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Abstract. The main purpose of this paper is to investigate the behavior of fractional
integral operators associated to a measure on a metric space satisfying just a mild growth
condition, namely that the measure of each ball is controlled by a fixed power of its
radius. This allows, in particular, non-doubling measures. It turns out that this condition
is enough to build up a theory that contains the classical results based upon the Lebesgue
measure on Euclidean space and their known extensions for doubling measures. We start
by analyzing the images of the Lebesgue spaces associated to the measure. The Lipschitz
spaces, defined in terms of the metric, also play a basic role. For a Euclidean space equipped
with one of these measures, we also consider the so-called regular BMO space introduced
by X. Tolsa. We show that it contains the image of a Lebesgue space in the appropriate
limit case and also that the image of the regular BMO space is contained in a suitable
Lipschitz space.

1. Introduction. One of the most important tools of harmonic analysis
in the last thirty years has been the notion of a space of homogeneous type.
These spaces were formally introduced in [CW1], although in some form or
other they were already present in some previous work (see, for example,
[CG]). The basic ingredients are a metric or quasi-metric space and a Borel
measure µ satisfying the so-called doubling condition, which means that
there exists a constant C such that, for every ball B(x, r) of center x and
radius r,

µ(B(x, 2r)) ≤ Cµ(B(x, r)).(1.1)

The success of the spaces of homogeneous type as the natural setting for a
large portion of harmonic analysis, mainly the Calderón–Zygmund theory,
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led to the firm belief by almost all specialists in the field that we had achieved
the right level of generality to do analysis. A measure of this success is the
fact that the setting chosen by E. M. Stein in his book [S] to develop the
basic theory is, essentially, that of a space of homogeneous type.

It came as a surprise to many when it was announced in [NTV2] that
“The doubling condition is superfluous for most of the classical theory”.
What they meant is that a rather complete theory of Calderón–Zygmund
operators could be developed if, in a separable metric space, the condition
(1.1) was replaced by the condition (2.1) below, which is generally referred to
by saying that the measure is n-dimensional. A few recent articles pertaining
to this line of research are [NTV1–NTV3, GM, GM2, To1–To3].

The present work is devoted to investigating the behavior of the frac-
tional integral Iα associated to an n-dimensional measure µ on a metric
space, as given by Definition 3.1, for 0 < α < n and other related operators
Kα defined in Section 4.

In Section 3 we see that, for 1 < p < n/α, Iα maps Lp(µ) continuously
into Lq(µ), where 1/q = 1/p − α/n, with a substitute weak-type result for
p = 1. This generalizes the classical Hardy–Littlewood–Sobolev theorem.
We also observe that condition (2.1) is actually necessary for this Hardy–
Littlewood–Sobolev theorem to hold. These results, under slightly different
conditions on the metric space, were also obtained by V. Kokilashvili and
A. Meskhi in [KM].

In Section 4 we introduce a general class of operators Kα, which contain
as particular cases the fractional integrals Iα.

In Section 5 we extend our interest to the case p > n/α. Here the classical
Lipschitz space defined in terms of the metric, which we shall denote by
Lip(β), plays a basic role, as one can see from the statements of the two
theorems presented in Section 5: Theorem 5.2, which says that when p >
n/α, Kα maps Lp(µ) continuously into Lip(α−n/p); and Theorem 5.3, which
establishes that Kα maps Lip(β) continuously into Lip(α+ β), provided it
sends constants to constants.

Let us remark that, up to this point, we do not need to assume that the
metric space is separable.

Finally, in Section 6, we specialize the setting to some Euclidean space
Rd equipped with an n-dimensional measure µ. We study the action of Kα

on Ln/α(µ) and show that this space is mapped boundedly into RBMO(µ),
the “regular” BMO space introduced by X. Tolsa in [To3]. We also show
in this section that the space RBMO(µ) is mapped by Kα into Lip (α),
provided the right cancellation condition Kα(1) = 0 holds.

The study of singular integral operators with respect to µ on the Lip-
schitz spaces will appear in a subsequent paper together with the character-
ization of these spaces in terms of mean oscillation.
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2. The general setting. Basic facts. In this paper, unless otherwise
stated, (X, d, µ) will always be a metric measure space (that is, d is a distance
on X and µ is a Borel measure on X) such that, for every ball

B(x, r) = {y ∈ X : d(x, y) < r}, x ∈ X, r > 0,

we have
µ(B(x, r)) ≤ Crn,(2.1)

where n is some fixed positive number and C is independent of x and r.
Sometimes we shall refer to condition (2.1) by saying that the measure µ is
n-dimensional.

Whenever we refer to “the ball B” in what follows, we shall understand
that we have chosen for it a fixed center and a fixed radius. That way, it
makes sense to say that if B is a ball and k is a positive number, we shall de-
note by kB the ball having the same center asB and radius k times that ofB.

For completeness we prove two very simple lemmas, which will be used
throughout the paper.

Lemma 2.1. For every γ > 0,
�

B(x,r)

1
d(x, y)n−γ

dµ(y) ≤ Crγ .(2.2)

Proof. If n ≤ γ, (2.2) follows immediately from (2.1). If γ < n, we write

�

B(x,r)

1
d(x, y)n−γ

dµ(y) =
∞∑

j=0

�

2−j−1r≤d(x,y)<2−jr

1
d(x, y)n−γ

dµ(y)

≤
∞∑

j=0

1
(2−j−1r)n−γ

µ(B(x, 2−jr)) ≤
∞∑

j=0

2(j+1)(n−γ)

rn−γ
C(2−jr)n

= C

∞∑

j=0

2−γjrγ = Crγ .

Lemma 2.2. For every γ > 0,
�

X\B(x,r)

1
d(x, y)n+γ dµ(y) ≤ Cr−γ.(2.3)

Proof. We have
�

X\B(x,r)

1
d(x, y)n+γ dµ(y) =

∞∑

j=0

�

2jr≤d(x,y)<2j+1r

1
d(x, y)n+γ dµ(y)

≤
∞∑

j=0

µ(B(x, 2j+1r))
(2jr)n+γ ≤ C

∞∑

j=0

(2j+1r)n

(2jr)n+γ = C

∞∑

j=0

2−γjr−γ = Cr−γ .
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3. Fractional integrals and the Hardy–Littlewood–Sobolev
theorem

Definition 3.1. Let 0 < α < n. The fractional integral Iα associated
to the measure µ is defined, for appropriate functions f on X, as

Iαf(x) =
�

X

f(y)
d(x, y)n−α

dµ(y).(3.1)

According to Lemma 2.1, for fixed x, the function y 7→ 1/d(x, y)n−α

is locally integrable with respect to µ. Therefore, definition (3.1) makes
perfectly good sense when f is bounded and has bounded support. However,
many times we shall need to define the fractional integral for larger classes
of functions. In such cases, we shall explain in detail how to carry out the
corresponding extensions.

Theorem 3.2. For 1 ≤ p < n/α and 1/q = 1/p− α/n, we have

µ({x ∈ X : |Iαf(x)| > λ}) ≤ (C‖f‖Lp(µ)/λ)q,(3.2)

that is, Iα is a bounded operator from Lp(µ) into the Lorentz space Lq,∞(µ).

Proof. We are going to adapt to our context the proof given by Stein [S]
for Rn. We can take f ≥ 0. We have

Iαf(x) =
�

X

f(y)
d(x, y)n−α

dµ(y) = I + II,

where I is the integral over B(x, r) and II is the integral over X \ B(x, r).
By Hölder’s inequality, if p > 1 and p′ denotes its conjugate exponent (i.e.
1/p+ 1/p′ = 1), then

|II| ≤ ‖f‖Lp(µ)

( �

X\B(x,r)

1
d(x, y)(n−α)p′

dµ(y)
)1/p′

.

Now (n− α)p′ = n+ γ, where γ = n(p′ − 1)− αp′, so that

γ

p′
= n

(
1− 1

p′

)
− α =

n

p
− α > 0.

By Lemma 2.2,

|II| ≤ ‖f‖Lp(µ)(Cr
−γ)1/p′ = C‖f‖Lp(µ)r

−(n/p−α),

which holds even for p = 1. We can and do assume that ‖f‖Lp(µ) = 1. Also,
for λ > 0, we choose r so that Cr−(n/p−α) = λ/2. Then

{x ∈ X : |Iαf(x)| > λ} ⊂ {x ∈ X : |I| > λ/2} ∪ {x ∈ X : |II| > λ/2}.
By the relation between r and λ, the second of these sets is empty. We use
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Hölder’s inequality once more to obtain

|I| ≤
( �

B(x,r)

|f(y)|p
d(x, y)n−α

dµ(y)
)1/p( �

B(x,r)

dµ(y)
d(x, y)n−α

)1/p′

≤ Crα/p′
( �

B(x,r)

|f(y)|p
d(x, y)n−α

dµ(y)
)1/p

,

where we have also used Lemma 2.1. Then, by applying Chebyshev’s in-
equality, we get

µ({x ∈ X : |Iαf(x)| > λ}) ≤ µ({x ∈ X : |I| > λ/2})

≤ Crαp/p′λ−p
�

X

�

B(x,r)

|f(y)|p
d(x, y)n−α

dµ(y) dµ(x)

= Crαp/p
′
λ−p

�

X

�

B(y,r)

dµ(x)
d(x, y)n−α

|f(y)|p dµ(y)

≤ Crαp/p′rαλ−p = Crn = Cλ−q,

since λ = Cr−(n/p−α).

From Theorem 3.2 we obtain our version of the Hardy–Littlewood–So-
bolev theorem as the following corollary:

Corollary 3.3. For 1 < p < n/α and 1/q = 1/p− α/n, we have

‖Iαf‖Lq(µ) ≤ C‖f‖Lp(µ).(3.3)

Proof. It suffices to apply Marcinkiewicz’s interpolation theorem with
indices slightly bigger and slightly smaller than p.

The next result reveals that condition (2.1) is the minimal requirement
one must have in order for (3.3) or (3.2) to be valid. Note that we consider
only measures without atoms, so that the fractional integral given by (3.1)
is well defined.

Theorem 3.4. For a measure µ, finite over balls and without any atom,
condition (2.1) is necessary for the Hardy–Littlewood–Sobolev theorem, that
is, Corollary 3.3, to hold.

Proof. Suppose that (3.3) holds. Let B be a ball of radius r. If µ(B) = 0,
then (2.1) is trivially true. Let µ(B) 6= 0. For each x ∈ B, we have

IαχB(x) =
�

B

1
d(x, y)n−α

dµ(y) ≥ 1
(2r)n−α

µ(B).
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By applying (3.3) we get

1
(2r)n−α

µ(B)1+1/q ≤
( �

B

|IαχB(x)|q dµ(x)
)1/q

≤ C‖χB‖Lp(µ) = Cµ(B)1/p,

which is equivalent to

µ(B)1+1/q−1/p ≤ C(rn)1−α/n.(3.4)

Since 1 + 1/q − 1/p = 1− α/n, inequality (3.4) is precisely condition (2.1).
A similar argument works if we assume (3.2) rather than (3.3).

4. Fractional integral operators. Now we shall associate, to our fixed
n-dimensional measure, a family of fractional kernels and the corresponding
fractional integral operators.

Definition 4.1. Let 0 < α < n and 0 < ε ≤ 1. A function kα : X×X→
C is said to be a fractional kernel of order α and regularity ε if it satisfies
the following two conditions:

|kα(x, y)| ≤ C

d(x, y)n−α
for all x 6= y,(4.1)

and

|kα(x, y)− kα(x′, y)| ≤ C d(x, x′)ε

d(x, y)n−α+ε(4.2)

for d(x, y) ≥ 2 d(x, x′). The corresponding operator Kα, which will be called
a fractional integral operator , will be given by

Kα(f)(x) =
�

X
kα(x, y)f(y) dµ(y).(4.3)

By (4.1), Kα(f) is well defined for f ∈ Lp(µ), 1 ≤ p < n/α, and (3.3)
or (3.2) are also valid for it, as they are for Iα(f). Next we see that the
fractional integral Iα is an example of a fractional integral operator with a
kernel having regularity 1.

Lemma 4.2. Let x, y, z ∈ X be such that 2d(x, y) ≤ d(x, z). Then
∣∣∣∣

1
d(x, z)n−α

− 1
d(y, z)n−α

∣∣∣∣ ≤ C
d(x, y)

d(x, z)n−α+1 .(4.4)

Proof. By the mean value theorem of real differential calculus, we have,
for s, t > 0,

|sα−n − tα−n| ≤ (n− α)|(1− θ)s+ θt|α−n−1|s− t|
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for some θ ∈ ]0, 1[. Now, since 2d(x, y) ≤ d(x, z), we get
∣∣∣∣

1
d(x, z)n−α

− 1
d(y, z)n−α

∣∣∣∣ ≤
C|d(x, z)− d(y, z)|

d(x, z)n−α+1 ≤ Cd(x, y)
d(x, z)n−α+1 .

Definition 4.3. Let kα be a fractional kernel of order α and regularity
ε, f ∈ Lp(µ), p > n/α, and α− n/p < ε. We define

K̃αf(x) =
�

X
{kα(x, y)− kα(x0, y)}f(y) dµ(y),(4.5)

where x0 is some fixed point of X.

We observe that the integral in (4.5) converges both locally and at∞ as
a consequence of (4.1), (4.2) and Hölder’s inequality. Of course the function
just defined depends on the choice of x0. But the difference between any two
functions obtained in (4.5) for different such choices is just a constant.

5. Lipschitz spaces. From now on, we shall assume that µ(X) = ∞.
The results below are also true when µ(X) <∞, but other results are more
appropriate in that case. They will be treated elsewhere.

Definition 5.1. Given β ∈ ]0, 1[, we shall say that a function f : X→ C
satisfies a Lipschitz condition of order β provided

|f(x)− f(y)| ≤ Cd(x, y)β for every x, y ∈ X,(5.1)

and the smallest constant in inequality (5.1) will be denoted by ‖f‖Lip(β).
It is easy to see that the linear space of all Lipschitz functions of order β,
modulo constants, becomes, with the norm ‖ ‖Lip(β), a Banach space, which
we shall call Lip(β).

Theorem 5.2. Let kα be a fractional kernel with regularity ε. If n/α <
p ≤ ∞ and α−n/p < ε, then K̃α maps Lp (µ) boundedly into Lip(α−n/p).

Proof. Assume first p < ∞. Consider x 6= y and let B be the ball with
center x and radius r = d(x, y). Then

|K̃αf(x)− K̃αf(y)| ≤
�

2B

|kα(x, z)| |f(z)| dµ(z)

+
�

2B

|kα(y, z)| |f(z)| dµ(z)

+
�

X\2B
|kα(x, z)− kα(y, z)| |f(z)| dµ(z).
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We shall estimate each of these three terms separately. For the first two
terms we use (4.1) and Hölder’s inequality:

�

2B

|kα(x, z)| |f(z)| dµ(z)

≤
�

2B

|f(z)|
d(x, z)n−α

dµ(z) ≤ ‖f‖Lp(µ)

( �

2B

dµ(z)
d(x, z)(n−α)p′

)1/p′

.

Now observe that (n−α)p′ = n−p′(α−n/p); since α−n/p > 0, the integral
converges and, by Lemma 2.1, we have

�

2B

|kα(x, z)| |f(z)| dµ(z) ≤ C‖f‖Lp(µ)(2r)
α−(n/p).

The second term is estimated in a similar way after noting that 2B ⊂
B(y, 3r).

Next, to estimate the third term we use (4.2) and Hölder’s inequality to
obtain�

X\2B
|kα(x, z)− kα(y, z)| |f(z)| dµ(z)

≤
�

X\2B

Cd(x, y)ε

d(x, z)n−α+ε |f(z)| dµ(z)

≤ Cd(x, y)ε‖f‖Lp(µ)

( �

X\2B

dµ(z)
d(x, z)(n−α+ε)p′

)1/p′

.

Note that (n−α+ε)p′ = n+p′(n/p+ε−α); since by hypothesis n/p+ε−α
> 0, the integral converges, and by Lemma 2.2,

�

X\2B
|kα(x, z)− kα(y, z)| |f(z)| dµ(z) ≤ C‖f‖Lp(µ)d(x, y)α−n/p.

Putting together the three estimates, we get

|K̃αf(x)− K̃αf(y)| ≤ C‖f‖Lp(µ)d(x, y)α−n/p,

as we wanted to prove.
The case p =∞ is similar, but easier. All the estimates proved for p <∞

continue to hold for p =∞.
We next show that the Lipschitz spaces with respect to the metric are

preserved by the fractional integral operators provided that the image of a
constant is also constant.

Theorem 5.3. Let kα be a fractional kernel with regularity ε, and α, β
> 0 be such that α+ β < ε. Then K̃α is a bounded mapping from Lip(β) to
Lip(α+ β) if and only if K̃α(1) = 0.
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Proof. To see that the condition is necessary, note that continuity of
the operator K̃α implies that K̃α(1) must be constant. On the other hand,
K̃α(1)(x0) = 0. Therefore, the constant has to be 0.

To prove the sufficiency we consider points x 6= y of X, and we want to
estimate |K̃α(f)(x)− K̃α(f)(y)|. Observe first that

K̃α(1) = 0 ⇔ K̃α(1)(x)− K̃α(1)(y) = 0

⇔
�

X
{kα(x, z)− kα(y, z)} dµ(z) = 0,

where the integrals above converge because 0 < α < ε. Thus we can write

K̃α(f)(x)− K̃α(f)(y) =
�

X
{kα(x, z)− kα(y, z)}(f(z)− f(x)) dµ(z)

= I + II,

where I is the integral over 2B, B being the ball with center x and radius
r = d(x, y), and II is the integral over X \ 2B. Now

|I| ≤
�

2B

1
d(x, z)n−α

|f(z)− f(x)| dµ(z) +
�

2B

1
d(y, z)n−α

|f(z)− f(x)| dµ(z).

In the sum above, both terms can be estimated in the same fashion. For the
first one, using Lemma 2.1, we get

�

2B

d(x, z)β dµ(z)
d(x, z)n−α

≤ C(2r)α+β ≤ Cd(x, y)α+β,

and for the second one, extending the integral to B(y, 3r), we get the same
estimate.

In order to estimate II, we use (4.2) and Lemma 2.2 to obtain

|II| ≤ C
�

X\2B

d(x, y)εd(x, z)β

d(x, z)n−α+ε dµ(z) ≤ Cd(x, y)ε
�

X\2B

dµ(z)
d(x, z)n+ε−α−β

≤ Cd(x, y)εrα+β−ε ≤ Cd(x, y)α+β.

This finishes the proof.

6. The regular BMO space of X. Tolsa. For this section, the underly-
ing metric measure space will be X = Rd with an n-dimensional measure µ
such that n ≤ d. It is for this context that X. Tolsa has introduced (in
[To3]) his regular BMO space, although his definition makes sense, in prin-
ciple, in our general setting. The regular BMO space has been introduced
as a replacement of the classic or ordinary BMO, which has been shown
by several authors to be inappropriate for Calderón–Zygmund theory when
the underlying measure is non-doubling. In particular, J. Verdera [V] gives
an example showing that a singular integral can be unbounded from L∞ to
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ordinary BMO . This example is also presented in [MMNO] to explain that
the classic BMO does not have the properties necessary for carrying out the
Calderón–Zygmund theory. This problem was solved by X. Tolsa with the
introduction of regular BMO. This space, which we shall presently define,
denoting it as RBMO, does have the required properties and is the natural
one for the Calderón–Zygmund theory. All balls considered in this section
will be assumed to be centered at points of the support of µ.

Definition 6.1. A function f ∈ L1
loc(µ) has regular bounded mean os-

cillation with respect to µ if the following two conditions are satisfied, where
% > 1 is a fixed constant.

(a) There exists a constant C such that, for every ball B,
�

B

|f(x)−mB(f)| dµ(x) ≤ Cµ(%B),(6.1)

where mB(f) = (1/µ(B)) � B f(x) dµ(x).
(b) There is a constant C such that, for any two balls B ⊂ V, of radius

r and s respectively,

|mB(f)−mV (f)| ≤ CKB,V

(
µ(%B)
µ(B)

+
µ(%V )
µ(V )

)
,(6.2)

where

KB,V = 1 +
NB,V∑

k=1

µ(2kB)
(2kr)n

,(6.3)

NB,V being the first integer k such that 2kr ≥ s.
If we denote by ‖f‖? the smallest constant which makes both (6.1) and

(6.2) true, the space RBMO(µ) obtained by considering equal those func-
tions of regular bounded mean oscillation with respect to µ that differ by
a constant, becomes a Banach space with the norm ‖ ‖?. It is a basic fact,
proved by X. Tolsa, that the space does not depend on the constant % > 1
used. Moreover, Tolsa has shown that, in the definition of RBMO(µ) one
can use cubes rather than balls, obtaining exactly the same space.

Before stating and proving the first result of this section, we need two
lemmas. The first one is an extension to our setting of the one given in [GV2]
for the doubling case.

Lemma 6.2. Let f ∈ Ln/α(µ) be a function vanishing outside %B, where
B is a ball and % ≥ 1. Then

�

B

|Iαf(x)| dµ(x) ≤ C‖f‖Ln/α(µ)µ(%B)(6.4)

with C independent of f , % and B.
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Proof. Choose p ∈ ]1, n/α[ and let 1/q = 1/p− α/n. Then, by applying
Jensen’s inequality (twice) and the Hardy–Littlewood–Sobolev theorem 3.3,
we get

1
µ(%B)

�

B

|Iαf(x)| dµ(x) ≤
(

1
µ(%B)

�

%B

|Iαf(x)|q dµ(x)
)1/q

≤ C

µ(%B)1/q−1/p

(
1

µ(%B)

�

%B

|f(x)|p dµ(x)
)1/p

≤ C

µ(%B)1/q−1/p

(
1

µ(%B)

�

%B

|f(x)|n/α dµ(x)
)α/n

= C‖f‖Ln/α(µ).

Lemma 6.3. Let B ⊂ V be balls. Then

V ⊂ 2NB,V +1B ⊂ 5V,

where NB,V is the integer appearing in (6.3).

Proof. Denote the centers of B and V by xB and xV respectively and
let the corresponding radii be r and s. By the definition of NB,V , we have
2NB,V −1r < s ≤ 2NB,V r. Then

y ∈ V ⇒ d(y, xV ) < s ⇒ d(y, xB) ≤ d(y, xV )+d(xV , xB) < 2s ≤ 2NB,V +1r.

So, we have shown that V ⊂ 2NB,V +1B. Also

y ∈ 2NB,V +1B ⇒ d(y, xB) < 2NB,V +1r

⇒ d(y, xV ) ≤ d(y, xB) + d(xB, xV ) < 2NB,V +1r + s ≤ 5s.

This proves that 2NB,V +1B ⊂ 5V.

Next, as in the case of Lipschitz functions that we considered in the last
section, we have to redefine Kα on Ln/α. Note that the elements of RBMO
are classes of functions modulo constants.

Definition 6.4. Let 0 < α < ε ≤ 1 and kα(x, y) be a fractional kernel
of order α with regularity ε. For f ∈ Ln/α(µ), we define

Kα(f)(x) =
�

X
{kα(x, y)− χX\B(x0,1)kα(x0, y)}f(y) dµ(y)(6.5)

for some fixed x0 ∈ X. We shall show below in Theorem 6.5 that Kαf(x) is
well defined almost everywhere with respect to µ.

Although the definition depends on the choice of x0, different choices of
x0 yield functions that differ only by a constant.
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Theorem 6.5. Let 0 < α < ε ≤ 1 and f ∈ Ln/α(µ). Then Kα(f) is well
defined almost everywhere with respect to µ, Kα(f) ∈ RBMO(µ) and

‖Kα(f)‖? ≤ C‖f‖Ln/α(µ)

with C independent of f.

Proof. We first prove condition (6.1) and, at the same time, the existence
almost everywhere of the integral in (6.5). It suffices to show that, for each
ball B = B(x1, r), there is a constant cB such that

�

B

|Kα(f)(x)− cB| dµ ≤ C‖f‖Ln/α(µ)µ(2B).(6.6)

Let

cB =
�

X
{χX\B(x1,2r)(y)kα(x1, y)− χX\B(x0,1)(y)kα(x0, y)}f(y) dµ(y).

Note that |Kα(f)(x)− cB| is dominated by
�

X
|kα(x, y)− χX\B(x1,2r)(y)kα(x1, y)| |f(y)| dµ(y) = I(x) + II(x),

where I(x) is the integral over 2B and II(x) the integral over the comple-
ment of 2B. Next we estimate the integrals over B of I(x) and II(x). We
have

�

B

I(x) dµ(x) ≤
�

B

�

X
|kα(x, y)|χ2B(y)|f(y)| dµ(y) dµ(x)

≤
�

B

|Iα(χ2B|f |)| dµ(x) ≤ C‖f‖Ln/α(µ)µ(2B),

where the last inequality follows from Lemma 6.2. To estimate the integral
of II(x) over B observe first that, since x ∈ B and y ∈ X \ 2B using (4.2),

II(x) ≤
�

X\2B

d(x, x1)ε

d(x1, y)n−α+ε |f(y)| dµ(y)

and, by Hölder’s inequality and Lemma 2.2 we get II(x) ≤ C‖f‖Ln/α(µ).

Therefore the integral of II(x) over B is also bounded by C‖f‖Ln/α(µ)µ(2B).
Next we shall prove (6.2). Let B ⊂ V be balls of radius r and s respec-

tively. We shall show

(6.7)
1

µ(B)
1

µ(V )

�

B

�

V

|Kαf(x)−Kαf(y)| dµ(x) dµ(y)

≤ CKB,V ‖f‖Ln/α(µ)

(
µ(%B)
µ(B)

+
µ(%V )
µ(V )

)

with % = 10, say.
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Observe that the left hand side of (6.7) dominates

|mB(Kαf)−mV (Kαf)|,

so that we get (6.2) for Kα(f).

Let 2NB,V +2B = Ṽ for which we know from Lemma 6.3 that 2V ⊂ Ṽ ⊂
10V. For almost every x and y, we can write

Kα(f)(x)−Kα(f)(y) =
�

X
(kα(x, z)− kα(y, z))f(z) dµ(z).

Then

|Kα(f)(x)−Kα(f)(y)| ≤ Iα(|f |χ2B)(x) + Iα(|f |χṼ \2B)(x) + Iα(|f |χṼ )(y)

+
�

X\Ṽ

|kα(x, z)− kα(y, z)| |f(z)| dµ(z).

Denote by I, II, III and IV the four terms on the right hand side of the
last inequality. We estimate separately the double average of each of these
four terms. The first and third are dealt with by means of Lemma 6.2:

1
µ(B)

1
µ(V )

�

B

�

V

I dµ(y) dµ(x)

=
1

µ(B)

�

B

Iα(|f |χ2B)(x) dµ(x) ≤ C‖f‖n/α
µ(2B)
µ(B)

and likewise

1
µ(B)

1
µ(V )

�

B

�

V

III dµ(y) dµ(x)

=
1

µ(V )

�

V

Iα(|f |χṼ )(y) dµ(y) ≤ C‖f‖n/α
µ(10V )
µ(V )

.

In order to deal with II, we use Hölder’s inequality to obtain

II =
�

Ṽ \2B

1
d(x, z)n−α

|f(z)| dµ(z)

≤
( �

Ṽ \2B

dµ(z)
d(x, z)n

)(n−α)/n

‖f‖n/α ≤ CKB,V ‖f‖n/α,

since
�

Ṽ \2B

dµ(z)
d(x, z)n

≤
NB,V +1∑

k=1

�

2k+1B\2kB

dµ(z)
d(x, z)n

≤ CKB,V .
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Finally, by (4.2),

IV ≤ Cd(x, y)ε
�

X\2V

1
d(x, z)n−α+ε |f(z)| dµ(z)

≤ Cd(x, y)ε‖f‖Ln/α(µ)

( �

X\2V

dµ(z)
d(x, z)(n−α+ε)n/(n−α)

)(n−α)/n

.

Since (n− α+ ε)n/(n− α) = n+ εn/(n− α), applying Lemma 2.2 we get

IV ≤ Csε‖f‖Ln/α(µ)(s
−εn/(n−α))(n−α)/n = C‖f‖Ln/α(µ).

This finishes the proof.

Finally, we present a result which can be viewed either as an extension
to p =∞ of Theorem 5.2 or as an extension to β = 0 of Theorem 5.3.

Theorem 6.6. Let kα be a fractional kernel of order α and regularity ε,
with 0 < α < ε. Then K̃α(f), as given by (4.5), makes sense for any function
in RBMO(µ), and the operator K̃α thus defined is bounded from RBMO(µ)
to Lip(α) if and only if K̃α(1) = 0.

Proof. The necessity follows exactly as in the proof of Theorem 5.3.
Namely, the boundedness of K̃α(f) implies that K̃α(1) must be a constant.
But since K̃α(1)(x0) = 0 by definition, it follows that K̃α(1) = 0 or, equiv-
alently, that

�

X
(kα(x, y)− kα(x0, y)) dµ(y) = 0(6.8)

for all x.
To prove the sufficiency, we will use the following equivalent definition

of RBMO(µ) given in [To3]: f ∈ RBMO(µ) if and only if there are con-
stants C, and also a constant fU for every ball U, such that the following
two conditions hold:

1
µ(%U)

�

U

|f(x)− fU | dµ(x) ≤ C(6.9)

with some fixed % and also, for each couple of balls U ⊂W ,

|fU − fW | ≤ CKU,W .(6.10)

In addition, the infimum of the constants C in (6.9) and (6.10) is equivalent
to ‖f‖?.

Let f ∈ RBMO(µ). Take two points x 6= y and let B = B(x, r) with
r = d(x, y). Then
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K̃α(f)(x)− K̃α(f)(y) =
�

X
(kα(x, z)− kα(y, z))f(z) dµ(z)

=
�

X
(kα(x, z)− kα(y, z))(f(z)− f2B) dµ(z),

where we have used the cancellation property (6.8).
We can bound this difference by breaking up the absolute value of the

integrand in the following way:

|K̃α(f)(x)− K̃α(f)(y)| ≤ Iα(|f − f2B|χ2B)(x) + Iα(|f − f2B|χ2B)(y)

+
�

Rd\2B
|kα(x, z)− kα(y, z)| |f(z)− f2B| dµ(z)

= I + II + III.

We estimate each of these three terms separately.
The first term is estimated exactly as the first term in the proof of

Theorem 5.2, namely

I =
�

2B

1
d(x, z)n−α

|f(z)− f2B| dµ(z)

≤
( �

2B

dµ(z)
d(x, z)(n−α)p′

)1/p′( �

2B

|f(z)− f2B|p dµ(z)
)1/p

≤ Crα−n/pµ(%B)1/p‖f‖? ≤ Crα‖f‖?,
where we have used Hölder’s inequality with some p > n/α, Lemma 2.1 and
the fact that the space RBMO(µ) can also be defined with Lp norms for
p > 1 instead of just L1 norms, a fact that follows from the version of the
John–Nirenberg theorem established by Tolsa for RBMO(µ) (see [To3]).

Actually, the second term can be dealt with exactly in the same way as
the first one, after noting that 2B ⊂ B(y, 3r). We obtain, just as before,
II ≤ Crα‖f‖?.

So, all that is left is to examine the third term. For that we use the
regularity of the kernel, since d(x, y) = r < d(x, z)/2. Taking into account
that the constants KB,V can be bounded by an absolute constant when B
and V have comparable radii (i.e. with ratio bounded above and below by
two fixed positive numbers), we have

III ≤
�

Rd\2B

d(x, y)ε

d(x, z)n−α+ε |f(z)− f2B| dµ(z) ≤ Cd(x, y)ε

×
∞∑

k=1

{ �

2k+1B\2kB

|f(z)− f2k+1B |
d(x, z)n−α+ε dµ(z) +

|f2k+1B − f2B |
(2kr)n−α+ε µ(2k+1B)

}
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≤ Crε‖f‖?
{ ∞∑

k=1

µ(%2k+1B)
(2kr)n−α+ε +

∞∑

k=1

k
µ(2k+1B)

(2kr)n−α+ε

}

= Crε
{ ∞∑

k=1

(2kr)α−ε +
∞∑

k=1

k(2kr)α−ε
}
‖f‖? = C‖f‖?rα.
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