STUDIA MATHEMATICA 162 (3) (2004)

L'-convergence and hypercontractivity of
diffusion semigroups on manifolds

by

FENG-YU WANG (Beijing)

Abstract. Let P; be the Markov semigroup generated by a weighted Laplace opera-
tor on a Riemannian manifold, with x4 an invariant probability measure. If the curvature
associated with the generator is bounded below, then the exponential convergence of
Py in Ll(,u) implies its hypercontractivity. Consequently, under this curvature condition
Ll—convergence is a property stronger than hypercontractivity but weaker than ultracon-
tractivity. Two examples are presented to show that in general, however, Ll-convergence
and hypercontractivity are incomparable.

1. Introduction. Let M be a connected, complete, noncompact Rie-
mannian manifold either without boundary or with a convex boundary 0M.
Consider the operator L := A + Z, where Z is a C! vector field such that
for some K > 0,

(1.1) Ric(X,X) - (VxZ,X) > -K|X|*, X €TM.

Then the (reflecting) L-diffusion process is non-explosive (see e.g. [10, Theo-
rem 8.2]). Let P, be the corresponding diffusion semigroup. We assume that
P, has a (unique) invariant probability measure p (see [3] for a sufficient
condition of its existence and uniqueness). In particular, if Z = VV for
some V € C%(M) such that R:={,, eV(*) dz < oo, where dx stands for the
Riemannian volume measure, then p(dz) = R~'eV®)dz.

Our main purpose is to compare the L'-convergence and hypercontrac-
tivity of P;. Let us first explain that both properties are stronger than the
L?-exponential convergence of P;.

It is well known that the log-Sobolev inequality implies the Poincaré in-
equality, and if P, is symmetric then these two inequalities are equivalent,
respectively, to the hypercontractivity and L2-exponential convergence of
P, (see e.g. [6, 8]). Therefore, at least for the symmetric case, the hyper-
contractivity of P is stronger than its exponential convergence in L?(y). In
fact, this implication is also true for the non-symmetric case as soon as (1.1)
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holds, since according to [15, Theorem 2.1] (see also [19, Theorem 5.3]) if
(1.1) holds then the hypercontractivity of P; is equivalent to the log-Sobolev
inequality as well, which in turn implies the Poincaré inequality and hence
the L2-exponential convergence of P;.

On the other hand, suppose that P; converges in L'(u), i.e. there is a
positive function & on [0, 00) with £(¢) | 0 as ¢ T co such that

1P~ o <€), 20,
where || - |- denotes the operator norm from LP(u) to L4(p), and p(f) :=
§07 fdp for f e L'(u). Then, by the semigroup property, P; converges in
L(p) exponentially fast, i.e. there exist ¢, A > 0 such that
(1.2) 1Py = pall1—1 < ce™™, t>0.
Since ||P; — plloosoo < 2 for all ¢ > 0, by Riesz—Thorin’s interpolation
theorem (see e.g. [5]) one has
(1.3) 1P = ptlla—e < V2ee™™/2 ¢ >0.
If, in particular, P; is symmetric, then (1.2) implies
1P = ptlloo—z = [P = pillz—1 < [Py = pllia < ce™™, ¢ >0,
hence according to [14, Theorem 2.3],
1P = prllz—2 < e, £ >0.

Therefore, besides hypercontractivity, L'-convergence also implies L2-expo-
nential convergence.

Our main result says that under condition (1.1), L!-exponential conver-
gence is a property between hypercontractivity and ultracontractivity. We
refer to [15, 20] for explicit sufficient and necessary conditions for these two
contractivity properties.

THEOREM 1.1. (1) If (1.1) holds, then (1.2) implies the log-Sobolev in-
equality: there exists C' > 0 such that

(1.4) p(f*log f2) < Cu(IVFP),  p(f*) =1.
Consequently, the L'-convergence of P; implies its hypercontractivity, i.e.
for any t > 0 there exists py > 2 such that || Pt||2—p, < 1.
(2) If either (1.1) holds or P, is symmetric, then the ultracontractivity
of Py (i.e. || P|l1m00 < 00 for some t > 0) implies (1.2) for some ¢, A > 0.
REMARK 1.2. When P, is symmetric, its L'-convergence is equivalent
to strong ergodicity:

lim sup |vP: — pllvar =0,
t=0,ep(M)

where P(M) is the set of all probability measures on M, vP; € P(M) is

defined by (vFP;)(A) := v(Pi1,4) for a measurable set A, and || - ||var is the
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total variation norm defined by ||%||var := supy ¥(A) —inf4 ¢ (A) for a set
function . In fact, if v is absolutely continuous with respect to p then (see

e.g. [4, Theorem 5.7))
P 1')

1 dv + 1
NP =l = \ (PR 1) ap=-
5 1P = plva ]54( & ) i 2#( i

Since P, (t > 0) has transition density (see e.g. [7, p. 79]) and since p has
strictly positive density with respect to the volume measure (see e.g. [3,
Theorem 1.1(ii)]), v Py is absolutely continuous with respect to u. Thus, for
any ¢t > 1 one has

1P —plhisr= sup  p(lPf—=1)) < sup [vE — pflvar
£20,u(f)=1 veP(M)
= sup H(Vpl)Pt—l _:uf”var
veP(M)
d(vP
= sup u( P1 (d ) _ 1’) <Py — el
veP(M) 12

Therefore, in other words, Theorem 1.1(1) means that under (1.1) the strong
ergodicity of P; implies the log-Sobolev inequality.

The proof of Theorem 1.1 is given in the next section, while two ex-
amples are presented in Section 3 to show that in general L!-convergence
and hypercontractivity are incomparable.

2. Proof of Theorem 1.1. To prove Theorem 1.1(1), we need the
following interpolation theorem due to Peetre [13] (see also [9, Theorem
A.1]). In the version below we give an explicit relationship between the
relevant constants.

THEOREM 2.1 (Peetre’s interpolation theorem). Let ¢o, ¢1, ¢2 be three
non-negative increasing functions defined on [0,00) such that ¢1 =
b0 (p2/do) for a concave function o and ¢;(2r) < ap;i(r) for some a > 0
and oll v > 0,1 = 0,1,2. Let T be a linear operator defined on a space
D(T) > 0% := {f : u(¢i(|f])) < oo}, i = 0,1,2. There exists ¢ > 0 such
that if

for some cg,co > 0, then
(2:2) Vor(Tf1) dp < clco v ea) V1(1f) dp,  f € O

Proof. For f € D(T), define
Lt f) = nf{u(on(lfo) +tn(all o))}, ¢20.
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By (A.4) in [9], there exist C' € [1,00) and a positive measure v on [0, c0)
such that for any f € D(T),

(2.3) é V L(t, fyv(de) < p(on(If1) < C | Lt, £)v(dt).
0 0
By (2.1),

LT < nt Au(6n(ITfol)) + t(oa(ITF2])
< inf{con(6n(l o) + teau(oa( )} < (eo V ) (1. ).

Combining this with (2.3) we obtain (2.2). =
Proof of Theorem 1.1. (1) By (1.1) we have (see [1, 17])

Pi(f?log %) < 2(exp[2Kt] — 1)

K
This implies that

(24)  p(f*log f?)

To apply Theorem 2.1, let ¢g(r) = 7, ¢o(r) = r2 and ¢1(r) = rlog(l + 7).
We have o(r) = log(1l + r), which is concave. Applying Theorem 2.1 to
T := P, — p and using (1.2) and (1.3), we obtain
W(IPf? = 1]log(1 + | Pf? — 1))
< eop(|f* = 1log(1 + [f* = 1]))e 2, u(f?) =1,

for some ¢y, Ao > 0 and all ¢t > 0. Therefore, there exists c¢3 > ¢o such that

p(Pif?log Pif?) < cse 2 u(f*log f%) + ¢, ¢ >0, u(f*) =1.
Combining this with (2.4) for a proper choice of t > 0, we obtain

(2.5) u(f*log 1) < Ap(IVI*) + B, n(f*) =1,
for some A, B > 0. Therefore, to prove the hypercontractivity of P;, it
suffices to verify the following Poincaré inequality (see e.g. [6, Theorem
6.1.22(ii)]):
(2.6) p(f?) < Cu(IVfP) + u(f)?,
where C' > 0 is a constant. To this end, we make use of [14, Proposition
3.1], which involves the weak and super Poincaré inequalities. First, since
rlogx > Rx — ef~! for all z, R > 0, we have (for u(f?) =1)

u(f*log £2) = 2u(f*log |f]) > 2R — 2™ (| )

>2R—1-*u(|f))?, R>0.

PV + (Pif?) log(Pf?), t>0.
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Combining this with (2.5) we arrive at
L) < AV + 1)
- 2R—B -1 ’
Thus, we have the following super Poincaré inequality for some 3 : (0,00) —
(0, 00):

2R> B +1.

p(f?) < ru(IVf1P) + 8w f)?, v > 0.

On the other hand, by e.g. [3, Theorem 1.1(ii)] one has u(dz) = ¢"®dx
for some V € C(M). Then [14, Theorem 3.1] implies the weak Poincaré
inequality, i.e. there exists « : (0,00) — (0, 00) such that

w(f?) < au(IVP) + 7 fl%, >0, ulf)=0.

Therefore, by [14, Proposition 1.3] we obtain (2.6) for some constant C' > 0.

(2) If P, is ultracontractive then (2.5) holds for some constants A, B > 0
(see e.g. [19, Theorem 5.3]). Thus, as explained above, (2.6) holds and hence
| P, — ptl]2—o < e /€, t > 0. Therefore, if ||P;, — plli~2 < co then for all
t > 0 one has

1Prito = pellier < |1 Pry = plhi—all P = prllaa < €9 Py = pafl1 2.

3. Incomparability of L'-convergence and hypercontractivity.
To show that L'-convergence and hypercontractivity are incomparable, let
us first recall a result on strong ergodicity which is equivalent to L'-conver-
gence for the symmetric case according to Remark 1.2. By Tweedie [16,
Theorem 2(iii)] it is well known that for irreducible Markov chains on Z
strong ergodicity is equivalent to sup;cz E'1y < 00, where 7g is the hitting
time to 0 and E' is the expectation with respect to the Markov chain start-
ing from 4. The same has been proved recently by Mao [12] for diffusion
processes.

THEOREM 3.1 (Mao [12]). Consider L := a(z)d?/dx? + b(z)d/dx, where
a,b € CL([0,00)) with a(z) > 0 for all x > 0. Let

C(w)zs%dr, z eR.
0

Assume that Sgo(ec(’")/a(r)) dr < oo. Then the corresponding reflecting dif-
fusion semigroup Py is strongly ergodic if and only if

() () e (r)
(3.1 §:=\e@dr | —— dr < .
| Ve

Proof. We include the proof for completeness. Let 79 := inf{t > 0 :
xy = 0}, where xz; is the reflecting L-diffusion process.
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a) (3.1) is equivalent to sup,~q E%19 < co. Let
>0

( —cy .t W
F(x) ::Se drS a(5) ds, x>0
0 r

We have LF(z) = —1 and hence for x > 0,

0 < E°F(xzmqnt) = F(x) — E°(10 A L), t>0.
Letting t — oo we obtain E¥1y < F(z) and hence (3.1) implies sup,~ o E*1p
< oQ.

Conversely, letting 7, := inf{t > 0 : z; > n} we have
(3.2) F(z) = E%9 ANy + E*F(19 A Tp)

< F(n)P*(1, < 10) + E%19, n > 2.
Since for G(z) := | e~ ¢ dr one has LG = 0, it follows that
F(z) = E°G(zryrr,) = G(n)P* (1, < 10), n > .

Combining this with (3.2) we arrive at
F(n)G(x)

G(n)
This implies that F'(co) < oo provided sup,. o E?7m9 < oco. Indeed, if F'(oc0)
= 00, then since Sgo(ec(’")/a(r)) dr < 0o, we have G(0) = oo and F(n)/G(n)
— 0 asn — oo. Thus, by letting n — oo, we see from (3.3) that F(z) < E®r
for all x > 0 and hence sup,. o E*1y = 0.

(b) Strong ergodicity implies sup,~ o E*19 < co. If P, is strongly ergodic,
then there exists ¢ > 0 such that infy~1 P(2; < 1) > $4([0,1]) =: ¢ > 0,
where p is the invariant probability measure. Thus,

Pm(Tl > Qt) < PI(I‘t > 1,1'2t > 1) = Exl{xt>1}th(:Et > 1)
<(1-¢? z>1

(3.3) F(z) < E%19 + n > .

Similarly, we have
Pi(rp>nt) <(1—-¢)", x>1.

Therefore,
e.)

E*r = S P(ry > s)ds < < o0
0
for some § > 0 and all > 1.
On the other hand, by the proof in (a) we see that

E*r = Se_c(r) dr S



Diffusion semigroups 225

Then Sgo(ec(s)/a(s)) ds < oo and

1 00 ec(s)
sup E*1g = sup E¥19 = sup F11 + S e “Mar S ——ds < 0.
>0 z>1 z>1 0 - a(s)

(¢) sup,~o E*10 < oo implies strong ergodicity. For any = > y > 0,
let (z¢,y:) be a coupling of the reflecting L-diffusion process with xo = =z,
Yo = y. We have

T:=inf{t>0:2, =y} <79:=inf{t >0: 2z, = 0}.
As usual we let xy = y; for t > T so that for any measurable set A we have
02 P (A) — 0y P (A)] < EPY[La(m) — 1a(ye)| < P2V (we # ye) < PPY(T > 1).
Therefore,

sup [[02P; — 0y Pil|var <2 sup P®Y(T > t) < 2sup P*(19 > t)
z>y>0 z>y>0 >0
sup,~o £*1
t )

which goes to zero as t — oo. This means that P, is strongly ergodic. =

EXAMPLE 3.1. Consider the Ornstein—Uhlenbeck operator L := d?/dz?—
xd/dx on [0,00). It is well known that the semigroup P; of the reflecting
L-diffusion process is hypercontractive. But according to Theorem 3.1, P;
is not strongly ergodic since (3.1) does not hold. Therefore, P; does not
converge in the L'-norm by Remark 1.2.

EXAMPLE 3.2. Let M = [0,00) and consider L := d?/dxz? + b(x)d/dz,
where

<

/
1
b(x) = —M——, x>0,
v(z) ()
with 7 constructed as follows. For any n > 1, let ¢, € C*°[0,00) be non-
negative such that ¢, pqe-—ne = 0 and

¢n|[n+e—"/4,n+36—”/4] = max ¢, = en(l + n)—2'

Set v(r) = (1+7r)"2+ > n>1 Pn(r), 7> 0. Then P is strongly ergodic and
hence L'-convergent but not hypercontractive.

Proof. We have

C(z) = Sb(r) dr = —log~(x) — x > 0.
0

O e B

dr
v(r)’
Then

exp[—C(x)] = (z) exp B) %] - explO()] = - exp H —} |
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Therefore, §*° e“@) dz =1 and

S e @ dg S CW dy = S v(x) dx < S

+ Z < 00
2 2
0 T 0 0 147 n=1 l+n
Thus, (3.1) holds and hence P, is strongly ergodic.
On the other hand, we use [2, Theorem 1.1] to disprove the log-Sobolev

inequality. Observe that

n+e "
s Lo tahep - | aenar
0 v T) 3 n>1 n
1 3 _ 2 —n _. 1 3
23(14—:6) ;(2+n)e —.3(1—|—x) 1.
Then for p([0, z]) := {3 e“™ dr,
S e @ ([0, z]) da = S v(z) <exp [S %] - 1) dz
0 0 o V"
° e(1+2)%/3 o0
>e dx ~v(z) dx = oo
(SJ (1+ )2 (SJ (=)

since {7~ (z)dz < co. Moreover,

I(n) = (n+§" o CW) dy) ( OSO eC(y)dy) <log m>

+€7"’ n+e—"n €

-(f o[l )

n+3e~"/4 on
>e| | g ew[(1+y)%/8ldy Jem A1 4 )3
(14 n)?
n+e~"/4
> 63(1 + TL) — C4
for some cg, c3, ¢4 > 0. Thus lim,,_,« I(n) = co. Therefore, according to [2,
Theorem 1.1] the log-Sobolev inequality does not hold; see also [11] for a
more general result. m
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