$\begin{array}{c} {\bf Uniform\ convergence\ of}\\ N{\textbf -dimensional\ Walsh-Fourier\ series} \end{array}$

by

U. Goginava (Tbilisi)

Abstract. We establish conditions on the partial moduli of continuity which guarantee uniform convergence of the N-dimensional Walsh–Fourier series of functions f from the class $C_W(I^N) \cap \bigcap_{i=1}^N BV_{i,\{p(n)\}}$, where $p(n) \uparrow \infty$ as $n \to \infty$.

1. Definitions and notation. Let $I^N = [0,1)^N$ be the unit cube in the *N*-dimensional Euclidean space \mathbb{R}^N . The elements of \mathbb{R}^N are denoted by $\mathbf{x} = (x_1, \ldots, x_N)$. For any $\mathbf{x} = (x_1, \ldots, x_N)$ and $\mathbf{y} = (y_1, \ldots, y_N)$ the vector $(x_1 \oplus y_1, \ldots, x_N \oplus y_N) \in \mathbb{R}^N$ is denoted by $\mathbf{x} \oplus \mathbf{y}$, where \oplus denotes dyadic addition.

Let $M = \{1, \ldots, N\}$, $B = \{s_1, \ldots, s_r\}$, $B_1 = \{s_{r_1}, \ldots, s_{r_j}\}$, $s_k < s_{k+1}$, $s_{r_i} < s_{r_{i+1}}$, $k = 1, \ldots, r-1$, $i = 1, \ldots, j-1$, $B_1 \subset B \subset M$, $B' = M \setminus B$, $B'_1 = M \setminus B_1$. For an integer *n* the vector $(n, \ldots, n) \in \mathbb{R}^N$ is denoted by $\widetilde{\mathbf{n}}$. The cardinality of *B* is denoted by |B|. For any $\mathbf{x} = (x_1, \ldots, x_N)$ and $B \subset M$, let \mathbf{x}_B denote the vector in \mathbb{R}^N whose coordinates with indices from *B* coincide with the corresponding coordinates of \mathbf{x} , and the coordinates with indices from *B'* are zero. Note that $\mathbf{x}_M = \mathbf{x}$ and $\mathbf{x}_{\emptyset} = \widetilde{\mathbf{0}}$.

For later convenience we introduce the following notation:

$$\sum_{\mathbf{i}_B=\mathbf{p}_B}^{\mathbf{m}_B} \quad \text{for} \quad \sum_{i_{s_1}=p_{s_1}}^{m_{s_1}} \cdots \sum_{i_{s_r}=p_{s_r}}^{m_{s_r}},$$
$$\frac{\mathbf{q}}{\mathbf{2^k}} \quad \text{for} \quad \left(\frac{q_1}{2^{k_1}}, \dots, \frac{q_N}{2^{k_N}}\right),$$
$$d\mathbf{u} \quad \text{for} \quad du_1 \cdots du_N.$$

Denote by $C(I^N)$ the space of all real-valued functions continuous on I^N that can be extended to functions 1-periodic in each variable on \mathbb{R}^N . If $f \in$

²⁰⁰⁰ Mathematics Subject Classification: Primary 42C10.

Key words and phrases: Walsh function, N-dimensional Fourier series, uniform convergence.

 $C(I^N)$ then the function

$$\omega_i(\delta, f) = \sup_{\mathbf{x}} \sup_{|h_i| \le \delta} |f(\mathbf{x} + \mathbf{h}_{\{i\}}) - f(\mathbf{x})|, \quad i = 1, \dots, N,$$

is called a *partial modulus of continuity* of f.

Denote by $C_W(I^N)$ the space of all real-valued functions uniformly Wcontinuous on I^N that extend to functions 1-periodic in each variable, with the norm

$$\|f\|_{C_W} = \sup_{\mathbf{x}\in I^N} |f(\mathbf{x})|.$$

Let

$$\dot{\Delta}^{\{s_i\}}(f, \mathbf{x}, \mathbf{h}_{\{s_i\}}) = f(\mathbf{x} \oplus \mathbf{h}_{\{s_i\}}) - f(\mathbf{x}), \quad i = 1, \dots, r$$

Successive application of such partial difference operators leads to the definitions:

$$\dot{\Delta}^B(f, \mathbf{x}, \mathbf{h}_B) = \dot{\Delta}^{\{s_r\}}(\dot{\Delta}^{B \setminus \{s_r\}}(f, \cdot, \mathbf{h}_{B \setminus \{s_r\}}), \mathbf{x}, \mathbf{h}_{\{s_r\}}),$$

and

$$\dot{\omega}_B(\delta, f) = \sup_{0 \le h_i < \delta_i, i \in B} \|\dot{\Delta}^B(f, \cdot, \mathbf{h}_B)\|_{C_W}.$$

DEFINITION 1. Suppose that the function f is bounded on I^N and extends to a function 1-periodic in each variable. Let $1 \le p < \infty$. We say that fis of bounded partial p-variation (written $f \in PBV_p$) if for any i = 1, ..., N,

$$V_{i}(f) = \sup_{x_{j}, j \in M \setminus \{i\}} \sup_{n \ge 1} \sup_{\pi^{(i)}} \sum_{k=0}^{n-1} |f(x_{1}, \dots, x_{i-1}, x_{i}^{(2k)}, x_{i+1}, \dots, x_{N})|^{p} < \infty,$$

$$-f(x_{1}, \dots, x_{i-1}, x_{i}^{(2k+1)}, x_{i+1}, \dots, x_{N})|^{p} < \infty,$$

where $\pi^{(i)}$ is an arbitrary partition $0 \le x_{i}^{(0)} < x_{i}^{(1)} \le x_{i}^{(2)} < \dots \le x_{i}^{(2n-2)} < \infty$

where $\pi^{(i)}$ is an arbitrary partition $0 \le x_i^{(*)} < x_i^{(*)} \le x_i^{(*)} < \cdots \le x_i^{(m-1)} < x_i^{(2n-1)} \le 1$.

Let f be a function defined on \mathbb{R}^N which is 1-periodic relative to each variable. $\Pi^{(i)}$ is said to be a *partition with period* 1 if

$$\Pi^{(i)}: \dots < t_{-1}^{(i)} < t_0^{(i)} < t_1^{(i)} < \dots < t_{m_i}^{(i)} < t_{m_i+1}^{(i)} < \dots$$

satisfies $t_{k+m_i}^{(i)} = t_k^{(i)} + 1$ for $k \in \mathbb{Z}$, where m_i is a positive integer.

DEFINITION 2. Let $1 \leq p(n) \uparrow p$ as $n \to \infty$, where $1 \leq p \leq \infty$. We say that a function f on \mathbb{R}^N belongs to the class $BV_{i,\{p(n)\}}$ if

$$V_{i,\{p(n)\}}(f) = \sup_{x_s, s \in M \setminus \{i\}} \sup_{n \ge 1} \sup_{\Pi^{(i)}} \left\{ \left(\sum_{j=1}^{m_i} |f(x_1, \dots, x_{i-1}, t_j^{(i)}, x_{i+1}, \dots, x_N) - f(x_1, \dots, x_{i-1}, t_{j-1}^{(i)}, x_{i+1}, \dots, x_N) |^{p(n)} \right)^{1/p(n)} : \varrho(\Pi^{(i)}) \ge \frac{1}{2^n} \right\} < \infty,$$

where

$$\varrho(\Pi^{(i)}) = \inf_{k} |t_{k}^{(i)} - t_{k-1}^{(i)}|.$$

For N = 1 see [7].

When p(n) = p for all n, it is easy to see that $\bigcap_{i=1}^{N} BV_{i,\{p(n)\}}$ coincides with PBV_p .

Let r_0 be a function on \mathbb{R} defined by

$$r_0(x) = \begin{cases} 1 & \text{if } x \in [0, 1/2), \\ -1 & \text{if } x \in [1/2, 1), \end{cases} \quad r_0(x+1) = r_0(x).$$

The *Rademacher system* is defined by

$$r_n(x) = r_0(2^n x), \quad n \ge 1, \ x \in [0, 1).$$

Let w_0, w_1, \ldots represent the Walsh functions, i.e. $w_0(x) = 1$ and if $k = 2^{n_1} + \cdots + 2^{n_s}$ is a positive integer with $n_1 > \cdots > n_s$ then

$$w_k(x) = r_{n_1}(x) \cdots r_{n_s}(x).$$

The idea of using products of Rademacher functions to define the Walsh system comes from Paley [9].

The Walsh–Dirichlet kernel is defined by

$$D_n(x) = \sum_{k=0}^{n-1} w_k(x).$$

The rectangular partial sums of the N-dimensional Walsh–Fourier series are defined as follows:

$$S_{\mathbf{m}}(f, \mathbf{x}) = \sum_{\boldsymbol{\nu}=\tilde{\mathbf{0}}}^{\mathbf{m}-\tilde{\mathbf{1}}} a_{\boldsymbol{\nu}} \prod_{i \in M} w_{\boldsymbol{\nu}_i}(x_i),$$

where

$$a_{\boldsymbol{\nu}} = a_{\nu_1,\dots,\nu_N}(f) = \int_{I^N} f(\mathbf{x}) \prod_{i \in M} w_{\nu_i}(x_i) \, d\mathbf{x}.$$

2. Formulation of the problem. Getzadze [1, 2] considered the question of uniform convergence for N-dimensional Walsh–Fourier series in terms of partial moduli of continuity. He proved the following

THEOREM A. (a) Let $f \in C(I^N)$. If there exists $i_0 \in M$ such that

$$\omega_{i_0}(\delta, f) = o\left(\left(\frac{1}{\log(1/\delta)}\right)^N\right) \quad as \ \delta \to 0+$$

and

$$\omega_i(\delta, f) = O\left(\left(\frac{1}{\log(1/\delta)}\right)^N\right) \quad as \ \delta \to 0+, \ 1 \le i \le N, \ i \ne i_0,$$

then the N-dimensional Walsh–Fourier series of f converges uniformly in the sense of Pringsheim $(^{1})$.

(b) There exists a function $f_0 \in C(I^N)$ such that

$$\omega_i(\delta, f_0) = O\left(\left(\frac{1}{\log(1/\delta)}\right)^N\right) \quad as \ \delta \to 0+, \ i = 1, \dots, N,$$

and the N-dimensional Walsh–Fourier cubic partial sums of f diverge in the metric of C.

In 1881 Jordan [6] introduced a class of functions of bounded variation and, applying it to the theory of trigonometric Fourier series, he proved that if a continuous function has bounded variation, then its trigonometric Fourier series converges uniformly. In 1906 G. Hardy [5] generalized the Jordan criterion to double Fourier series and introduced the notion of bounded variation for functions of two variables. He proved that if a continuous function of two variables has bounded variation (in the sense of Hardy), then its trigonometric Fourier series converges uniformly in the sense of Pringsheim.

Móricz [8] proved that if $f \in C_W(I^2)$ and the function f is of bounded variation in Hardy's sense [5], then its two-dimensional Walsh–Fourier series is uniformly convergent to f.

For N-dimensional Walsh–Fourier series the author [4] proved that if $f \in C_W(I^N)$ and the function f is of bounded partial p-variation ($f \in PBV_p$) for some $p \in [1, \infty)$, then the N-dimensional Walsh–Fourier series is uniformly convergent to f. The analogous result for the N-dimensional trigonometric Fourier series was verifed by the author [3].

On the basis of the above facts we can formulate the following problem:

Let $p(n) \uparrow \infty$ as $n \to \infty$ and $f \in C_W(I^N) \cap \bigcap_{i=1}^N BV_{i,\{p(n)\}}$. What conditions on the partial moduli of continuity ensure the uniform convergence in the Pringsheim sense of the N-dimensional Walsh–Fourier series of the function f?

A solution of this problem is given in Theorems 1 and 2.

3. Formulation of the main results. The main result of this paper is

THEOREM 1. Let $p(n)\uparrow\infty$ as $n\to\infty$ and $f\in C_W(I^N)\cap\bigcap_{i=1}^N BV_{i,\{p(n)\}}$. If there exists $i_0\in M$ such that

$$\dot{\omega}_{\{i_0\}}(1/2^k, f) = o\left(\left(\frac{1}{p(k+1)\log p(k+1)}\right)^N\right) \quad as \ k \to \infty$$

 $^(^{1})$ An N-dimensional series is said to converge in the sense of Pringsheim if its rectangular partial sums converge.

and

$$\dot{\omega}_{\{i\}}(1/2^k, f) = O\left(\left(\frac{1}{p(k+1)\log p(k+1)}\right)^N\right)$$

as $k \to \infty, \ 1 \le i \le N, \ i \ne i_0,$

then the N-dimensional Walsh–Fourier series of f converges uniformly in Pringsheim's sense.

COROLLARY 1. Let $p(n)\uparrow\infty$ as $n\to\infty$ and $f\in C(I^N)\cap\bigcap_{i=1}^N BV_{i,\{p(n)\}}$. If there exists $i_0\in M$ such that

$$\omega_{i_0}(1/2^k, f) = o\left(\left(\frac{1}{p(k)\log p(k)}\right)^N\right) \quad as \ k \to \infty$$

and

$$\omega_i(1/2^k, f) = O\left(\left(\frac{1}{p(k)\log p(k)}\right)^N\right) \quad as \ k \to \infty, \ 1 \le i \le N, \ i \ne i_0,$$

then the N-dimensional Walsh–Fourier series of f converges uniformly in Pringsheim's sense.

COROLLARY 2. Let $p(n)\uparrow\infty$ as $n\to\infty$ and $p(2m)\leq cp(m)$ for all $m\geq 1$, where c>0 is a constant, and let $f\in C(I^N)\cap\bigcap_{i=1}^N BV_{i,\{p(n)\}}$. If there exists $i_0\in M$ such that

$$\omega_{i_0}(\delta, f) = o\left(\left(\frac{1}{p([\log(1/\delta)])\log p([\log(1/\delta)])}\right)^N\right) \quad as \ \delta \to 0+$$

and

$$\omega_i(\delta, f) = O\left(\left(\frac{1}{p(\lfloor \log(1/\delta) \rfloor) \log p(\lfloor \log(1/\delta) \rfloor)}\right)^N\right)$$

as $\delta \to 0+, \ 1 \le i \le N, \ i \ne i_0,$

then the N-dimensional Walsh–Fourier series of f converges uniformly in Pringsheim's sense.

THEOREM 2. Let $p(n) \uparrow \infty$ and $p(n) \log p(n) = o(n)$ as $n \to \infty$, and $p(2m) \leq cp(m)$ for all $m \geq 1$, where c > 0 is a constant. Then for any $N \geq 2$ there exists a function $f_0 \in C(I^N) \cap \bigcap_{i=1}^N BV_{i,\{p(n)\}}$ such that

$$\omega_i(\delta, f_0) = O\left(\left(\frac{1}{p([\log(1/\delta)])\log p([\log(1/\delta)])}\right)^N\right)$$

as $\delta \to 0+, i = 1, \dots, N,$

and the N-dimensional Walsh–Fourier cubic partial sums of f_0 diverge at some point.

U. Goginava

4. Auxiliary propositions. We shall need the following.

LEMMA 1. Let $f \in C_W(I^N)$. Assume that for any nonempty $B \subset M$ we have

$$V_{\mathbf{k}_B}(f, \mathbf{u}) = \sum_{\mathbf{q}_B = \tilde{\mathbf{1}}_B}^{(\mathbf{2^{k}} - \mathbf{1})_B} \left| \dot{\Delta}^B \left(f, \mathbf{u} \oplus \left(\frac{2\mathbf{q}}{\mathbf{2^{k+\tilde{1}}}} \right)_B, \left(\frac{\tilde{\mathbf{1}}}{\mathbf{2^{k+\tilde{1}}}} \right)_B \right) \right| \prod_{j \in B} \frac{1}{q_j} \to 0$$

(as $k_i \to \infty$) uniformly with respect to $u_i, i \in M$. Then the N-dimensional Walsh-Fourier series of f converges uniformly in Pringsheim's sense.

For N = 2 the proof can be found in [8]. Using the method of [8], we can easily extend this criterion to N-dimensional Walsh–Fourier series.

LEMMA 2. Let a_{i_1}, \ldots, a_{i_N} and b_{i_1,\ldots,i_N} be real numbers. Then

$$\sum_{\mathbf{i}_M=\tilde{\mathbf{1}}_M}^{\mathbf{m}_M} \left(\prod_{j\in M} a_{i_j}\right) b_{i_1,\dots,i_N} = \sum_{B\subset M} \left(\prod_{j\in B'} a_{m_j}\right) \sum_{\mathbf{i}_B=\tilde{\mathbf{1}}_B}^{\mathbf{m}_B-\tilde{\mathbf{1}}_B} \prod_{j\in B} (a_{i_j}-a_{i_j+1})$$
$$\times \sum_{\mathbf{k}_B=\tilde{\mathbf{1}}_B}^{\mathbf{i}_B} \sum_{\mathbf{k}_{B'}=\tilde{\mathbf{1}}_{B'}}^{\mathbf{m}_B'} b_{k_1,\dots,k_N}.$$

For N = 1 this is the well known Abel transformation, and for N = 2 it is called the Hardy transformation. The validity of the above equality for any $N \ge 3$ can be easily verified by induction.

LEMMA 3. We have

$$\int_{2^{i-2n-2}}^{2^{i-2n-2}} |D_{q_n}(t)| dt \ge c > 0, \quad i = 1, \dots, 2n+2,$$

where

$$q_n = 2^{2n+1} + 2^{2n-1} + \dots + 2^3 + 2^1 + 2^0, \quad n = 1, 2, \dots$$

The proof can be found in [10].

5. Proofs of the main results

Proof of Theorem 1. By Lemma 1, it suffices to show that for all nonempty $B \subset M$,

$$\sum_{\mathbf{q}_B=\widetilde{\mathbf{1}}_B}^{(\mathbf{2}^k-\widetilde{\mathbf{1}})_B} \left| \dot{\Delta}^B \left(f, \mathbf{u} \oplus \left(\frac{2\mathbf{q}}{\mathbf{2}^{k+\widetilde{\mathbf{1}}}} \right)_B, \left(\frac{\widetilde{\mathbf{1}}}{\mathbf{2}^{k+\widetilde{\mathbf{1}}}} \right)_B \right) \right| \prod_{j \in B} \frac{1}{q_j} \to 0$$

uniformly with respect to $u_i, i \in M$, as $k_i \to \infty, i \in B$.

From Lemma 2, we write

$$(1) \qquad \sum_{\mathbf{q}_{B}=\tilde{\mathbf{1}}_{B}}^{(\mathbf{2}^{k}-\tilde{\mathbf{1}})_{B}} \left| \dot{\Delta}^{B} \left(f, \mathbf{u} \oplus \left(\frac{2\mathbf{q}}{\mathbf{2}^{k+\tilde{\mathbf{1}}}} \right)_{B}, \left(\frac{\tilde{\mathbf{1}}}{\mathbf{2}^{k+\tilde{\mathbf{1}}}} \right)_{B} \right) \right| \prod_{j \in B} \frac{1}{q_{j}}$$

$$= \sum_{B_{1} \subset B, B_{1} \neq \emptyset} \left(\prod_{i \in B \setminus B_{1}} \frac{1}{2^{k_{i}}-1} \right)^{(\mathbf{2}^{k}-\tilde{\mathbf{2}})_{B_{1}}} \prod_{j \in B_{1}} \left(\frac{1}{q_{j}} - \frac{1}{q_{j}+1} \right)$$

$$\times \sum_{l_{B_{1}}=\tilde{\mathbf{1}}_{B_{1}}}^{\mathbf{q}_{B_{1}}} \sum_{l_{B} \setminus B_{1}=\tilde{\mathbf{1}}_{B \setminus B_{1}}}^{(\mathbf{2}^{k}-\tilde{\mathbf{1}})_{B \setminus B_{1}}} \left| \dot{\Delta}^{B} \left(f, \mathbf{u} \oplus \left(\frac{2\mathbf{l}}{\mathbf{2}^{k+\tilde{\mathbf{1}}}} \right)_{B}, \left(\frac{\tilde{\mathbf{1}}}{\mathbf{2}^{k+\tilde{\mathbf{1}}}} \right)_{B} \right) \right|$$

$$+ \prod_{i \in B} \frac{1}{2^{k_{i}}-1} \sum_{l_{B}=\tilde{\mathbf{1}}_{B}}^{(\mathbf{2}^{k}-\tilde{\mathbf{1}})_{B}} \left| \dot{\Delta}^{B} \left(f, \mathbf{u} \oplus \left(\frac{2\mathbf{l}}{\mathbf{2}^{k+\tilde{\mathbf{1}}}} \right)_{B}, \left(\frac{\tilde{\mathbf{1}}}{\mathbf{2}^{k+\tilde{\mathbf{1}}}} \right)_{B} \right) \right|$$

$$= \sum_{B_{1} \subset B, B_{1} \neq \emptyset} I_{B}(f, B_{1}, \mathbf{u}) + I_{B}(f, \emptyset, \mathbf{u}).$$

Since for all nonempty $B \subset M$,

(2)
$$\left|\dot{\Delta}^{B}\left(f,\mathbf{u}\oplus\left(\frac{2\mathbf{l}}{2^{\mathbf{k}+\widetilde{1}}}\right)_{B},\left(\frac{\widetilde{1}}{2^{\mathbf{k}+\widetilde{1}}}\right)_{B}\right)\right|\leq\dot{\omega}_{B}\left(\frac{1}{2^{k}},f\right),$$

we have

(3)
$$I_B(f, \emptyset, \mathbf{u}) = O\left(\dot{\omega}_B\left(\frac{1}{2^k}, f\right)\right).$$

It is evident that

(4)
$$I_{B}(f, B_{1}, \mathbf{u}) = O\left(\sum_{\mathbf{q}_{B_{1}}=\tilde{\mathbf{1}}_{B_{1}}}^{(\mathbf{2}^{k}-\tilde{\mathbf{2}})_{B_{1}}} \prod_{j\in B_{1}} \frac{1}{q_{j}^{2}} \sup_{u_{i},i\in B_{1}'} \sum_{\mathbf{l}_{B_{1}}=\tilde{\mathbf{1}}_{B_{1}}}^{\mathbf{q}_{B_{1}}} \left| \dot{\Delta}^{B_{1}}\left(f, \mathbf{u}\right) \\ \oplus \left(\frac{2\mathbf{l}}{\mathbf{2^{k+\tilde{1}}}}\right)_{B_{1}}, \left(\frac{\tilde{\mathbf{1}}}{\mathbf{2^{k+\tilde{1}}}}\right)_{B_{1}}\right) \right| \right).$$

Since for all nonempty $B_1 \subset M$, and all $j \in B_1$,

(5)
$$\sup_{u_i, i \in B'_1} \sum_{l_{B_1} = \tilde{1}_{B_1}}^{q_{B_1}} \left| \dot{\Delta}^{B_1} \left(f, \mathbf{u} \oplus \left(\frac{2\mathbf{l}}{2^{\mathbf{k}+\tilde{1}}} \right)_{B_1}, \left(\frac{\tilde{1}}{2^{\mathbf{k}+\tilde{1}}} \right)_{B_1} \right) \right|$$
$$= O\left(\prod_{i \in B_1 \setminus \{j\}} q_i \sup_{u_i, i \in M \setminus \{j\}} \sum_{l_j = 1}^{q_j} \left| \dot{\Delta}^{\{j\}} \left(f, \mathbf{u}, \oplus \left(\frac{2\mathbf{l}}{2^{\mathbf{k}+\tilde{1}}} \right)_{\{j\}}, \left(\frac{\tilde{1}}{2^{\mathbf{k}+\tilde{1}}} \right)_{\{j\}} \right) \right| \right),$$

we have

$$(6) \quad \sup_{u_{i},i\in B_{1}^{\prime}}\sum_{l_{B_{1}}=\tilde{1}_{B_{1}}}\sum_{l_{B_{1}}=\tilde{1}_{B_{1}}}\left|\dot{\Delta}^{B_{1}}\left(f,\mathbf{u}\oplus\left(\frac{2\mathbf{l}}{2^{\mathbf{k}+\tilde{1}}}\right)_{B_{1}},\left(\frac{\tilde{1}}{2^{\mathbf{k}+\tilde{1}}}\right)_{B_{1}}\right)\right|$$
$$=\left[\left(\sup_{u_{i},i\in B_{1}^{\prime}}\sum_{l_{B_{1}}=\tilde{1}_{B_{1}}}^{q_{B_{1}}}\left|\dot{\Delta}^{B_{1}}\left(f,\mathbf{u}\oplus\left(\frac{2\mathbf{l}}{2^{\mathbf{k}+\tilde{1}}}\right)_{B_{1}},\left(\frac{\tilde{1}}{2^{\mathbf{k}+\tilde{1}}}\right)_{B_{1}}\right)\right|\right)^{|B_{1}|}\right]^{1/|B_{1}|}$$
$$=O\left(\prod_{j\in B_{1}}q_{j}^{1-1/|B_{1}|}\left[\sup_{u_{i},i\in M\setminus\{j\}}\sum_{l_{j}=1}^{q_{j}}\left|\dot{\Delta}^{\{j\}}\left(f,\mathbf{u}\right)\right.\right.\right.\right.\right.\right.\\\left.\oplus\left(\frac{2\mathbf{l}}{2^{\mathbf{k}+\tilde{1}}}\right)_{\{j\}},\left(\frac{\tilde{1}}{2^{\mathbf{k}+\tilde{1}}}\right)_{\{j\}}\right)\right|\right]^{1/|B_{1}|}\right)$$

By (4) and (6) we obtain

(7)
$$I_B(f, B_1, \mathbf{u}) = O\left(\prod_{j \in B_1} \sum_{q_j=1}^{2^{k_i}-2} \frac{1}{q_j^{1+1/|B_1|}} \left[\sup_{u_i, i \in M \setminus \{j\}} \sum_{l_j=1}^{q_j} \left| \dot{\Delta}^{\{j\}} \left(f, \mathbf{u} \right) \right| \\ \oplus \left(\frac{2\mathbf{l}}{\mathbf{2^{k+\tilde{1}}}}\right)_{\{j\}}, \left(\frac{\widetilde{\mathbf{1}}}{\mathbf{2^{k+\tilde{1}}}}\right)_{\{j\}} \right) \right| \right]^{1/|B_1|} \right).$$

Define

$$\chi(k_j, B_1) = 4^{|B_1|p(k_j+1)\log_2 p(k_j+1)}.$$

If we apply Hölder's inequality, from (7) we get

$$(8) \quad I_{B}(f, B_{1}, \mathbf{u}) = O\left(\prod_{j \in B_{1}} \left\{ \sum_{q_{j}=1}^{\chi(k_{j}, B_{1})} \frac{1}{q_{j}^{1+1/|B_{1}|}} \left[\sup_{u_{i}, i \in M \setminus \{j\}} \sum_{l_{j}=1}^{q_{j}} \left| \dot{\Delta}^{\{j\}} \left(f, \mathbf{u} \right) \right. \right. \right. \\ \left. \oplus \left(\frac{2\mathbf{l}}{2^{\mathbf{k}+\tilde{\mathbf{i}}}} \right)_{\{j\}}, \left(\frac{\tilde{\mathbf{1}}}{2^{\mathbf{k}+\tilde{\mathbf{i}}}} \right)_{\{j\}} \right) \right| \right]^{1/|B_{1}|} \\ \left. + \sum_{q_{j}=\chi(k_{j}, B_{1})+1}^{2^{k_{j}}-2} \frac{1}{q_{j}^{1+1/|B_{1}|}} \left[\sup_{u_{i}, i \in M \setminus \{j\}} \sum_{l_{j}=1}^{q_{j}} \left| \dot{\Delta}^{\{j\}} \left(f, \mathbf{u} \right) \right. \\ \left. \oplus \left(\frac{2\mathbf{l}}{2^{\mathbf{k}+\tilde{\mathbf{i}}}} \right)_{\{j\}}, \left(\frac{\tilde{\mathbf{1}}}{2^{\mathbf{k}+\tilde{\mathbf{i}}}} \right)_{\{j\}} \right) \right| \right]^{1/|B_{1}|} \right\} \right)$$

Walsh-Fourier series

$$= O\bigg(\prod_{j \in B_1} \bigg\{ \bigg(\dot{\omega}_{\{j\}}\bigg(\frac{1}{2^{k_j}}, f\bigg)\bigg)^{1/|B_1|} \log \chi(k_j, B_1) \\ + \sum_{q_j = \chi(k_j, B_1)+1}^{2^{k_j}-2} \frac{1}{q_j^{1+1/|B_1|}} \bigg(\bigg[\sup_{u_i, i \in M \setminus \{j\}} \sum_{l_j=1}^{q_j} \bigg| \dot{\Delta}^{\{j\}} \bigg(f, \mathbf{u} \\ \oplus \bigg(\frac{2\mathbf{l}}{2^{\mathbf{k}+\widetilde{\mathbf{1}}}}\bigg)_{\{j\}}, \bigg(\frac{\widetilde{\mathbf{1}}}{2^{\mathbf{k}+\widetilde{\mathbf{1}}}}\bigg)_{\{j\}}\bigg) \bigg|^{p(k_j+1)} \bigg]^{1/p(k_j+1)} q_j^{1-1/p(k_j+1)}\bigg)^{1/|B_1|} \bigg\} \bigg).$$

By (8) and the assumption of the theorem we obtain

$$(9) \quad I_{B}(f, B_{1}, \mathbf{u}) = O\left(\prod_{j \in B_{1}} \left\{ \left(\dot{\omega}_{\{j\}} \left(\frac{1}{2^{k_{j}}}, f\right)\right)^{1/|B_{1}|} \log \chi(k_{j}, B_{1}) + \sum_{q_{j}=\chi(k_{j}, B_{1})+1}^{2^{k_{j}}-2} \frac{(V_{j,\{p(n)\}}(f))^{1/|B_{1}|}}{q_{j}^{1+1/(|B_{1}|p(k_{j}+1))}} \right\} \right)$$
$$= O\left(\prod_{j \in B_{1}} \left\{ \left(\dot{\omega}_{\{j\}} \left(\frac{1}{2^{k_{j}}}, f\right)\right)^{1/|B_{1}|} \log \chi(k_{j}, B_{1}) + p(k_{j}+1) \left(\frac{1}{\chi(k_{j}, B_{1})}\right)^{1/(|B_{1}|p(k_{j}+1))} \right\} \right)$$
$$= O\left(\prod_{j \in B_{1}} \left\{ \left(\dot{\omega}_{\{j\}} \left(\frac{1}{2^{k_{j}}}, f\right)\right)^{1/|B_{1}|} p(k_{j}+1) \log p(k_{j}+1) + \frac{1}{p(k_{j}+1)} \right\} \right).$$

Let $B_1 = B = M$. Then by (9) and the assumption of the theorem we get

(10)
$$I_M(f, M, \mathbf{u}) = O\left(\prod_{j=1}^N \left\{ \left(\dot{\omega}_{\{j\}} \left(\frac{1}{2^{k_j}}, f\right)\right)^{1/N} p(k_j+1) \log p(k_j+1) + \frac{1}{p(k_j+1)} \right\} \right) = o(1) \text{ as } k_j \to \infty, \ j \in M.$$

Let $B_1 \subset B \subset M$ and $|B_1| < N$. Then by (9) and the assumption of the theorem we get

(11)
$$I_B(f, B_1, \mathbf{u})$$

= $O\left(\prod_{j \in B_1} \left\{ \left(\dot{\omega}_{\{j\}} \left(\frac{1}{2^{k_j}}, f\right)\right)^{1/N} p(k_j + 1) \log p(k_j + 1) \right\} \times \left(\dot{\omega}_{\{j\}} \left(\frac{1}{2^{k_j}}, f\right)\right)^{1/|B_1| - 1/N} + \frac{1}{p(k_j + 1)} \right\} = o(1) \text{ as } k_j \to \infty, j \in M.$

U. Goginava

Owing to (1), (2), (10) and (11) the proof of the theorem is complete.

Proof of Theorem 2. Let $1 < p(l_1) \log p(l_1) \le 2l_1 + 2$. Define the following closed intervals:

$$E_{1,j} = \left[\frac{j}{2^{2l_1+2}}, \frac{j+1}{2^{2l_1+2}}\right], \quad j = 1, \dots, 2^{\left[p(l_1)\log p(l_1)\right]} - 1.$$

Denote by $\varphi_{1,j}$ the function equal to zero outside this interval, 1 at its center and linear on each half-interval. Let

$$\varphi_1(x) = \sum_{j=1}^{2^{[p(l_1)\log p(l_1)]}-1} \varphi_{1,j}(x),$$

$$f_1(x) = \varphi_1(x) \operatorname{sgn} D_{q_{l_1}}(x), \quad f_1(x+l) = f_1(x), \quad l \in \mathbb{Z},$$

where

$$q_{l_1} = 2^{2l_1+1} + 2^{2l_1-1} + \dots + 2^3 + 2^1 + 2^0.$$

Suppose that the integers l_1, \ldots, l_{k-1} and 1-periodic functions f_1, \ldots, f_{k-1} are already defined. Then we define l_k to be an integer with the following properties:

(12)
$$\begin{aligned} l_k > l_{k-1,} \\ \frac{2^{[p(l_k)\log p(l_k)]}}{2^{2l_k+2}} &\leq \frac{1}{2^{2l_{k-1}+2}}, \\ \frac{p(l_k)\log p(l_k)}{l_k} &\leq 1, \end{aligned}$$

(13)
$$\sum_{s=1}^{k-1} \left(\frac{1}{p(l_s) \log p(l_s)} \right)^N \prod_{i=1}^N \left| \int_{[1/2^{2l_{k-1}+2}, 1]} f_s(x_i) \times w_{q_{l_k}-q_{l_{k-1}}}(x_i) D_{q_{l_{k-1}}+1}(x_i) \, dx_i \right| \le \frac{1}{k},$$

where

$$q_{l_k} = 2^{2l_k+1} + 2^{2l_k-1} + \dots + 2^3 + 2^1 + 2^0.$$

Define

$$E_{k,j} = \left[\frac{j}{2^{2l_k+2}}, \frac{j+1}{2^{2l_k+2}}\right], \quad j = 1, \dots, 2^{\left[p(l_k)\log p(l_k)\right]} - 1.$$

Denote by $\varphi_{k,j}$ the function equal to zero outside this interval, 1 at its center and linear on each half-interval. Let

$$\varphi_k(x) = \sum_{j=1}^{2^{[p(l_k)\log p(l_k)]}-1} \varphi_{k,j}(x),$$
$$f_k(x) = \varphi_k(x) \operatorname{sgn} D_{q_{l_k}}(x), \quad f_k(x+l) = f_k(x), \quad l \in \mathbb{Z}.$$

Define

$$f_0(\mathbf{x}) = \sum_{k=1}^{\infty} g_k(\mathbf{x}), \quad f_0(\widetilde{\mathbf{0}}) = 0,$$

where

$$g_k(\mathbf{x}) = \left(\frac{1}{p(l_k)\log p(l_k)}\right)^N \prod_{i=1}^N f_k(x_i).$$

It is evident that $f_0 \in C(I^N)$. First we prove that $f_0 \in BV_{i,\{p(n)\}}, i = 1, \ldots, N$. Let $\Pi^{(i)} : \cdots < t_{-1}^{(i)} < t_0^{(i)} < t_1^{(i)} < \cdots < t_{m_i}^{(i)} < \cdots$ be any partition with period 1 and $\varrho(\Pi^{(i)}) \ge 1/2^n$. For $n \ge 2l_1 + 2$, we can choose integers l_{k-1} and l_k for which $2^{2l_{k-1}+2} \le 2^n < 2^{2l_k+2}$. Then

$$p(2l_{k-1}+2) \le p(n) \le p(2l_k+2).$$

Let s > k. Then it is evident that

(14)
$$\left(\sum_{j=1}^{m_{i}} |g_{s}(x_{1}, \dots, x_{i-1}, t_{j}, x_{i+1}, \dots, x_{N}) - g_{s}(x_{1}, \dots, x_{i-1}, t_{j-1}, x_{i+1}, \dots, x_{N})|^{p(n)}\right)^{1/p(n)} \leq \left(\frac{1}{p(l_{k})\log p(l_{k})}\right)^{N}.$$

Let now s < k. Then from the construction of the function f_0 we obtain

$$(15) \quad \left(\sum_{j=1}^{m_{i}} |g_{s}(x_{1}, \dots, x_{i-1}, t_{j}^{(i)}, x_{i+1}, \dots, x_{N}) - g_{s}(x_{1}, \dots, x_{i-1}, t_{j-1}^{(i)}, x_{i+1}, \dots, x_{N})|^{p(n)}\right)^{1/p(n)} \\ = \left(\frac{1}{p(l_{s}) \log p(l_{s})}\right)^{N} \left(\sum_{j=1}^{m_{i}} |f_{s}(t_{j}^{(i)}) - f_{s}(t_{j-1}^{(i)})|^{p(n)}\right)^{1/p(n)} \prod_{q \neq i} |f_{s}(x_{q})| \\ \leq \left(\frac{1}{p(l_{s}) \log p(l_{s})}\right)^{N} \exp_{2}\left\{\frac{p(l_{s}) \log p(l_{s})}{p(l_{s-1})}\right\} \\ \leq \left(\frac{1}{p(l_{s}) \log p(l_{s})}\right)^{N} p(l_{s}) < \infty.$$

It is evident that

(16)
$$\left(\sum_{j=1}^{m_i} |g_k(x_1, \dots, x_{i-1}, t_j^{(i)}, x_{i+1}, \dots, x_N) - g_k(x_1, \dots, x_{i-1}, t_{j-1}^{(i)}, x_{i+1}, \dots, x_N)|^{p(n)}\right)^{1/p(n)}$$

U. Goginava

$$= \left(\frac{1}{p(l_k)\log p(l_k)}\right)^N \left(\sum_{j=1}^{m_i} |f_k(t_j^{(i)}) - f_k(t_{j-1}^{(i)})|^{p(n)}\right)^{1/p(n)} \prod_{q \neq i} |f_k(x_q)|$$

$$\leq c \left(\frac{1}{p(l_k)\log p(l_k)}\right)^N \left(\frac{2^n}{2^{2l_k}}\exp_2\{p(l_k)\log p(l_k)\}\right)^{1/p(n)}.$$

Let $2l_{k-1} + 2 \le n < l_k + 1$. Then from (12) we get (17) $\frac{2^n}{2^{2l_k}} \exp_2\{p(l_k) \log p(l_k)\}$ $= \frac{\exp_2\{n + p(l_k) \log p(l_k)\}}{2^{2l_k}} \le \frac{\exp_2\{l_k + 1 + l_k\}}{2^{2l_k}} = 2.$

Let now $l_k + 1 \le n < 2l_k + 2$. Then we get

(18)
$$\left(\frac{2^n}{2^{2l_k}}\exp_2\{p(l_k)\log p(l_k)\}\right)^{1/p(n)} \le 4\exp_2\left\{\frac{p(l_k)\log p(l_k)}{p(l_k+1)}\right\} \le 4p(l_k).$$

From (16)-(18) we have (19)

$$V_{i,\{p(n)\}}(g_k) < \infty.$$

Owing to (14), (15) and (19) we obtain $f_0 \in BV_{i,\{p(n)\}}$. Next we shall prove that

(20)
$$\omega_i(\delta, f) = O\left(\left\{\frac{1}{p([\log(1/\delta)])\log p([\log(1/\delta)])}\right\}^N\right) \quad \text{as } \delta \to 0+,$$

for i = 1, ..., N.

Let $1/2^{2l_k} \le h < 1/2^{2l_{k-1}}$. Then it is evident that $p(2l_{k-1}) \le p([\log_2(1/h)]) \le p(2l_k) \le cp(l_k).$

Let $s \ge k$. Then we get

(21)
$$|g_s(x_1, \dots, x_{i-1}, x_i + h, x_{i+1}, \dots, x_N) - g_s(x)| \le \left(\frac{1}{p(l_s)\log p(l_s)}\right)^N$$

 $\le \left(\frac{1}{p(l_k)\log p(l_k)}\right)^N = O\left(\left\{\frac{1}{p(\log(1/h)])\log p(\log(1/h)]}\right\}^N\right).$

. .

Let now
$$s < k$$
. Then from the assumption on f_s we obtain
(22) $|a|(m, m, m, k, k, m, m, k) = f_s(m, m, k)$

(22)
$$|g_{s}(x_{1},...,x_{i-1},x_{i}+h,x_{i+1},...,x_{N}) - g_{s}(x_{1},...,x_{N})| = \left(\frac{1}{p(l_{s})\log p(l_{s})}\right)^{N} |f_{s}(x_{i}+h) - f_{s}(x_{i})| \prod_{q\neq i} |f_{s}(x_{q})| \le c \frac{h2^{2l_{s}}}{(p(l_{s})\log p(l_{s}))^{N}} = O\left(\left\{\frac{1}{p([\log(1/h)])\log p([\log(1/h)])}\right\}^{N}\right).$$

From (21) and (22) we obtain (20).

Finally, we show that the N-dimensional Walsh–Fourier series of f_0 diverges at $\mathbf{\widetilde{0}} = (0, \dots, 0)$. Indeed,

$$(23) \quad S_{q_{l_k},...,q_{l_k}}(f_0,\widetilde{\mathbf{0}}) - f_0(\widetilde{\mathbf{0}}) = \int_{[0,1]^N} f_0(\mathbf{u}) \prod_{i=1}^N D_{q_{l_k}}(u_i) \, d\mathbf{u}$$
$$= \int_{[0,2^{-2l_k-2}]^N} f_0(\mathbf{u}) \prod_{i=1}^N D_{q_{l_k}}(u_i) \, d\mathbf{u}$$
$$+ \int_{[2^{-2l_k-2},2^{-2l_{k-1}-2}]^N} f_0(\mathbf{u}) \prod_{i=1}^N D_{q_{l_k}}(u_i) \, d\mathbf{u}$$
$$+ \int_{[2^{-2l_{k-1}-2},1]^N} f_0(\mathbf{u}) \prod_{i=1}^N D_{q_{l_k}}(u_i) \, d\mathbf{u}$$
$$= I + II + III.$$

From the construction of f_0 we obtain

(24) |I| = o(1) as $k \to \infty$.

Since

$$D_{2^n}(x) = \begin{cases} 2^n & \text{if } x \in [0, 2^{-n}), \\ 0 & \text{if } x \in [2^{-n}, 1), \end{cases}$$

for $x \in [2^{-2l_{k-1}-2}, 1)$ we obtain

$$D_{q_{l_k}}(x) = w_{q_{l_k} - q_{l_{k-1}}}(x)D_{q_{l_{k-1}} + 1}(x).$$

Then by (13) we get

(25) $III = o(1) \quad \text{as } k \to \infty.$

From the construction of f_0 we have

$$(26) \quad |II| = \left| \int_{[2^{-2l_k - 2}, 2^{-2l_{k-1} - 2}]^N} f_0(\mathbf{u}) \prod_{i=1}^N D_{q_{l_k}}(u_i) \, d\mathbf{u} \right|$$
$$= \left(\frac{1}{p(l_k) \log p(l_k)} \right)^N \prod_{i=1}^N \left| \sum_{2^{-2l_k - 2}}^{2^{-2l_k - 1} - 2} f_k(u_i) D_{q_{l_k}}(u_i) \, du_i \right|$$
$$= \left(\frac{1}{p(l_k) \log p(l_k)} \right)^N \prod_{i=1}^N \sum_{2^{-2l_k - 2}}^{2^{-2l_k - 2}} \varphi_k(u_i) |D_{q_{l_k}}(u_i)| \, du_i$$
$$\ge c \left(\frac{1}{p(l_k) \log p(l_k)} \right)^N \prod_{i=1}^N \sum_{2^{-2l_k - 2}}^{2^{-2l_k - 2}} |D_{q_{l_k}}(u_i)| \, du_i.$$

From Lemma 3 we obtain

 $2^{[p(l_k)\log p(l_k)]-2l_k-2}$

(27)
$$\int_{2^{-2l_k-2}} |D_{q_{l_k}}(u_i)| \, du_i$$
$$= \sum_{i=1}^{[p(l_k)\log p(l_k)]} \int_{2^{i-2l_k-2}} |D_{q_{l_k}}(u_i)| \, du_i \ge cp(l_k)\log p(l_k).$$

Combining (26) and (27) we have

(28)
$$|II| \ge c \left(\frac{1}{p(l_k)\log p(l_k)}\right)^N (p(l_k)\log p(l_k))^N \ge c > 0.$$

Owing to (23), (24), (25) and (28) we obtain $\overline{\lim_{k\to\infty}} |S_{q_{l_k,\dots,q_{l_k}}}(f_0,\widetilde{\mathbf{0}}) - f_0(\widetilde{\mathbf{0}})| = c > 0.$

The proof of Theorem 2 is complete.

References

- R. D. Getzadze, Convergence and divergence of multiple orthogonal Fourier series in C and L metrics, Soobshch. Akad. Nauk Gruzin. SSSR 106 (1982), 489–491 (in Russian).
- [2] —, On the convergence and divergence of multiple Fourier series with respect to the Walsh-Paley system in the spaces C and L, Anal. Math. 13 (1987), 29–36.
- U. Goginava, On the uniform convergence of multiple trigonometric Fourier series, East J. Approx. 5 (1999), 253–266.
- [4] —, On the convergence and summability of N-dimensional Fourier series with respect to the Walsh-Paley systems in L^p([0,1]^N), p ∈ [1,+∞] spaces, Georg. Math. J. 7 (2000), 1–20.
- [5] G. H. Hardy, On double Fourier series, Quart. J. Math. 37 (1906), 53-79.
- [6] C. Jordan, Sur les séries de Fourier, C. R. Acad. Sci. Paris 92 (1881), 228–230.
- [7] H. Kita and K. Yoneda, A generalization of bounded variation, Acta Math. Hungar. 56 (1990), 229–238.
- [8] F. Móricz, On the uniform convergence and L¹-convergence of double Walsh-Fourier series, Studia Math. 102 (1992), 225–237.
- [9] R. E. A. C. Paley, A remarkable series of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241–279.
- [10] V. I. Tevzadze, On the uniform convergence of Walsh-Fourier series, in: Some Problems of Function Theory, Tbilisi, 3 (1986), 84–117 (in Russian).

Department of Mechanics and Mathematics Tbilisi State University Chavchavadze St. 1, Tbilisi 0128, Georgia E-mail: z_goginava@hotmail.com

> Received June 27, 2000 Revised version January 4, 2005

(4552)