Uniform convergence of N -dimensional Walsh-Fourier series

by
U. Goginava (Tbilisi)

Abstract

We establish conditions on the partial moduli of continuity which guarantee uniform convergence of the N-dimensional Walsh-Fourier series of functions f from the class $C_{W}\left(I^{N}\right) \cap \bigcap_{i=1}^{N} B V_{i,\{p(n)\}}$, where $p(n) \uparrow \infty$ as $n \rightarrow \infty$.

1. Definitions and notation. Let $I^{N}=[0,1)^{N}$ be the unit cube in the N-dimensional Euclidean space \mathbb{R}^{N}. The elements of \mathbb{R}^{N} are denoted by $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$. For any $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{N}\right)$ the vector $\left(x_{1} \oplus y_{1}, \ldots, x_{N} \oplus y_{N}\right) \in \mathbb{R}^{N}$ is denoted by $\mathbf{x} \oplus \mathbf{y}$, where \oplus denotes dyadic addition.

Let $M=\{1, \ldots, N\}, B=\left\{s_{1}, \ldots, s_{r}\right\}, B_{1}=\left\{s_{r_{1}}, \ldots, s_{r_{j}}\right\}, s_{k}<s_{k+1}$, $s_{r_{i}}<s_{r_{i+1}}, k=1, \ldots, r-1, i=1, \ldots, j-1, B_{1} \subset B \subset M, B^{\prime}=M \backslash B$, $B_{1}^{\prime}=M \backslash B_{1}$. For an integer n the vector $(n, \ldots, n) \in \mathbb{R}^{N}$ is denoted by $\widetilde{\mathbf{n}}$. The cardinality of B is denoted by $|B|$. For any $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$ and $B \subset M$, let \mathbf{x}_{B} denote the vector in \mathbb{R}^{N} whose coordinates with indices from B coincide with the corresponding coordinates of \mathbf{x}, and the coordinates with indices from B^{\prime} are zero. Note that $\mathbf{x}_{M}=\mathbf{x}$ and $\mathbf{x}_{\emptyset}=\widetilde{\mathbf{0}}$.

For later convenience we introduce the following notation:

$$
\begin{aligned}
& \sum_{\mathbf{i}_{B}=\mathbf{p}_{B}}^{\mathbf{m}_{B}} \text { for } \\
& \sum_{i_{s_{1}}=p_{s_{1}}}^{m_{s_{1}}} \ldots \sum_{i_{s_{r}}=p_{s_{r}}}^{m_{s_{r}}}, \\
& \frac{\mathbf{q}}{\mathbf{2}^{\mathbf{k}}} \text { for } \quad\left(\frac{q_{1}}{2^{k_{1}}}, \ldots, \frac{q_{N}}{2^{k_{N}}}\right) \\
& d \mathbf{u} \text { for } \\
& d u_{1} \cdots d u_{N}
\end{aligned}
$$

Denote by $C\left(I^{N}\right)$ the space of all real-valued functions continuous on I^{N} that can be extended to functions 1 -periodic in each variable on \mathbb{R}^{N}. If $f \in$

[^0]$C\left(I^{N}\right)$ then the function
$$
\omega_{i}(\delta, f)=\sup _{\mathbf{x}} \sup _{\left|h_{i}\right| \leq \delta}\left|f\left(\mathbf{x}+\mathbf{h}_{\{i\}}\right)-f(\mathbf{x})\right|, \quad i=1, \ldots, N
$$
is called a partial modulus of continuity of f.
Denote by $C_{W}\left(I^{N}\right)$ the space of all real-valued functions uniformly W continuous on I^{N} that extend to functions 1-periodic in each variable, with the norm
$$
\|f\|_{C_{W}}=\sup _{\mathbf{x} \in I^{N}}|f(\mathbf{x})|
$$

Let

$$
\dot{\Delta}^{\left\{s_{i}\right\}}\left(f, \mathbf{x}, \mathbf{h}_{\left\{s_{i}\right\}}\right)=f\left(\mathbf{x} \oplus \mathbf{h}_{\left\{s_{i}\right\}}\right)-f(\mathbf{x}), \quad i=1, \ldots, r
$$

Successive application of such partial difference operators leads to the definitions:

$$
\dot{\Delta}^{B}\left(f, \mathbf{x}, \mathbf{h}_{B}\right)=\dot{\Delta}^{\left\{s_{r}\right\}}\left(\dot{\Delta}^{B \backslash\left\{s_{r}\right\}}\left(f, \cdot, \mathbf{h}_{B \backslash\left\{s_{r}\right\}}\right), \mathbf{x}, \mathbf{h}_{\left\{s_{r}\right\}}\right),
$$

and

$$
\dot{\omega}_{B}(\delta, f)=\sup _{0 \leq h_{i}<\delta_{i}, i \in B}\left\|\dot{\Delta}^{B}\left(f, \cdot, \mathbf{h}_{B}\right)\right\|_{C_{W}}
$$

Definition 1. Suppose that the function f is bounded on I^{N} and extends to a function 1-periodic in each variable. Let $1 \leq p<\infty$. We say that f is of bounded partial p-variation (written $f \in P B V_{p}$) if for any $i=1, \ldots, N$,

$$
\begin{aligned}
V_{i}(f)=\sup _{x_{j}, j \in M \backslash\{i\}} \sup _{n \geq 1} \sup _{\pi^{(i)}} \sum_{k=0}^{n-1} & \mid f\left(x_{1}, \ldots, x_{i-1}, x_{i}^{(2 k)}, x_{i+1}, \ldots, x_{N}\right) \\
& -\left.f\left(x_{1}, \ldots, x_{i-1}, x_{i}^{(2 k+1)}, x_{i+1}, \ldots, x_{N}\right)\right|^{p}<\infty
\end{aligned}
$$

where $\pi^{(i)}$ is an arbitrary partition $0 \leq x_{i}^{(0)}<x_{i}^{(1)} \leq x_{i}^{(2)}<\cdots \leq x_{i}^{(2 n-2)}<$ $x_{i}^{(2 n-1)} \leq 1$.

Let f be a function defined on \mathbb{R}^{N} which is 1-periodic relative to each variable. $\Pi^{(i)}$ is said to be a partition with period 1 if

$$
\Pi^{(i)}: \cdots<t_{-1}^{(i)}<t_{0}^{(i)}<t_{1}^{(i)}<\cdots<t_{m_{i}}^{(i)}<t_{m_{i}+1}^{(i)}<\cdots
$$

satisfies $t_{k+m_{i}}^{(i)}=t_{k}^{(i)}+1$ for $k \in \mathbb{Z}$, where m_{i} is a positive integer.
DEFINITION 2. Let $1 \leq p(n) \uparrow p$ as $n \rightarrow \infty$, where $1 \leq p \leq \infty$. We say that a function f on \mathbb{R}^{N} belongs to the class $B V_{i,\{p(n)\}}$ if

$$
\begin{aligned}
& V_{i,\{p(n)\}}(f)=\sup _{x_{s}, s \in M \backslash\{i\}} \sup _{n \geq 1} \sup _{\Pi^{(i)}}\left\{\left(\sum_{j=1}^{m_{i}} \mid f\left(x_{1}, \ldots, x_{i-1}, t_{j}^{(i)}, x_{i+1}, \ldots, x_{N}\right)\right.\right. \\
& \left.\left.\quad-\left.f\left(x_{1}, \ldots, x_{i-1}, t_{j-1}^{(i)}, x_{i+1}, \ldots, x_{N}\right)\right|^{p(n)}\right)^{1 / p(n)}: \varrho\left(\Pi^{(i)}\right) \geq \frac{1}{2^{n}}\right\}<\infty
\end{aligned}
$$

where

$$
\varrho\left(\Pi^{(i)}\right)=\inf _{k}\left|t_{k}^{(i)}-t_{k-1}^{(i)}\right| .
$$

For $N=1$ see $[7]$.
When $p(n)=p$ for all n, it is easy to see that $\bigcap_{i=1}^{N} B V_{i,\{p(n)\}}$ coincides with $P B V_{p}$.

Let r_{0} be a function on \mathbb{R} defined by

$$
r_{0}(x)=\left\{\begin{array}{ll}
1 & \text { if } x \in[0,1 / 2), \\
-1 & \text { if } x \in[1 / 2,1),
\end{array} \quad r_{0}(x+1)=r_{0}(x)\right.
$$

The Rademacher system is defined by

$$
r_{n}(x)=r_{0}\left(2^{n} x\right), \quad n \geq 1, x \in[0,1)
$$

Let w_{0}, w_{1}, \ldots represent the Walsh functions, i.e. $w_{0}(x)=1$ and if $k=$ $2^{n_{1}}+\cdots+2^{n_{s}}$ is a positive integer with $n_{1}>\cdots>n_{s}$ then

$$
w_{k}(x)=r_{n_{1}}(x) \cdots r_{n_{s}}(x)
$$

The idea of using products of Rademacher functions to define the Walsh system comes from Paley [9].

The Walsh-Dirichlet kernel is defined by

$$
D_{n}(x)=\sum_{k=0}^{n-1} w_{k}(x)
$$

The rectangular partial sums of the N-dimensional Walsh-Fourier series are defined as follows:

$$
S_{\mathrm{m}}(f, \mathbf{x})=\sum_{\nu=\widetilde{\mathbf{0}}}^{\mathbf{m}-\widetilde{\mathbf{1}}} a_{\nu} \prod_{i \in M} w_{\nu_{i}}\left(x_{i}\right)
$$

where

$$
a_{\nu}=a_{\nu_{1}, \ldots, \nu_{N}}(f)=\int_{I^{N}} f(\mathbf{x}) \prod_{i \in M} w_{\nu_{i}}\left(x_{i}\right) d \mathbf{x}
$$

2. Formulation of the problem. Getzadze $[1,2]$ considered the question of uniform convergence for N-dimensional Walsh-Fourier series in terms of partial moduli of continuity. He proved the following

Theorem A. (a) Let $f \in C\left(I^{N}\right)$. If there exists $i_{0} \in M$ such that

$$
\omega_{i_{0}}(\delta, f)=o\left(\left(\frac{1}{\log (1 / \delta)}\right)^{N}\right) \quad \text { as } \delta \rightarrow 0+
$$

and

$$
\omega_{i}(\delta, f)=O\left(\left(\frac{1}{\log (1 / \delta)}\right)^{N}\right) \quad \text { as } \delta \rightarrow 0+, 1 \leq i \leq N, i \neq i_{0}
$$

then the N-dimensional Walsh-Fourier series of f converges uniformly in the sense of Pringsheim $\left(^{1}\right)$.
(b) There exists a function $f_{0} \in C\left(I^{N}\right)$ such that

$$
\omega_{i}\left(\delta, f_{0}\right)=O\left(\left(\frac{1}{\log (1 / \delta)}\right)^{N}\right) \quad \text { as } \delta \rightarrow 0+, i=1, \ldots, N
$$

and the N-dimensional Walsh-Fourier cubic partial sums of f diverge in the metric of C.

In 1881 Jordan [6] introduced a class of functions of bounded variation and, applying it to the theory of trigonometric Fourier series, he proved that if a continuous function has bounded variation, then its trigonometric Fourier series converges uniformly. In 1906 G. Hardy [5] generalized the Jordan criterion to double Fourier series and introduced the notion of bounded variation for functions of two variables. He proved that if a continuous function of two variables has bounded variation (in the sense of Hardy), then its trigonometric Fourier series converges uniformly in the sense of Pringsheim.

Móricz [8] proved that if $f \in C_{W}\left(I^{2}\right)$ and the function f is of bounded variation in Hardy's sense [5], then its two-dimensional Walsh-Fourier series is uniformly convergent to f.

For N-dimensional Walsh-Fourier series the author [4] proved that if $f \in$ $C_{W}\left(I^{N}\right)$ and the function f is of bounded partial p-variation $\left(f \in P B V_{p}\right)$ for some $p \in[1, \infty)$, then the N-dimensional Walsh-Fourier series is uniformly convergent to f. The analogous result for the N-dimensional trigonometric Fourier series was verifed by the author [3].

On the basis of the above facts we can formulate the following problem:
Let $p(n) \uparrow \infty$ as $n \rightarrow \infty$ and $f \in C_{W}\left(I^{N}\right) \cap \bigcap_{i=1}^{N} B V_{i,\{p(n)\}}$. What conditions on the partial moduli of continuity ensure the uniform convergence in the Pringsheim sense of the N-dimensional Walsh-Fourier series of the function f ?

A solution of this problem is given in Theorems 1 and 2.
3. Formulation of the main results. The main result of this paper is

THEOREM 1. Let $p(n) \uparrow \infty$ as $n \rightarrow \infty$ and $f \in C_{W}\left(I^{N}\right) \cap \bigcap_{i=1}^{N} B V_{i,\{p(n)\}}$. If there exists $i_{0} \in M$ such that

$$
\dot{\omega}_{\left\{i_{0}\right\}}\left(1 / 2^{k}, f\right)=o\left(\left(\frac{1}{p(k+1) \log p(k+1)}\right)^{N}\right) \quad \text { as } k \rightarrow \infty
$$

[^1]and
\[

$$
\begin{aligned}
\dot{\omega}_{\{i\}}\left(1 / 2^{k}, f\right)=O\left(\left(\frac{1}{p(k+1) \log p(k+1)}\right)^{N}\right) \\
\text { as } k \rightarrow \infty, 1 \leq i \leq N, i \neq i_{0}
\end{aligned}
$$
\]

then the N-dimensional Walsh-Fourier series of f converges uniformly in Pringsheim's sense.

Corollary 1. Let $p(n) \uparrow \infty$ as $n \rightarrow \infty$ and $f \in C\left(I^{N}\right) \cap \bigcap_{i=1}^{N} B V_{i,\{p(n)\}}$. If there exists $i_{0} \in M$ such that

$$
\omega_{i_{0}}\left(1 / 2^{k}, f\right)=o\left(\left(\frac{1}{p(k) \log p(k)}\right)^{N}\right) \quad \text { as } k \rightarrow \infty
$$

and

$$
\omega_{i}\left(1 / 2^{k}, f\right)=O\left(\left(\frac{1}{p(k) \log p(k)}\right)^{N}\right) \quad \text { as } k \rightarrow \infty, 1 \leq i \leq N, i \neq i_{0}
$$

then the N-dimensional Walsh-Fourier series of f converges uniformly in Pringsheim's sense.

Corollary 2. Let $p(n) \uparrow \infty$ as $n \rightarrow \infty$ and $p(2 m) \leq c p(m)$ for all $m \geq 1$, where $c>0$ is a constant, and let $f \in C\left(I^{N}\right) \cap \bigcap_{i=1}^{N} B V_{i,\{p(n)\}}$. If there exists $i_{0} \in M$ such that

$$
\omega_{i_{0}}(\delta, f)=o\left(\left(\frac{1}{p([\log (1 / \delta)]) \log p([\log (1 / \delta)])}\right)^{N}\right) \quad \text { as } \delta \rightarrow 0+
$$

and

$$
\begin{aligned}
& \omega_{i}(\delta, f)=O\left(\left(\frac{1}{p([\log (1 / \delta)]) \log p([\log (1 / \delta)])}\right)^{N}\right) \\
& \text { as } \delta \rightarrow 0+, 1 \leq i \leq N, i \neq i_{0}
\end{aligned}
$$

then the N-dimensional Walsh-Fourier series of f converges uniformly in Pringsheim's sense.

Theorem 2. Let $p(n) \uparrow \infty$ and $p(n) \log p(n)=o(n)$ as $n \rightarrow \infty$, and $p(2 m) \leq c p(m)$ for all $m \geq 1$, where $c>0$ is a constant. Then for any $N \geq 2$ there exists a function $f_{0} \in C\left(I^{N}\right) \cap \bigcap_{i=1}^{N} B V_{i,\{p(n)\}}$ such that

$$
\omega_{i}\left(\delta, f_{0}\right)=O\left(\left(\frac{1}{p([\log (1 / \delta)]) \log p([\log (1 / \delta)])}\right)^{N}\right) \quad \text { as } \delta \rightarrow 0+, i=1, \ldots, N,
$$

and the N-dimensional Walsh-Fourier cubic partial sums of f_{0} diverge at some point.
4. Auxiliary propositions. We shall need the following.

Lemma 1. Let $f \in C_{W}\left(I^{N}\right)$. Assume that for any nonempty $B \subset M$ we have

$$
V_{\mathbf{k}_{B}}(f, \mathbf{u})=\sum_{\mathbf{q}_{B}=\widetilde{\mathbf{1}}_{B}}^{\left(2^{\mathbf{k}}-\widetilde{\mathbf{1}}\right)_{B}}\left|\dot{j}^{B}\left(f, \mathbf{u} \oplus\left(\frac{2 \mathbf{q}}{\mathbf{2}^{\mathbf{k}+\tilde{1}}}\right)_{B},\left(\frac{\widetilde{\mathbf{1}}}{\mathbf{2}^{\mathbf{k}+\tilde{1}}}\right)_{B}\right)\right| \prod_{j \in B} \frac{1}{q_{j}} \rightarrow 0
$$

(as $k_{i} \rightarrow \infty$) uniformly with respect to $u_{i}, i \in M$. Then the N-dimensional Walsh-Fourier series of f converges uniformly in Pringsheim's sense.

For $N=2$ the proof can be found in [8]. Using the method of [8], we can easily extend this criterion to N -dimensional Walsh-Fourier series.

Lemma 2. Let $a_{i_{1}}, \ldots, a_{i_{N}}$ and $b_{i_{1}, \ldots, i_{N}}$ be real numbers. Then

$$
\begin{aligned}
\sum_{\mathbf{i}_{M}=\tilde{\mathbf{1}}_{M}}^{\mathbf{m}_{M}}\left(\prod_{j \in M} a_{i_{j}}\right) b_{i_{1}, \ldots, i_{N}}= & \sum_{B \subset M}\left(\prod_{j \in B^{\prime}} a_{m_{j}}\right) \sum_{\mathbf{i}_{B}=\tilde{\mathbf{1}}_{B}}^{\mathbf{m}_{B}-\tilde{\mathbf{1}}_{B}} \prod_{j \in B}\left(a_{i_{j}}-a_{i_{j}+1}\right) \\
& \times \sum_{\mathbf{k}_{B}=\widetilde{\mathbf{1}}_{B}}^{\mathbf{i}_{B}} \sum_{\mathbf{k}_{B^{\prime}}=\tilde{\mathbf{1}}_{B^{\prime}}}^{\mathbf{m}_{B^{\prime}}} b_{k_{1}, \ldots, k_{N}}
\end{aligned}
$$

For $N=1$ this is the well known Abel transformation, and for $N=2$ it is called the Hardy transformation. The validity of the above equality for any $N \geq 3$ can be easily verified by induction.

Lemma 3. We have

$$
\int_{2^{i-2 n-3}}^{2^{i-2 n-2}}\left|D_{q_{n}}(t)\right| d t \geq c>0, \quad i=1, \ldots, 2 n+2,
$$

where

$$
q_{n}=2^{2 n+1}+2^{2 n-1}+\cdots+2^{3}+2^{1}+2^{0}, \quad n=1,2, \ldots
$$

The proof can be found in [10].

5. Proofs of the main results

Proof of Theorem 1. By Lemma 1, it suffices to show that for all nonempty $B \subset M$,

$$
\sum_{\mathbf{q}_{B}=\widetilde{\mathbf{1}}_{B}}^{\left(\mathbf{2}^{k}-\widetilde{\mathbf{1}}\right)_{B}}\left|\dot{\Delta}^{B}\left(f, \mathbf{u} \oplus\left(\frac{2 \mathbf{q}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{B},\left(\frac{\widetilde{\mathbf{1}}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{B}\right)\right| \prod_{j \in B} \frac{1}{q_{j}} \rightarrow 0
$$

uniformly with respect to $u_{i}, i \in M$, as $k_{i} \rightarrow \infty, i \in B$.

From Lemma 2, we write

$$
\begin{align*}
& \sum_{\mathbf{q}_{B}=\widetilde{\mathbf{1}}_{B}}^{\left(\mathbf{2}^{k}-\widetilde{\mathbf{1}}\right)_{B}}\left|\dot{\Delta}^{B}\left(f, \mathbf{u} \oplus\left(\frac{2 \mathbf{q}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{B},\left(\frac{\widetilde{\mathbf{1}}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{B}\right)\right| \prod_{j \in B} \frac{1}{q_{j}} \tag{1}\\
& =\sum_{B_{1} \subset B, B_{1} \neq \emptyset}\left(\prod_{i \in B \backslash B_{1}} \frac{1}{2^{k_{i}}-1}\right)_{\mathbf{q}_{B_{1}}=\widetilde{\mathbf{1}}_{B_{1}}}^{\left(2^{k}-\widetilde{\mathbf{2}}\right)_{B_{1}}} \prod_{j \in B_{1}}\left(\frac{1}{q_{j}}-\frac{1}{q_{j}+1}\right) \\
& \times \sum_{\mathbf{1}_{B_{1}}=\tilde{\mathbf{1}}_{B_{1}}}^{\mathbf{q}_{B_{1}}} \sum_{\mathbf{l}_{B \backslash B_{1}}=\tilde{\mathbf{1}}_{B \backslash B_{1}}}^{\left(\mathbf{2}^{k}-\tilde{\mathbf{1}}\right)_{B \backslash B_{1}}}\left|\dot{\Delta}^{B}\left(f, \mathbf{u} \oplus\left(\frac{2 \mathbf{l}}{\mathbf{2}^{\mathbf{k}+\tilde{\mathbf{1}}}}\right)_{B},\left(\frac{\tilde{\mathbf{1}}}{\mathbf{2}^{\mathbf{k}+\tilde{\mathbf{1}}}}\right)_{B}\right)\right| \\
& +\prod_{i \in B} \frac{1}{2^{k_{i}}-1} \sum_{\mathbf{1}_{B}=\widetilde{\mathbf{1}}_{B}}^{\left(\mathbf{2}^{k}-\widetilde{\mathbf{1}}\right)_{B}}\left|\dot{\Delta}^{B}\left(f, \mathbf{u} \oplus\left(\frac{2 \mathbf{l}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{B},\left(\frac{\widetilde{\mathbf{1}}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{B}\right)\right| \\
& =\sum_{B_{1} \subset B, B_{1} \neq \emptyset} I_{B}\left(f, B_{1}, \mathbf{u}\right)+I_{B}(f, \emptyset, \mathbf{u}) .
\end{align*}
$$

Since for all nonempty $B \subset M$,

$$
\begin{equation*}
\left|\dot{\Delta}^{B}\left(f, \mathbf{u} \oplus\left(\frac{2 \mathbf{l}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{B},\left(\frac{\tilde{\mathbf{1}}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{B}\right)\right| \leq \dot{\omega}_{B}\left(\frac{1}{2^{k}}, f\right), \tag{2}
\end{equation*}
$$

we have

$$
\begin{equation*}
I_{B}(f, \emptyset, \mathbf{u})=O\left(\dot{\omega}_{B}\left(\frac{1}{2^{k}}, f\right)\right) \tag{3}
\end{equation*}
$$

It is evident that

$$
\begin{align*}
& I_{B}\left(f, B_{1}, \mathbf{u}\right)=O\left(\left.\sum_{\mathbf{q}_{B_{1}}=\widetilde{\mathbf{1}}_{B_{1}}}^{\left(2^{k}-\widetilde{\mathbf{2}}\right)_{B_{1}}} \prod_{j \in B_{1}} \frac{1}{q_{j}^{2}} \sup _{u_{i}, i \in B_{1}^{\prime}} \sum_{\mathbf{1}_{B_{1}}=\widetilde{\mathbf{1}}_{B_{1}}}^{\mathbf{q}_{B_{1}}} \right\rvert\, \dot{j}^{B_{1}}(f, \mathbf{u}\right. \tag{4}\\
&\left.\left.\oplus\left(\frac{2 \mathbf{1}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{B_{1}},\left(\frac{\widetilde{\mathbf{1}}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{B_{1}}\right) \mid\right)
\end{align*}
$$

Since for all nonempty $B_{1} \subset M$, and all $j \in B_{1}$,
(5) $\sup _{u_{i}, i \in B_{1}^{\prime}} \sum_{\mathbf{1}_{B_{1}}=\widetilde{\mathbf{1}}_{B_{1}}}^{\mathbf{q}_{B_{1}}}\left|\dot{\Delta}^{B_{1}}\left(f, \mathbf{u} \oplus\left(\frac{2 \mathbf{l}}{\mathbf{2}^{\mathbf{k + 1}}}\right)_{B_{1}},\left(\frac{\widetilde{\mathbf{1}}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{B_{1}}\right)\right|$

$$
=O\left(\prod_{i \in B_{1} \backslash\{j\}} q_{i} \sup _{u_{i}, i \in M \backslash\{j\}} \sum_{l_{j}=1}^{q_{j}}\left|\dot{\Delta}^{\{j\}}\left(f, \mathbf{u}, \oplus\left(\frac{2 \mathbf{l}}{\mathbf{2}^{\mathbf{k}+\tilde{\mathbf{1}}}}\right)_{\{j\}},\left(\frac{\widetilde{\mathbf{1}}}{\mathbf{2}^{\mathbf{k}+\tilde{\mathbf{1}}}}\right)_{\{j\}}\right)\right|\right),
$$

we have
(6) $\sup _{u_{i}, i \in B_{1}^{\prime}} \sum_{\mathbf{1}_{B_{1}}=\widetilde{\mathbf{1}}_{B_{1}}}^{\mathbf{q}_{B_{1}}}\left|\dot{j}^{B_{1}}\left(f, \mathbf{u} \oplus\left(\frac{2 \mathbf{l}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{B_{1}},\left(\frac{\widetilde{\mathbf{1}}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{B_{1}}\right)\right|$

$$
\begin{aligned}
& =\left[\left(\sup _{u_{i}, i \in B_{1}^{\prime}} \sum_{\mathbf{1}_{B_{1}}=\widetilde{\mathbf{1}}_{B_{1}}}^{\mathbf{q}_{B_{1}}}\left|\dot{\Delta}^{B_{1}}\left(f, \mathbf{u} \oplus\left(\frac{2 \mathbf{l}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{B_{1}},\left(\frac{\widetilde{\mathbf{1}}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{B_{1}}\right)\right|\right)^{\left|B_{1}\right|}\right]^{1 /\left|B_{1}\right|} \\
& =O\left(\prod _ { j \in B _ { 1 } } q _ { j } ^ { 1 - 1 / | B _ { 1 } | } \left[\sup _{u_{i}, i \in M \backslash\{j\}} \sum_{l_{j}=1}^{q_{j}} \mid \dot{\Delta}^{\{j\}}(f, \mathbf{u}\right.\right. \\
& \left.\left.\left.\oplus\left(\frac{2 \mathbf{l}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{\{j\}},\left(\frac{\widetilde{\mathbf{1}}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{\{j\}}\right) \mid\right]^{1 /\left|B_{1}\right|}\right)
\end{aligned}
$$

By (4) and (6) we obtain

$$
\begin{array}{r}
I_{B}\left(f, B_{1}, \mathbf{u}\right)=O\left(\prod _ { j \in B _ { 1 } } \sum _ { q _ { j } = 1 } ^ { 2 ^ { k _ { i } - 2 } } \frac { 1 } { q _ { j } ^ { 1 + 1 / | B _ { 1 } | } } \left[\sup _{u_{i}, i \in M \backslash\{j\}} \sum_{l_{j}=1}^{q_{j}} \mid \dot{\Delta}^{\{j\}}(f, \mathbf{u}\right.\right. \tag{7}\\
\left.\left.\left.\oplus\left(\frac{2 \mathbf{l}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{\{j\}},\left(\frac{\widetilde{\mathbf{1}}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{\{j\}}\right) \mid\right]^{1 /\left|B_{1}\right|}\right)
\end{array}
$$

Define

$$
\chi\left(k_{j}, B_{1}\right)=4^{\left|B_{1}\right| p\left(k_{j}+1\right) \log _{2} p\left(k_{j}+1\right)} .
$$

If we apply Hölder's inequality, from (7) we get

$$
\begin{align*}
& I_{B}\left(f, B_{1}, \mathbf{u}\right)= O\left(\prod _ { j \in B _ { 1 } } \left\{\sum _ { q _ { j } = 1 } ^ { \chi (k _ { j } , B _ { 1 }) } \frac { 1 } { q _ { j } ^ { 1 + 1 / | B _ { 1 } | } } \left[\sup _{u_{i}, i \in M \backslash\{j\}} \sum_{l_{j}=1}^{q_{j}} \mid \dot{b}^{\{j\}}(f, \mathbf{u}\right.\right.\right. \tag{8}\\
&\left.\left.\oplus\left(\frac{2 \mathbf{l}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{\{j\}},\left(\frac{\widetilde{\mathbf{1}}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{\{j\}}\right) \mid\right]^{1 /\left|B_{1}\right|} \\
&+ \sum_{q_{j}=\chi\left(k_{j}, B_{1}\right)+1}^{2^{k_{j}-2}} \frac{1}{q_{j}^{1+1 /\left|B_{1}\right|}}\left[\sup _{u_{i}, i \in M \backslash\{j\}} \sum_{l_{j}=1}^{q_{j}} \mid \dot{山}^{\{j\}}(f, \mathbf{u}\right. \\
&\left.\left.\left.\left.\oplus\left(\frac{2 \mathbf{l}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{\{j\}},\left(\frac{\widetilde{\mathbf{1}}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{\{j\}}\right) \mid\right]^{1 /\left|B_{1}\right|}\right\}\right)
\end{align*}
$$

$$
\begin{aligned}
&= O\left(\prod _ { j \in B _ { 1 } } \left\{\left(\dot{\omega}_{\{j\}}\left(\frac{1}{2^{k_{j}}}, f\right)\right)^{1 /\left|B_{1}\right|} \log \chi\left(k_{j}, B_{1}\right)\right.\right. \\
&+\sum_{q_{j}=\chi\left(k_{j}, B_{1}\right)+1} \frac{1}{q_{j}^{1+1 /\left|B_{1}\right|}}\left(\left[\sup _{u_{i}, i \in M \backslash\{j\}} \sum_{l_{j}=1}^{2_{j}} \mid \dot{\Delta}^{\{j\}}(f, \mathbf{u}\right.\right. \\
&\left.\left.\left.\left.\left.\oplus\left(\frac{2 \mathbf{l}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{\{j\}},\left(\frac{\widetilde{\mathbf{1}}}{\mathbf{2}^{\mathbf{k}+\widetilde{\mathbf{1}}}}\right)_{\{j\}}\right)\left.\right|^{p\left(k_{j}+1\right)}\right]^{1 / p\left(k_{j}+1\right)} q_{j}^{1-1 / p\left(k_{j}+1\right)}\right)^{1 /\left|B_{1}\right|}\right\}\right) .
\end{aligned}
$$

By (8) and the assumption of the theorem we obtain

$$
\begin{align*}
I_{B}\left(f, B_{1}, \mathbf{u}\right)= & O\left(\prod _ { j \in B _ { 1 } } \left\{\left(\dot{\omega}_{\{j\}}\left(\frac{1}{2^{k_{j}}}, f\right)\right)^{1 /\left|B_{1}\right|} \log \chi\left(k_{j}, B_{1}\right)\right.\right. \tag{9}\\
& \left.\left.+\sum_{q_{j}=\chi\left(k_{j}, B_{1}\right)+1}^{2^{k_{j}-2}} \frac{\left(V_{j,\{p(n)\}}(f)\right)^{1 /\left|B_{1}\right|}}{q_{j}^{1+1 /\left(\left|B_{1}\right| p\left(k_{j}+1\right)\right)}}\right\}\right) \\
= & O\left(\prod _ { j \in B _ { 1 } } \left\{\left(\dot{\omega}_{\{j\}}\left(\frac{1}{2^{k_{j}}}, f\right)\right)^{1 /\left|B_{1}\right|} \log \chi\left(k_{j}, B_{1}\right)\right.\right. \\
= & O\left(\prod_{j \in B_{1}}\left\{\left(\dot{\omega}_{\{j\}}\left(\frac{1}{2^{k_{j}}}, f\right)\right)^{1 /\left|B_{1}\right|} p\left(k_{j}+1\right) \log p\left(k_{j}+1\right)+\frac{1}{p\left(k_{j}+1\right)}\right\}\right)
\end{align*}
$$

Let $B_{1}=B=M$. Then by (9) and the assumption of the theorem we get

$$
\begin{align*}
I_{M}(f, M, \mathbf{u})=O\left(\prod_{j=1}^{N}\{ \right. & \left(\dot{\omega}_{\{j\}}\left(\frac{1}{2^{k_{j}}}, f\right)\right)^{1 / N} p\left(k_{j}+1\right) \log p\left(k_{j}+1\right) \tag{10}\\
& \left.\left.+\frac{1}{p\left(k_{j}+1\right)}\right\}\right)=o(1) \quad \text { as } k_{j} \rightarrow \infty, j \in M
\end{align*}
$$

Let $B_{1} \subset B \subset M$ and $\left|B_{1}\right|<N$. Then by (9) and the assumption of the theorem we get

$$
\begin{equation*}
I_{B}\left(f, B_{1}, \mathbf{u}\right) \tag{11}
\end{equation*}
$$

$$
\begin{gathered}
=O\left(\prod _ { j \in B _ { 1 } } \left\{\left(\dot{\omega}_{\{j\}}\left(\frac{1}{2^{k_{j}}}, f\right)\right)^{1 / N} p\left(k_{j}+1\right) \log p\left(k_{j}+1\right)\right.\right. \\
\left.\left.\times\left(\dot{\omega}_{\{j\}}\left(\frac{1}{2^{k_{j}}}, f\right)\right)^{1 /\left|B_{1}\right|-1 / N}+\frac{1}{p\left(k_{j}+1\right)}\right\}\right)=o(1) \quad \text { as } k_{j} \rightarrow \infty, j \in M .
\end{gathered}
$$

Owing to (1), (2), (10) and (11) the proof of the theorem is complete.
Proof of Theorem 2. Let $1<p\left(l_{1}\right) \log p\left(l_{1}\right) \leq 2 l_{1}+2$. Define the following closed intervals:

$$
E_{1, j}=\left[\frac{j}{2^{2 l_{1}+2}}, \frac{j+1}{2^{2 l_{1}+2}}\right], \quad j=1, \ldots, 2^{\left[p\left(l_{1}\right) \log p\left(l_{1}\right)\right]}-1
$$

Denote by $\varphi_{1, j}$ the function equal to zero outside this interval, 1 at its center and linear on each half-interval. Let

$$
\begin{gathered}
\varphi_{1}(x)=\sum_{j=1}^{2^{\left[p\left(l_{1}\right) \log p\left(l_{1}\right)\right]}-1} \varphi_{1, j}(x) \\
f_{1}(x)=\varphi_{1}(x) \operatorname{sgn} D_{q_{l_{1}}}(x), \quad f_{1}(x+l)=f_{1}(x), \quad l \in \mathbb{Z}
\end{gathered}
$$

where

$$
q_{l_{1}}=2^{2 l_{1}+1}+2^{2 l_{1}-1}+\cdots+2^{3}+2^{1}+2^{0}
$$

Suppose that the integers l_{1}, \ldots, l_{k-1} and 1-periodic functions f_{1}, \ldots \ldots, f_{k-1} are already defined. Then we define l_{k} to be an integer with the following properties:

$$
\begin{gather*}
l_{k}>l_{k-1} \\
\frac{2^{\left[p\left(l_{k}\right) \log p\left(l_{k}\right)\right]}}{2^{2 l_{k}+2}} \leq \frac{1}{2^{2 l_{k-1}+2}} \\
\frac{p\left(l_{k}\right) \log p\left(l_{k}\right)}{l_{k}} \leq 1 \tag{12}\\
\left.\sum_{s=1}^{k-1}\left(\frac{1}{p\left(l_{s}\right) \log p\left(l_{s}\right)}\right)^{N} \prod_{i=1}^{N}\right|_{\left[1 / 2^{2 l_{k-1}+2}, 1\right]} f_{s}\left(x_{i}\right) \tag{13}\\
\quad \times w_{q_{l_{k}}-q_{l_{k-1}}}\left(x_{i}\right) D_{q_{l_{k-1}}+1}\left(x_{i}\right) d x_{i} \left\lvert\, \leq \frac{1}{k}\right.
\end{gather*}
$$

where

$$
q_{l_{k}}=2^{2 l_{k}+1}+2^{2 l_{k}-1}+\cdots+2^{3}+2^{1}+2^{0} .
$$

Define

$$
E_{k, j}=\left[\frac{j}{2^{2 l_{k}+2}}, \frac{j+1}{2^{2 l_{k}+2}}\right], \quad j=1, \ldots, 2^{\left[p\left(l_{k}\right) \log p\left(l_{k}\right)\right]}-1
$$

Denote by $\varphi_{k, j}$ the function equal to zero outside this interval, 1 at its center and linear on each half-interval. Let

$$
\begin{gathered}
\varphi_{k}(x)=\sum_{j=1}^{2^{\left[p\left(l_{k}\right) \log p\left(l_{k}\right)\right]}-1} \varphi_{k, j}(x) \\
f_{k}(x)=\varphi_{k}(x) \operatorname{sgn} D_{q_{l_{k}}}(x), \quad f_{k}(x+l)=f_{k}(x), \quad l \in \mathbb{Z}
\end{gathered}
$$

Define

$$
f_{0}(\mathbf{x})=\sum_{k=1}^{\infty} g_{k}(\mathbf{x}), \quad f_{0}(\widetilde{\mathbf{0}})=0
$$

where

$$
g_{k}(\mathbf{x})=\left(\frac{1}{p\left(l_{k}\right) \log p\left(l_{k}\right)}\right)^{N} \prod_{i=1}^{N} f_{k}\left(x_{i}\right)
$$

It is evident that $f_{0} \in C\left(I^{N}\right)$. First we prove that $f_{0} \in B V_{i,\{p(n)\}}, i=$ $1, \ldots, N$. Let $\Pi^{(i)}: \cdots<t_{-1}^{(i)}<t_{0}^{(i)}<t_{1}^{(i)}<\cdots<t_{m_{i}}^{(i)}<\cdots$ be any partition with period 1 and $\varrho\left(\Pi^{(i)}\right) \geq 1 / 2^{n}$. For $n \geq 2 l_{1}+2$, we can choose integers l_{k-1} and l_{k} for which $2^{2 l_{k-1}+2} \leq 2^{n}<2^{2 l_{k}+2}$. Then

$$
p\left(2 l_{k-1}+2\right) \leq p(n) \leq p\left(2 l_{k}+2\right)
$$

Let $s>k$. Then it is evident that

$$
\begin{align*}
& \left(\sum_{j=1}^{m_{i}} \mid g_{s}\left(x_{1}, \ldots, x_{i-1}, t_{j}, x_{i+1}, \ldots, x_{N}\right)\right. \tag{14}\\
& \left.\quad-\left.g_{s}\left(x_{1}, \ldots, x_{i-1}, t_{j-1}, x_{i+1}, \ldots, x_{N}\right)\right|^{p(n)}\right)^{1 / p(n)} \\
&
\end{align*}
$$

Let now $s<k$. Then from the construction of the function f_{0} we obtain

$$
\begin{align*}
& \left(\sum_{j=1}^{m_{i}} \mid g_{s}\left(x_{1}, \ldots, x_{i-1}, t_{j}^{(i)}, x_{i+1}, \ldots, x_{N}\right)\right. \tag{15}\\
& \left.\quad-\left.g_{s}\left(x_{1}, \ldots, x_{i-1}, t_{j-1}^{(i)}, x_{i+1}, \ldots, x_{N}\right)\right|^{p(n)}\right)^{1 / p(n)} \\
& =\left(\frac{1}{p\left(l_{s}\right) \log p\left(l_{s}\right)}\right)^{N}\left(\sum_{j=1}^{m_{i}}\left|f_{s}\left(t_{j}^{(i)}\right)-f_{s}\left(t_{j-1}^{(i)}\right)\right|^{p(n)}\right)^{1 / p(n)} \prod_{q \neq i}\left|f_{s}\left(x_{q}\right)\right| \\
& \leq\left(\frac{1}{p\left(l_{s}\right) \log p\left(l_{s}\right)}\right)^{N} \exp _{2}\left\{\frac{p\left(l_{s}\right) \log p\left(l_{s}\right)}{p\left(l_{k-1}\right)}\right\} \\
& \leq\left(\frac{1}{p\left(l_{s}\right) \log p\left(l_{s}\right)}\right)^{N} p\left(l_{s}\right)<\infty
\end{align*}
$$

It is evident that

$$
\begin{align*}
& \left(\sum_{j=1}^{m_{i}} \mid g_{k}\left(x_{1}, \ldots, x_{i-1}, t_{j}^{(i)}, x_{i+1}, \ldots, x_{N}\right)\right. \tag{16}\\
& \left.\quad-\left.g_{k}\left(x_{1}, \ldots, x_{i-1}, t_{j-1}^{(i)}, x_{i+1}, \ldots, x_{N}\right)\right|^{p(n)}\right)^{1 / p(n)}
\end{align*}
$$

$$
\begin{aligned}
& =\left(\frac{1}{p\left(l_{k}\right) \log p\left(l_{k}\right)}\right)^{N}\left(\sum_{j=1}^{m_{i}}\left|f_{k}\left(t_{j}^{(i)}\right)-f_{k}\left(t_{j-1}^{(i)}\right)\right|^{p(n)}\right)^{1 / p(n)} \prod_{q \neq i}\left|f_{k}\left(x_{q}\right)\right| \\
& \leq c\left(\frac{1}{p\left(l_{k}\right) \log p\left(l_{k}\right)}\right)^{N}\left(\frac{2^{n}}{2^{2 l_{k}}} \exp _{2}\left\{p\left(l_{k}\right) \log p\left(l_{k}\right)\right\}\right)^{1 / p(n)}
\end{aligned}
$$

Let $2 l_{k-1}+2 \leq n<l_{k}+1$. Then from (12) we get

$$
\begin{align*}
& \frac{2^{n}}{2^{2 l_{k}}} \exp _{2}\left\{p\left(l_{k}\right) \log p\left(l_{k}\right)\right\} \tag{17}\\
& \quad=\frac{\exp _{2}\left\{n+p\left(l_{k}\right) \log p\left(l_{k}\right)\right\}}{2^{2 l_{k}}} \leq \frac{\exp _{2}\left\{l_{k}+1+l_{k}\right\}}{2^{2 l_{k}}}=2
\end{align*}
$$

Let now $l_{k}+1 \leq n<2 l_{k}+2$. Then we get

$$
\begin{equation*}
\left(\frac{2^{n}}{2^{2 l_{k}}} \exp _{2}\left\{p\left(l_{k}\right) \log p\left(l_{k}\right)\right\}\right)^{1 / p(n)} \leq 4 \exp _{2}\left\{\frac{p\left(l_{k}\right) \log p\left(l_{k}\right)}{p\left(l_{k}+1\right)}\right\} \leq 4 p\left(l_{k}\right) \tag{18}
\end{equation*}
$$

From (16)-(18) we have

$$
\begin{equation*}
V_{i,\{p(n)\}}\left(g_{k}\right)<\infty \tag{19}
\end{equation*}
$$

Owing to (14), (15) and (19) we obtain $f_{0} \in B V_{i,\{p(n)\}}$.
Next we shall prove that

$$
\begin{equation*}
\omega_{i}(\delta, f)=O\left(\left\{\frac{1}{p([\log (1 / \delta)]) \log p([\log (1 / \delta)])}\right\}^{N}\right) \quad \text { as } \delta \rightarrow 0+ \tag{20}
\end{equation*}
$$ for $i=1, \ldots, N$.

Let $1 / 2^{2 l_{k}} \leq h<1 / 2^{2 l_{k-1}}$. Then it is evident that

$$
p\left(2 l_{k-1}\right) \leq p\left(\left[\log _{2}(1 / h)\right]\right) \leq p\left(2 l_{k}\right) \leq c p\left(l_{k}\right)
$$

Let $s \geq k$. Then we get

$$
\begin{align*}
& \left|g_{s}\left(x_{1}, \ldots, x_{i-1}, x_{i}+h, x_{i+1}, \ldots, x_{N}\right)-g_{s}(x)\right| \leq\left(\frac{1}{p\left(l_{s}\right) \log p\left(l_{s}\right)}\right)^{N} \tag{21}\\
& \quad \leq\left(\frac{1}{p\left(l_{k}\right) \log p\left(l_{k}\right)}\right)^{N}=O\left(\left\{\frac{1}{p([\log (1 / h)]) \log p([\log (1 / h)])}\right\}^{N}\right)
\end{align*}
$$

Let now $s<k$. Then from the assumption on f_{s} we obtain

$$
\begin{align*}
& \left|g_{s}\left(x_{1}, \ldots, x_{i-1}, x_{i}+h, x_{i+1}, \ldots, x_{N}\right)-g_{s}\left(x_{1}, \ldots, x_{N}\right)\right| \tag{22}\\
& \quad=\left(\frac{1}{p\left(l_{s}\right) \log p\left(l_{s}\right)}\right)^{N}\left|f_{s}\left(x_{i}+h\right)-f_{s}\left(x_{i}\right)\right| \prod_{q \neq i}\left|f_{s}\left(x_{q}\right)\right| \\
& \quad \leq c \frac{h 2^{2 l_{s}}}{\left(p\left(l_{s}\right) \log p\left(l_{s}\right)\right)^{N}}=O\left(\left\{\frac{1}{p([\log (1 / h)]) \log p([\log (1 / h)])}\right\}^{N}\right)
\end{align*}
$$

From (21) and (22) we obtain (20).

Finally, we show that the N-dimensional Walsh-Fourier series of f_{0} diverges at $\mathbf{0}=(0, \ldots, 0)$. Indeed,

$$
\begin{align*}
S_{q_{l_{k}}, \ldots, q_{l_{k}}}\left(f_{0}, \widetilde{\mathbf{0}}\right)-f_{0}(\widetilde{\mathbf{0}})= & \int_{[0,1]^{N}} f_{0}(\mathbf{u}) \prod_{i=1}^{N} D_{q_{l_{k}}}\left(u_{i}\right) d \mathbf{u} \tag{23}\\
= & \int_{\left[0,2^{-2 l_{k}-2}\right]^{N}} f_{0}(\mathbf{u}) \prod_{i=1}^{N} D_{q_{l_{k}}}\left(u_{i}\right) d \mathbf{u} \\
& +\int_{\left[2^{-2 l_{k}-2}, 2^{-2 l_{k-1}-2}\right]^{N}} f_{0}(\mathbf{u}) \prod_{i=1}^{N} D_{q_{l_{k}}}\left(u_{i}\right) d \mathbf{u} \\
& +\int_{\left[2^{-2 l_{k-1}-2}, 1\right]^{N}} f_{0}(\mathbf{u}) \prod_{i=1}^{N} D_{q_{l_{k}}}\left(u_{i}\right) d \mathbf{u} \\
= & I+I I+I I .
\end{align*}
$$

From the construction of f_{0} we obtain

$$
\begin{equation*}
|I|=o(1) \quad \text { as } k \rightarrow \infty . \tag{24}
\end{equation*}
$$

Since

$$
D_{2^{n}}(x)= \begin{cases}2^{n} & \text { if } x \in\left[0,2^{-n}\right), \\ 0 & \text { if } x \in\left[2^{-n}, 1\right),\end{cases}
$$

for $x \in\left[2^{-2 l_{k-1}-2}, 1\right)$ we obtain

$$
D_{q_{l_{k}}}(x)=w_{q_{l_{k}}-q_{l_{k-1}}}(x) D_{q_{l_{k-1}}+1}(x) .
$$

Then by (13) we get

$$
\begin{equation*}
I I I=o(1) \quad \text { as } k \rightarrow \infty . \tag{25}
\end{equation*}
$$

From the construction of f_{0} we have

$$
\begin{align*}
|I I| & =\left|\int_{\left[2^{-2 l_{k}-2}, 2^{-2 l_{k-1}-2}\right]^{N}} f_{0}(\mathbf{u}) \prod_{i=1}^{N} D_{q_{l_{k}}}\left(u_{i}\right) d \mathbf{u}\right| \tag{26}\\
& \left.=\left.\left(\frac{1}{p\left(l_{k}\right) \log p\left(l_{k}\right)}\right)^{N} \prod_{i=1}^{N}\right|_{2^{-2 l_{k}-2}} ^{2^{-2 l_{k-1}-2}} f_{k}\left(u_{i}\right) D_{q_{l_{k}}}\left(u_{i}\right) d u_{i} \right\rvert\, \\
& =\left(\frac{1}{p\left(l_{k}\right) \log p\left(l_{k}\right)}\right)^{N} \prod_{i=1}^{N} \int_{2^{\left[p\left(l_{k}\right) \log p\left(l_{k}\right)\right]-2 l_{k}-2}}^{2^{-2 l_{k}-2}} \varphi_{k}\left(u_{i}\right)\left|D_{q_{l_{k}}}\left(u_{i}\right)\right| d u_{i} \\
& \geq c\left(\frac{1}{p\left(l_{k}\right) \log p\left(l_{k}\right)}\right)^{N} \prod_{i=1}^{N} \int_{2^{-2 l_{k}-2}}^{2^{\left[p\left(l_{k}\right) \log p\left(l_{k}\right)\right]-2 l_{k}-2}}\left|D_{q_{l_{k}}}\left(u_{i}\right)\right| d u_{i} .
\end{align*}
$$

From Lemma 3 we obtain

$$
\begin{align*}
\int_{2^{\left[p\left(l_{k}\right) \log p\left(l_{k}\right)\right]-2 l_{k}-2}} & \left|D_{q_{l_{k}}}\left(u_{i}\right)\right| d u_{i} \\
= & \sum_{i=1}^{\left[p\left(l_{k}\right) \log p\left(l_{k}\right)\right]} \int_{2^{i-2 l_{k}-3}}^{2^{i-2 l_{k}-2}}\left|D_{q_{l_{k}}}\left(u_{i}\right)\right| d u_{i} \geq c p\left(l_{k}\right) \log p\left(l_{k}\right) \tag{27}
\end{align*}
$$

Combining (26) and (27) we have

$$
\begin{equation*}
|I I| \geq c\left(\frac{1}{p\left(l_{k}\right) \log p\left(l_{k}\right)}\right)^{N}\left(p\left(l_{k}\right) \log p\left(l_{k}\right)\right)^{N} \geq c>0 \tag{28}
\end{equation*}
$$

Owing to (23), (24), (25) and (28) we obtain

$$
\varlimsup_{k \rightarrow \infty}\left|S_{q_{l_{k}, \ldots, q_{k}}}\left(f_{0}, \widetilde{\mathbf{0}}\right)-f_{0}(\widetilde{\mathbf{0}})\right|=c>0 .
$$

The proof of Theorem 2 is complete.

References

[1] R. D. Getzadze, Convergence and divergence of multiple orthogonal Fourier series in C and L metrics, Soobshch. Akad. Nauk Gruzin. SSSR 106 (1982), 489-491 (in Russian).
[2] -, On the convergence and divergence of multiple Fourier series with respect to the Walsh-Paley system in the spaces C and L, Anal. Math. 13 (1987), 29-36.
[3] U. Goginava, On the uniform convergence of multiple trigonometric Fourier series, East J. Approx. 5 (1999), 253-266.
[4] -, On the convergence and summability of N-dimensional Fourier series with respect to the Walsh-Paley systems in $L^{p}\left([0,1]^{N}\right), p \in[1,+\infty]$ spaces, Georg. Math. J. 7 (2000), 1-20.
[5] G. H. Hardy, On double Fourier series, Quart. J. Math. 37 (1906), 53-79.
[6] C. Jordan, Sur les séries de Fourier, C. R. Acad. Sci. Paris 92 (1881), 228-230.
[7] H. Kita and K. Yoneda, A generalization of bounded variation, Acta Math. Hungar. 56 (1990), 229-238.
[8] F. Móricz, On the uniform convergence and L^{1}-convergence of double Walsh-Fourier series, Studia Math. 102 (1992), 225-237.
[9] R. E. A. C. Paley, A remarkable series of orthogonal functions, Proc. London Math. Soc. 34 (1932), 241-279.
[10] V. I. Tevzadze, On the uniform convergence of Walsh-Fourier series, in: Some Problems of Function Theory, Tbilisi, 3 (1986), 84-117 (in Russian).

Department of Mechanics and Mathematics
Tbilisi State University
Chavchavadze St. 1, Tbilisi 0128, Georgia
E-mail: z_goginava@hotmail.com

[^0]: 2000 Mathematics Subject Classification: Primary 42C10.
 Key words and phrases: Walsh function, N-dimensional Fourier series, uniform convergence.

[^1]: ${ }^{1}$) An N-dimensional series is said to converge in the sense of Pringsheim if its rectangular partial sums converge.

