator. Later
Stroethoff [7] gave a new proof of the criterion for TuTv = TϕTψ to hold and
recovered the result of Brown and Halmos above. Also, the present author [4]
later characterized when operators which are finite sums of products of two
Toeplitz operators are zero and recovered the results of [1] and [7] mentioned
above.

Also, products of Toeplitz and Hankel operators have been studied.
Yoshino [8] determined when a product of two Hankel operators is another
Hankel operator. Gu and Zheng [3] established when finite sums of products
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of two (big) Hankel operators are zero. Mart́ınez-Avendaño [6] studied when
a Toeplitz operator and a Hankel operator commute; note that he used a
slightly different notion of Hankel operator. For given u, v ∈ L∞(T) for which
Hu is not zero, the result of Mart́ınez-Avendaño shows that HuTv = TvHu

if and only if vv̂, v + v̂ are constants and v + αu ∈ H∞ for some con-
stant α. Here, H∞ denotes the set of all bounded analytic functions on T,
and û(z) = u(z̄). Later Ding [2] studied when the product of a Toeplitz
operator and a Hankel operator is another Hankel operator, and proved
that given u, v, ψ ∈ L∞(T), HuTv = Hψ if and only if either u, ψ ∈ H∞ or
v, uv − ψ ∈ H∞.

Motivated by these results, we consider a more general class of operators
which contains products of Toeplitz and Hankel operators. More explicitly,
we consider operators of the form

(1)

N∑
j=1

TujHuj or

N∑
j=1

HujTuj

where uj , vj ∈ L∞(T). By using arguments completely different from those
applied before, we characterize when operators of the type (1) are equal to
zero. Together with these operators, we also consider operators of the form
HuTv + TϕHψ and determine when such an operator is zero. Our results
generalize several known results concerning products of Toeplitz operators
or Hankel operators.

In Section 2, we collect some preliminary results which will be used in
our characterizations. In Section 3, we characterize when operators of the
type (1) are zero (Theorems 3.1 and 3.4). Also, a characterization when
HuTv + TϕHψ = 0 is given in Theorem 3.7. As immediate consequences, we
recover several known results.

We mention that the corresponding characterizations on the Dirichlet
space have been obtained in [5]. While the main scheme of our proofs is
adapted from [5], we need to establish corresponding theories for Toeplitz
and Hankel operators on the Hardy space.

2. Preliminaries. Given f, g ∈ H2, the rank-one operator f ⊗ g is
defined on H2 by

(f ⊗ g)h = 〈h, g〉f, h ∈ H2,

where 〈 , 〉 is the usual inner product on L2 defined by

〈ψ,ϕ〉 =
�

T

ψϕdσ

for ψ,ϕ ∈ L2. We note that the operator equation

(2) S(f ⊗ g)T = (Sf)⊗ (T ∗g)

holds for any bounded operators S, T on H2.
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Given nonzero functions f, g, h, k ∈ H2, we observe that f ⊗ g = h⊗ k if
and only if there exists a nonzero constant α such that f = αh and k = ᾱg.
Generally, for zero sums of such rank one operators, we have the following
lemma which is proved in [3, Proposition 4].

For a given positive integer N , we let MN be the set of all N×N complex
matrices and SN be the set of all permutations on {1, . . . , N}. Also, I denotes
the identity operator.

Lemma 2.1. Let xj , yj ∈ H2 for j = 1, . . . , N . Then

N∑
j=1

xj ⊗ yj = 0

on H2 if and only if there exist A ∈MN and σ ∈ SN such that

[A− I]

 xσ(1)
...

xσ(N)

 = 0 and A∗

 yσ(1)
...

yσ(N)

 = 0.

In our proofs, we will often use the following elementary fact on zero
Hankel operators:

(3) Hu = 0 ⇔ u ∈ H∞ ⇔ Hu1 = 0 ⇔ H∗u1 = 0

for u ∈ L∞(T).

Given u ∈ L∞(T), we let Mu denote the operator of multiplication by u.
Also recall Ju = z̄u(z̄) and û(z) = u(z̄). Then J has the following useful
property on L2 which can be easily checked:

(4) JP = (I − P )J.

In the following proposition, we have some useful connections between
Toeplitz operators and Hankel operators. They are known but we include
the proofs for completeness.

Proposition 2.2. Let u, v ∈ L∞(T). Then:

(a) HûHv = Tuv − TuTv.
(b) TûHv +HuTv = Huv.
(c) If u ∈ H∞, then TûHv = Huv = HvTu.

Proof. By (4), we first note JPJ = (I−P )J2 = I−P . Since Hû = PMuJ
and Hv = PJMv, we have

HûHv = [PMuJ ][PJMv] = PMu(I − P )Mv

= PMuv − PMuPMv = Tuv − TuTv,
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so (a) holds. To prove (b), we note Mû = JMuJ . It follows that

TûHv = PMûPJMv = PJMuJPJMv = PJMu(I − P )Mv

= PJMuv − PJMuPMv = Huv −HuTv,

which gives (b). Finally, if u ∈ H∞, then Tv = Mv and Hu = 0 by (3) and
so (c) is a consequence of (b).

It is easy to see that Hz̄ is a rank one operator. In fact,

(5) Hz̄ = 1⊗ 1 on H2.

The following proposition will be very useful in our characterizations.
Note that ẑ = z̄ for all z ∈ T.

Proposition 2.3. Let u, v ∈ L∞(T). Then:

(a) HuTvTz = Tz̄HuTv + (Hu1)⊗ (H∗v1).
(b) TuHvTz = Tz̄TuHv − (Hû1)⊗ (H∗v1).

Proof. By Proposition 2.2, (5) and (2), we see that

HuTvTz = HuTzv = Hu[TzTv +Hz̄Hv] = Tz̄HuTv +Hu(1⊗ 1)Hv

= Tz̄HuTv + (Hu1)⊗ (H∗v1),

so (a) holds. To prove (b), we first note from Proposition 2.2(a) and (3) that
Tz̄u − Tz̄Tu = HzHu = 0 and thus Tz̄Tu = Tz̄u. Now by a similar argument
to the proof of (a), we see that

TuHvTz = TuTz̄Hv = [Tz̄u −HûHz̄]Hv = Tz̄TuHv −Hû(1⊗ 1)Hv

= Tz̄TuHv − (Hû1)⊗ (H∗v1),

so (b) holds.

3. Main results. In this section, we characterize the zero property of
operators which are finite sums of products of Toeplitz and Hankel operators.
We first consider operators which are sums of operators of the form HuTv.

Given a set X and an integer N ≥ 1, we let XN be the set of all N -tuples
(x1, . . . , xN ) where xj ∈ X for each j.

Theorem 3.1. Let uj , vj ∈ L∞(T) for j = 1, . . . , N . Then

(6)

N∑
j=1

HujTvj = 0

on H2 if and only if there exist A ∈MN and σ ∈ SN such that:

(a) [A− I]UTσ ∈ (H∞)N .

(b) Ā∗V T
σ ∈ (H∞)N .

(c) VσAU
T
σ ∈ H∞.

Here Uσ = (uσ(1), . . . , uσ(N)) and Vσ = (vσ(1), . . . , vσ(N)) for simplicity.
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Proof. First assume (6) holds. By Proposition 2.3(a), we see that

HujTvjTz = Tz̄HujTvj + (Huj1)⊗ (H∗vj1)

for each j and by (6),
N∑
j=1

Huj1⊗H∗vj1 = 0.

By Lemma 2.1 there exist A = [aij ] ∈MN and σ ∈ SN such that

[A− I](Huσ(1)1, . . . ,Huσ(N)
1)T = 0,(7)

A∗(H∗vσ(1)1, . . . ,H
∗
vσ(N)

1)T = 0.(8)

It follows from (7) that

H∑N
j=1 aijuσ(j)

1 =
N∑
j=1

aijHuσ(j)1 = Huσ(i)1,

so

H∑N
j=1 aijuσ(j)−uσ(i)

1 = 0

for each i = 1, . . . , N . By (3), we have

N∑
j=1

aijuσ(j) − uσ(i) ∈ H∞

for each i. This shows that [A−I]UTσ ∈(H∞)N where Uσ=(uσ(1), . . . , uσ(N))
and (a) holds. Also, since H∗αg = ᾱH∗g for all g ∈ L∞(T) and α ∈ C, we
have, using (8),

H∗∑N
i=1 aijvσ(i)

1 =
N∑
i=1

aijH
∗
vσ(i)

1 = 0

and hence
N∑
i=1

aijvσ(i) ∈ H∞

for each j by (3), so (b) holds. To prove (c), we let

(x1, . . . , xN )T = [A− I]UTσ , (y1, . . . , yn)T = Ā∗V T
σ

for simplicity. Then, since

xi =
N∑
j=1

aijuσ(j) − uσ(i)
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for each i, we have

(9)
N∑
i=1

HxiTvσ(i) =
N∑
i=1

[ N∑
j=1

aijHuσ(j) −Huσ(i)

]
Tvσ(i)

=

N∑
i=1

N∑
j=1

aijHuσ(j)Tvσ(i) −
N∑
i=1

Huσ(i)Tvσ(i)

=
N∑
j=1

Huσ(j)T
∑N
i=1 aijvσ(i)

−
N∑
i=1

HuiTvi

=

N∑
j=1

Huσ(j)Tyj −
N∑
i=1

HuiTvi .

Since xj , yj ∈ H∞ by (b), we have Hxj = 0 by (3) and Huσ(j)Tyj = Huσ(j)yj

by Proposition 2.2(c) for each j. Also, since

N∑
j=1

HujTvj = 0

by assumption, it follows from (9) that

0 =

N∑
j=1

Huσ(j)Tyj =

N∑
j=1

Huσ(j)yj = H∑N
j=1 uσ(j)yj

,

so that
∑N

j=1 uσ(j)yj∈H∞ by (3). On the other hand, since yi=
∑N

j=1 ajivσ(j)

for each i, we have

(10)
N∑
i=1

uσ(i)yi =
N∑
i=1

N∑
j=1

uσ(i)ajivσ(j) =
N∑
j=1

vσ(j)

N∑
i=1

ajiuσ(i) = VσAU
T
σ

and thus (c) follows.
Now suppose (a)–(c) hold. Let

(x1, . . . , xN )T = [A− I]UTσ , (y1, . . . , yn)T = Ā∗V T
σ ,

as before. Note that xj , yj ∈ H∞ for each j by (a) and (b). Hence Hxj = 0
and Huσ(j)Tyj = Huσ(j)yj for each j as before. It follows from (9) and (10)
that

N∑
i=1

HuiTvi =

N∑
j=1

Huσ(j)yj = H∑N
j=1 uσ(j)yj

= HVσAUTσ
= 0

by condition (c) together with (3). Thus (6) holds, as desired.

As the special case when N = 2 in Theorem 3.1, we obtain a more
concrete characterization.



Zero sums of products of Toeplitz and Hankel operators 47

Corollary 3.2. Let u, v, ϕ, ψ ∈ L∞(T). Then HuTv = HϕTψ on H2 if
and only if one of the following statements holds:

(a) u, ϕ ∈ H∞.
(b) v, ψ, uv − ϕψ ∈ H∞.
(c) v, ϕ, uv ∈ H∞.
(d) u, ϕψ, ψ ∈ H∞.
(e) u+ βϕ, ϕ(ψ + βv), ψ + βv ∈ H∞ for some nonzero constant β.

Proof. First suppose HuTv = HϕTψ. By Theorem 3.1 (with σ being the
identity permutation without loss of generality), we have

(11)

(a− 1)u− bϕ ∈ H∞,
cu− (d− 1)ϕ ∈ H∞,

cψ + av ∈ H∞,
dψ + bv ∈ H∞

for some constants a, b, c and d. If u ∈ H∞ and b 6= 0, then the first line
above shows ϕ ∈ H∞ and (a) holds. If u ∈ H∞, b = 0 and d 6= 0, then the
fourth line above shows ψ ∈ H∞. By (3) and Proposition 2.2(c), Hϕψ = 0
and so ϕψ ∈ H∞. Thus (d) holds. If u ∈ H∞ and b = d = 0, then the second
line above shows ϕ ∈ H∞, so (a) holds. Therefore, if u ∈ H∞, then (a) or
(d) holds. Similarly, if v ∈ H∞, then (b) or (c) holds. Also, if ϕ ∈ H∞, then
(a) or (c) holds. Finally, if ψ ∈ H∞, then (b) or (d) holds.

Now, assume u, ϕ /∈ H∞ and v, ψ /∈ H∞. If a−1 = b = c = d−1 = 0, then
the third and fourth conditions in (11) show v, ψ ∈ H∞, which is impossible.
Thus one of a−1, b, c, d−1 is nonzero. On the other hand, using the first two
conditions in (11), we see that a 6= 1 if and only if b 6= 0, and c 6= 0 if and only
if d 6= 1. Thus we have u+εϕ ∈ H∞ where ε = −b/(a−1) or ε = −(d−1)/c.
Also, if a = b = c = d = 0, then the first two conditions in (11) show
u, ϕ ∈ H∞, which is impossible as well. So, one of a, b, c, d is nonzero. By
the same argument as above we see that ψ + δv ∈ H∞, where δ = a/c or
δ = b/d. By (11), we have (a − 1)(d − 1) = bc = ad and hence a + d = 1.
Using this fact, we see that ε = δ for any ε ∈ {−b/(a− 1),−(d− 1)/c} and
δ ∈ {a/c, b/d}. Since u + εϕ ∈ H∞ and ψ + δv ∈ H∞, we have Hu+εϕ = 0
and HϕTψ+δv = Hϕ(ψ+δv) by (3) and Proposition 2.2(c). It follows that

(12)
HuTv = (Hu+εϕ − εHϕ)Tv = −εHϕTv,

HϕTψ = Hϕ(Tψ+δv − δTv) = Hϕ(ψ+δv) − δHϕTv.

As HuTv = HϕTψ and ε = δ, we have Hϕ(ψ+δv) = 0 and so ϕ(ψ+ δv) ∈ H∞
by (3). So (e) follows with β = ε = δ.

Conversely, suppose one of the conditions (a)–(e) holds. If one of (a)–(d)
holds, we have HuTv = HϕTψ by Proposition 2.2(c) and (3). If (e) holds,
then (12) with β = ε = δ shows that HuTv = HϕTψ.
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Note T1 is the identity operator. Taking ψ = 1 in Corollary 3.2, we
characterize when the product of a Hankel operator and a Toeplitz operator
is another Hankel operator. Also, if we take ϕ = 0, we characterize the
zero product of a Hankel operator and a Toeplitz operator. The following
recovers Theorem 3.2 of [2].

Corollary 3.3. Let u, v, ϕ ∈ L∞(T). Then:

(a) HuTv = Hϕ on H2 if and only if either u, ϕ ∈ H∞ or v, uv−ϕ ∈ H∞.
(b) HuTv = 0 on H2 if and only if either u ∈ H∞ or v, uv ∈ H∞.

Proof. If HuTv = Hϕ, then one of the conditions (a)–(e) in Corollary
3.2 (with ψ = 1) holds. If one of (a)–(d) holds, we can easily see that either
u, ϕ ∈ H∞ or v, uv−ϕ ∈ H∞. If (e) holds, there exists a nonzero constant
β such that u + βϕ, ϕ(1 + βv), 1 + βv ∈ H∞. Hence v ∈ H∞ and then
uv + βvϕ ∈ H∞. Since ϕ(1 + βv) ∈ H∞, we have v, uv − ϕ ∈ H∞.

The converse follows from (3) and Proposition 2.2(c).

We now consider operators which are sums of operators of the form
TuHv. In the following, H∞ denotes the set of all functions f̄ for f ∈ H∞.
Note that f̂ ∈ H∞ if and only if f ∈ H∞.

Theorem 3.4. Let uj , vj ∈ L∞(T) for j = 1, . . . , N . Then

(13)
N∑
j=1

TujHvj = 0

on H2 if and only if there exist A ∈MN and σ ∈ SN such that:

(a) [A− I]UTσ ∈ (H∞)N .
(b) Ā∗V T

σ ∈ (H∞)N .
(c) Vσ[A− I]ÛTσ ∈ H∞.

Here Uσ = (uσ(1), . . . , uσ(N)), Vσ = (vσ(1), . . . , vσ(N)) and Ûσ =
(ûσ(1), . . . , ûσ(N)).

Proof. First assume (13) holds. By Proposition 2.3(b), we have

TujHvjTz = Tz̄TujHvj − (Hûj1)⊗ (H∗vj1)

for each j and so by (13),

N∑
j=1

Hûj1⊗H
∗
vj1 = 0.

Thus, by Lemma 2.1, there exist A = [aij ] ∈MN and σ ∈ SN such that

[A− I](Hûσ(1)1, . . . ,Hûσ(N)
1)T = 0,(14)

A∗(H∗vσ(1)1, . . . ,H
∗
vσ(N)

1)T = 0.(15)
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Using (14), we see

H∑N
j=1 aij ûσ(j)

1 =
N∑
j=1

aijHûσ(j)1 = Hûσ(i)1,

and hence
H[

∑N
j=1

̂aijuσ(j)−uσ(i)]
1 = 0

for each i = 1, . . . , N . Thus, by (3), we have
N∑
j=1

aijuσ(j) − uσ(i) ∈ H∞

for each i, and (a) follows. Recall H∗αg = ᾱH∗g for all g ∈ L∞(T) and α ∈ C.

Letting Vσ = (vσ(1), . . . , vσ(N)) in (15) gives

H∗∑N
i=1 aijvσ(i)

1 =
N∑
i=1

aijH
∗
vσ(i)

1 = 0

for every j, which implies Ā∗V T
σ ∈ (H∞)N by (3) again, thus (b) holds.

To show (c), let (x1, . . . , xN )T = [A − I]UTσ and (y1, . . . , yn)T = Ā∗V T
σ as

before. Then we obtain

(16)
N∑
i=1

TxiHvσ(i) =
N∑
i=1

[ N∑
j=1

aijTuσ(j) − Tuσ(i)
]
Hvσ(i)

=
N∑
i=1

N∑
j=1

aijTuσ(j)Hvσ(i) −
N∑
i=1

Tuσ(i)Hvσ(i)

=
N∑
j=1

Tuσ(j)H
∑N
i=1 aijvσ(i)

−
N∑
i=1

TuiHvi

=
N∑
j=1

Tuσ(j)Hyj −
N∑
i=1

TuiHvi .

Since xj ∈ H∞ by (a) and yj ∈ H∞ by (b), we have Hyj = 0 and TxiHvσ(i) =
Hx̂ivσ(i) for each j by (3) and Proposition 2.2(c), respectively. It follows from

(13) and (16) that

0 =

N∑
i=1

TxiHvσ(i) =

N∑
i=1

Hx̂ivσ(i) = H∑N
i=1 x̂ivσ(i)

.

Thus
∑N

i=1 x̂ivσ(i) ∈ H∞ by (3). On the other hand, since

x̂i =

N∑
j=1

aij ûσ(j) − ûσ(i)
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for each i, we have

(17)
N∑
i=1

x̂ivσ(i) = Vσ[A− I]ÛTσ

and thus (c) holds.
To prove the converse, suppose that (a)–(c) hold. Let (x1, . . . , xN )T =

[A − I]UTσ and (y1, . . . , yn)T = Ā∗V T
σ as before. Notice that xj ∈ H∞ and

yj ∈ H∞ for each j by (a) and (b). Hence Hyj = 0 and TxiHvσ(i) = Hx̂ivσ(i)

for each j as before. It follows from (16) and (17) that

N∑
i=1

TuiHvi = −
N∑
i=1

Hx̂ivσ(i) = −H∑N
i=1 x̂ivσ(i)

= −HVσ [A−I]ÛTσ
= 0

by (c) together with (3). Thus (13) holds and the proof is complete.

As before, in the special caseN = 2 in Theorem 3.4, we have the following
characterization.

Corollary 3.5. Let u, v, ϕ, ψ ∈ L∞(T). Then TuHv = TϕHψ if and
only if one of the following statements holds:

(a) u, ϕ ∈ H∞ and ûv − ϕ̂ψ ∈ H∞.
(b) u ∈ H∞ and ψ, ûv ∈ H∞.
(c) v, ψ ∈ H∞.
(d) v, ϕ̂ψ ∈ H∞ and ϕ ∈ H∞.

(e) u+ εϕ ∈ H∞ and ψ+ εv, ̂(u+ εϕ)v ∈ H∞ for a nonzero constant ε.

Proof. Suppose first TuHv = TϕHψ. By Theorem 3.4 (with σ being the
identity permutation without loss of generality), we have

(18)

(a− 1)u− bϕ ∈ H∞,
cu− (d− 1)ϕ ∈ H∞,

cψ + av ∈ H∞,
dψ + bv ∈ H∞

for some constants a, b, c and d. If u ∈ H∞ and b 6= 0, then the first line
above shows ϕ ∈ H∞ and so (a) holds by (3) and Proposition 2.2. If u ∈ H∞,
b = 0, and d 6= 0, then the last line above shows ψ ∈ H∞. So, by (3) and
Proposition 2.2, Hûv = 0 and so ûv ∈ H∞. Thus (b) holds. If u ∈ H∞ and
b = d = 0, then the second line above shows ϕ ∈ H∞ and so (a) holds by
(3) and Proposition 2.2 again. Therefore, if u ∈ H∞, then (a) or (b) holds.
Similarly, if v ∈ H∞, then (c) or (d) holds; if ϕ ∈ H∞, then (a) or (d) holds;
and if ψ ∈ H∞, then (b) or (c) holds.

Now, assume u, ϕ /∈ H∞ and v, ψ /∈ H∞. By the same argument used in
Corollary 3.2, we see that u+ εϕ ∈ H∞ and ψ+ εv ∈ H∞ for some constant
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ε 6= 0. It follows from Proposition 2.2(c) that

(19)
TuHv = (Tu+εϕ − εTϕ)Hv = H ̂(u+εϕ)v

− εTϕHv,

TϕHψ = Tϕ(Hψ+εv − εHv) = −εTϕHv.

Since HuTv = HϕTψ, we have H ̂(u+εϕ)v
= 0 and so ̂(u+ εϕ)v ∈ H∞ by (3).

Thus (e) follows.

Conversely, if one of (a)–(d) holds, we have TuHv = TϕHψ by Proposition
2.2 and (3). If (e) holds, (19) shows TuHv = TϕHψ.

Taking ϕ = 1 in Corollary 3.5, we have the following companion result
of Corollary 3.3 with a similar proof.

Corollary 3.6. Let u, v, ψ ∈ L∞(T). Then:

(a) TuHv = Hψ if and only if either v, ψ ∈ H∞ or u ∈ H∞, ûv − ψ
∈ H∞.

(b) TuHv = 0 if and only if either v ∈ H∞ or u ∈ H∞, ûv ∈ H∞.

In connection with Corollaries 3.2 and 3.5, we next consider operators
of the form HuTv + TϕHψ and characterize when such an operator is zero.

Theorem 3.7. Let u, v, ϕ, ψ ∈ L∞(T). Then HuTv + TϕHψ = 0 if and
only if one of the following statements holds:

(a) u, ϕ̂ψ ∈ H∞ and ϕ ∈ H∞.
(b) u, ψ ∈ H∞.
(c) v, uv + ϕ̂ψ ∈ H∞, ϕ ∈ H∞.
(d) v, ψ, uv ∈ H∞.
(e) vϕ̂, u− αϕ̂, ψ − αv ∈ H∞ for some nonzero constant α.

Proof. First assume HuTv + TϕHψ = 0. By Proposition 2.3, we have

(20) Hu1⊗H∗v1 = Hϕ̂1⊗H∗ψ1.

If Hu1 = 0, then Hϕ̂1 = 0 or H∗ψ1 = 0. By (3), we have either u ∈ H∞, ϕ ∈
H∞ or u, ψ ∈ H∞. If u ∈ H∞ and ϕ ∈ H∞, then 0 = TϕHψ = Hϕ̂ψ by (3)
and Proposition 2.2. Hence u, ϕ̂ψ ∈ H∞ and ϕ ∈ H∞ by (3) again, so (a)
or (b) holds. By similar arguments, H∗v1 = 0 implies (c) or (d); Hϕ̂1 = 0
implies (a) or (c); and H∗ψ1 = 0 implies (b) or (d).

If none of Hu1, H∗v1, Hϕ̂1, H∗ψ1 is zero, (20) implies that there exists
a nonzero constant α for which Hu1 = αHϕ̂1 and H∗ψ1 = ᾱH∗v1. Since
ᾱH∗v1 = H∗αv1, we have u− αϕ̂, ψ − αv ∈ H∞ by (3). It follows that

(21)
HuTv = [Hu−αϕ̂ + αHϕ̂]Tv = αHϕ̂Tv,

TϕHψ = Tϕ[Hψ−αv + αHv] = αTϕHv.
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Since α 6= 0 and HuTv + TϕHψ = 0 by assumption, by Proposition 2.2(b)
we have

0 = Hϕ̂Tv + TϕHv = Hϕ̂v.

Thus vϕ̂ ∈ H∞ and (e) follows.

Conversely, if one of (a)–(d) holds, we deduce from (3) and Proposition
2.2 that HuTv +TϕHψ = 0. Finally, assume (e). By (21), Proposition 2.2(b)
and (3) again, we have

HuTv + TϕHψ = α[Hϕ̂Tv + TϕHv] = αHvϕ̂ = 0

and hence HuTv + TϕHψ = 0, as desired.

Finally, if we take ϕ = −v and ψ = u in Theorem 3.7, we characterize
when a Toeplitz operator and a Hankel operator commute in the following
corollary where we recover the result of Mart́ınez-Avendaño [6]. For f ∈ H2,

we note that f̂ = f if and only if f̂ ∈ H2 if and only if f is constant.

Corollary 3.8. Let u, v ∈ L∞(T). Then HuTv = TvHu if and only if
one of the following statements holds:

(a) u ∈ H∞.
(b) vv̂, v + v̂ are constants and v + αu ∈ H∞ for some constant α.

Proof. If Hu and Tv commute, then one of the conditions (a)–(e) in
Theorem 3.7 holds (with ϕ = −v, ψ = u). If one of (a), (b) and (d) holds, we
have u ∈ H∞. Also, if (c) holds, then v is constant and (b) in Corollary 3.8
holds with α = 0. Also, if (e) holds, there exists a constant α 6= 0 such that
vv̂, u+ αv̂, u− αv ∈ H∞. Hence v− α−1u ∈ H∞ and α(v̂+ v) ∈ H∞. Since

α 6= 0, we have v̂ + v ∈ H∞ and so v̂ + v is constant because v̂ + v = ̂̂v + v.
Now, it remains to show vv̂ is also constant. To do so, we use an idea in [6].
Let v̂+ v = δ for some constant δ. Then, since v = δ− v̂ and HuTv = TvHu,
we have HuTv̂ = Tv̂Hu and so HuTv̂Tv = Tv̂TvHu. Also, Hu = αHv because
u− αv ∈ H∞ and Tv̂v = HvHv + Tv̂Tv by Proposition 2.2. It follows that

HuTv̂v = HuHvHv +HuTv̂Tv = αHvHvHv + Tv̂TvHu

= [HvHv + Tv̂Tv]Hu = Tv̂vHu

and hence Hu commutes with Tv̂v. By the proof just before, either u ∈ H∞
or v̂v = 1

2 [v̂v + ̂̂vv] is constant. Thus (a) or (b) holds.

Conversely, if (a) holds, then Hu = 0 by (3) and HuTv = TvHu. Assume
(b) holds. If α = 0, then v, v̂ ∈ H∞ and hence v is constant. Then clearly
(a) holds. Now assume α 6= 0 and let v + v̂ = ε for some constant ε. Then
0 = Hv+αu = Hv +αHu and hence Hv = −αHu. Since vv̂ ∈ H∞, by (3) and
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Proposition 2.2(b), we have

0 = Hvv̂ = TvHv +Hv̂Tv = TvHv +Hε−vTv

= TvHv −HvTv = −α[TvHu −HuTv]

and thus HuTv = TvHu because α 6= 0.
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