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Abstract. Let ν be a positive measure on a σ-algebra Σ of subsets of some set and
let X be a Banach space. Denote by ca(Σ,X) the Banach space of X-valued measures
on Σ, equipped with the uniform norm, and by ca(Σ, ν,X) its closed subspace consisting
of those measures which vanish at every ν-null set. We are concerned with the subsets
Eν(X) and Aν(X) of ca(Σ,X) defined by the conditions |ϕ| = ν and |ϕ| ≥ ν, respectively,
where |ϕ| stands for the variation of ϕ ∈ ca(Σ,X). We establish necessary and sufficient
conditions that Eν(X) [resp., Aν(X)] be dense in ca(Σ, ν,X) [resp., ca(Σ,X)]. We also
show that Eν(X) and Aν(X) are always Gδ-sets and establish necessary and sufficient
conditions that they be Fσ-sets in the respective spaces.

1. Introduction. Let ν be a positive measure on a σ-algebra Σ of
subsets of some set. In [8] the author was concerned with the question of
when we can find a Banach space X and a (σ-additive vector) measure
ϕ: Σ → X whose variation |ϕ| equals ν. In particular, it was proved that
this is the case when there exists a nonatomic positive finite measure λ
on Σ equivalent to ν, i.e., for every E ∈ Σ we have ν(E) = 0 if and
only if λ(E) = 0. Moreover, we can then take for X an arbitrary infinite-
dimensional Banach space and choose ϕ with relatively compact range ([8,
Theorem 1]). This is an extension of previous results due to Thomas [11],
Janicka and Kalton [5], and Drewnowski and the author [3].

In this paper we study some topological properties of the set Eν(X) of
those measures ϕ on Σ with values in a fixed Banach space X for which
|ϕ| = ν. In the special case where ν = ∞ · λ for some nonatomic positive
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finite measure λ on Σ and X is infinite-dimensional, it was shown in [3] that
Eν(X) is a dense Gδ-set in the Banach space ca(Σ, ν,X) of those measures
ϕ: Σ → X which vanish at every ν-null set, equipped with the uniform
norm. (A closely related result was previously established by Anantharaman
and Garg [1].) We prove that the denseness assertion holds essentially only
in that case while the other assertion remains valid for arbitrary ν and X
(Theorem 2 of Section 3 and Theorem 4(a) of Section 4, respectively). We
also show that Eν(X) is an Fσ-set in ca(Σ, ν,X) if and only if Eν(X) is empty
or ν is atomic or X is finite-dimensional. In each of those cases, Eν(X) is
actually closed (Theorem 5 of Section 5).

We also make a parallel study of the set Aν(X) of those measures
ϕ: Σ → X for which |ϕ| ≥ ν. For example we show that Aν(X) is dense
in the Banach space ca(Σ,X) of all measures ϕ: Σ → X, equipped with
the uniform norm, if and only if either ν = 0, or there exists a nonatomic
positive finite measure λ on Σ equivalent to ν and X is infinite-dimensional
(Theorem 3 of Section 3). In fact, some of our results on Aν(X) are simple
consequences of the corresponding results on Eν(X) while for other results
on Aν(X) the converse holds.

Both results and methods of [3] play an essential role in this paper. We
note that [3] owes, in turn, some ideas to [1] and [5]. We also make use of
some results of [8] and of more or less standard material on vector measures,
including a theorem of Bartle, Dunford and Schwartz, and a version of the
Lebesgue decomposition theorem.

Most of the notation we need and some auxiliary results are presented
in Section 2. Some more notation is introduced in Section 5 (see the passage
following Lemma 8) and in the final Section 6. Sections 3, 4 and 5 deal
with denseness, Gδ-sets and Fσ-sets, respectively. Section 4 is independent
of Section 3 as far as the proofs are concerned. Section 6 discusses briefly
counterparts of our main results for vector measures with relatively compact
range.

2. Notation, terminology and auxiliary results. Throughout the
paper S stands for a (nonempty) set and Σ for a σ-algebra of subsets of S.
Moreover, ν stands for a positive measure on Σ, i.e., a σ-additive function
on Σ with values in [0,∞] such that ν(∅) = 0.

We say that A ∈ Σ is a ν-atom if ν(A) > 0 and for every E ∈ Σ with
A ⊃ E ∈ Σ we have ν(E) = 0 or ν(A \ E) = 0. The measure ν is called
atomic if every E ∈ Σ with ν(E) > 0 contains a ν-atom. The measure ν is
called nonatomic (or atomless) if it has no atom. Given T ∈ Σ, we set

νT (E) = ν(E ∩ T ) for all E ∈ Σ.
Clearly, νT is again a positive measure on Σ.
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For positive measures ν1 and ν2 on Σ we write ν1 � ν2 [resp., ν1 ≡ ν2]
provided that for every E ∈ Σ we have ν1(E) = 0 if [resp., if and only if]
ν2(E) = 0. If the former condition holds, ν1 is ν2-saturated in the terminology
of [4, p. 169]. If the latter condition holds, ν1 and ν2 are said to be equivalent.

Throughout the paper X stands for a (real or complex) Banach space,
with the norm denoted by ‖ · ‖. Let ϕ: Σ → X be a (σ-additive vec-
tor) measure. For E ∈ Σ we define |ϕ|(E) as the supremum of the sums∑∞

i=1 ‖ϕ(Ei)‖, where {E1, E2, . . .} is a Σ-partition of E. The set function
|ϕ| is a positive measure on Σ, called the variation of ϕ. Given T ∈ Σ, we
set

ϕT (E) = ϕ(E ∩ T ) for all E ∈ Σ.
Clearly, ϕT is again a measure on Σ.

We say that A ∈ Σ is a ϕ-atom if A is a |ϕ|-atom. As is easily seen,
A ∈ Σ is a ϕ-atom if and only if ϕ(A) 6= 0 and for every E ∈ Σ with
A ⊃ E ∈ Σ we have ϕE = 0 or ϕA\E = 0. The measure ϕ is called atomic if
|ϕ| is atomic (equivalently, every E ∈ Σ with ϕ(E) 6= 0 contains a ϕ-atom).
The measure ϕ is called nonatomic (or atomless) if it has no atom.

We write ϕ � ν [resp., ϕ ≡ ν] provided that |ϕ| � ν [resp., |ϕ| ≡ ν].
We write ϕ ⊥ ν provided that there exists T ∈ Σ with |ϕ|(T ) = 0 and
ν(S \ T ) = 0.

We denote by ca(Σ,X) the Banach space of all measures ϕ: Σ → X
equipped with the uniform norm

‖ϕ‖ = sup{‖ϕ(E)‖ : E ∈ Σ}
(see [2, pp. 29–30]). The notation ca(Σ,R) is abbreviated to ca(Σ). Thus,
ca+(Σ) stands for the set of all positive finite measures on Σ.

We set
ca(Σ, ν,X) = {ϕ ∈ ca(Σ,X) : ϕ� ν}.

This is a closed (linear) subspace of ca(Σ,X). Moreover, we set

cca(Σ,X) = {ϕ ∈ ca(Σ,X) : ϕ(Σ) is relatively compact}.
This is also a closed subspace of ca(Σ,X). It appears below only in The-
orem 1 and then in Section 6.

For each ν we define three sets of vector measures as follows:
Eν(X) = {ϕ ∈ ca(Σ,X) : |ϕ| = ν},
Aν(X) = {ϕ ∈ ca(Σ,X) : |ϕ| ≥ ν},
Bν(X) = {ϕ ∈ ca(Σ,X) : |ϕ| ≤ ν}.

The sets Eν(X) and Aν(X) do not seem to have appeared explicitly in the
literature before, while Bν(X) appears, in another context, in [10, p. 682 ff.].
(Our notation differs from that of [10].) We shall be mainly concerned with
Eν(X) and Aν(X) in what follows, the role of Bν(X) being auxiliary only.
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Clearly, we have
Eν(X) = Aν(X) ∩ Bν(X).

We shall tacitly use this formula on several occasions, combined with the
following simple lemma.

Lemma 1. The set Bν(X) is closed in ca(Σ,X).

Proof. We have

Bν(X) = {ϕ ∈ ca(Σ,X) : ‖ϕ(E)‖ ≤ ν(E) for all E ∈ Σ}
=
⋂

E∈Σ
{ϕ ∈ ca(Σ,X) : ‖ϕ(E)‖ ≤ ν(E)}.

Thus, Bν(X) is even closed in the topology of pointwise convergence in
ca(Σ,X).

The next lemma will be needed in the proof of Theorem 2.

Lemma 2. If νF is nonatomic for some F ∈ Σ with 0 < ν(F ) <∞ and
X is infinite-dimensional , then Bν(X) is nowhere dense in ca(Σ, ν,X).

Proof. In view of Lemma 1, it is enough to show that Bν(X) has empty
interior in ca(Σ, ν,X). To this end, fix ϕ ∈ Bν(X) and ε > 0. By [3, Propo-
sition 2.2], there exists ψ0 ∈ ca(Σ, νF ,X) with

‖ψ0‖ < ε and |ψ0|(F ) > ν(F ) + |ϕ|(F ).

Set ψ = ϕ + ψ0. Clearly, ψ ∈ ca(Σ, ν,X) and ‖ϕ − ψ‖ < ε. Moreover,
|ψ|(F ) > ν(F ), and so ψ 6∈ Bν(X). Thus, ϕ is not an interior point of Bν(X)
in ca(Σ, ν,X).

We shall frequently apply the following version of a fundamental theorem
due to R. G. Bartle, N. Dunford and J. T. Schwartz (see [2, Corollary I.2.6]).

(BDS) For every ϕ ∈ ca(Σ,X) there exists λ ∈ ca+(Σ) with ϕ ≡ λ.

The next lemma will be used in the proofs of Lemma 4(c) and Theorems 1
and 3.

Lemma 3. Let ϕ ∈ Aν(X). Then

(a) There exists T ∈ Σ with ϕT ≡ ν.
(b) There exists λ ∈ ca+(Σ) with ν ≡ λ.

Proof. According to (BDS), there exists λ0 ∈ ca+(Σ) with ϕ ≡ λ0.
Hence ν � λ0. Set

Σ0 = {E ∈ Σ : ν(E) = 0 and λ0(E) > 0}.
If Σ0 is empty, put T = S. Otherwise, let

α = sup{λ0(E) : E ∈ Σ0},
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choose En ∈ Σ0 with λ0(En)→ α, and put

T = S \
∞⋃

n=1

En.

As is easily seen, (b) holds with λ = (λ0)T . This also yields (a). (Note that
(b) also follows from (BDS) and [4, (3.16.3) and (3.16.4)].)

In the proofs of Lemma 4(c) and Theorem 3 we shall apply some conse-
quences of the following version of the Lebesgue decomposition theorem for
vector measures. Given λ ∈ ca+(Σ) and ϕ ∈ ca(Σ,X), there exists a unique
ψ ∈ ca(Σ,X) with

ψ � λ and ϕ− ψ ⊥ λ.(1)

See, e.g., [9, Theorem 9] or [6, Corollary 2] for more general results, but note
that the relation � is defined wrongly in [9]. In fact, we have ψ = ϕT for
some T ∈ Σ, and the present version also follows from the classical Lebesgue
decomposition theorem and (BDS).

Set
Aν(λ,X) = Aν(X) ∩ ca(Σ,λ,X).

(In the special case where ν = rλ with r > 0, the set Aν(λ,X) appears in [3,
pp. 23–24].) With this notation, we have

(LP) The operator Pλ: ca(Σ,X)→ ca(Σ,X) defined by Pλ(ϕ) = ψ, where
ψ satisfies (1), is a continuous linear projection with range
ca(Σ,λ,X). Moreover, if ν � λ, then

P−1
λ (Aν(λ,X)) = Aν(X).

In particular, Aν(λ,X) is dense in ca(Σ,λ,X) if and only if Aν(X)
is dense in ca(Σ,X).

The first assertion is straightforward. As to the second, it is enough to
note that for every ϕ ∈ ca(Σ,X) we have

|ϕ| = |Pλ(ϕ) + (ϕ− Pλ(ϕ))| = |Pλ(ϕ)|+ |ϕ− Pλ(ϕ)|
and |ϕ− Pλ(ϕ)| ⊥ ν. Hence

|ϕ| ≥ ν if and only if |Pλ(ϕ)| ≥ ν.
The last assertion follows from the previous ones.

The next lemma will be used in the proofs of Lemma 5 and Theorems 2,
3 and 5.

Lemma 4. (a) If ν has an atom, then Eν(X) is nowhere dense in
ca(Σ, ν,X).

(b) If ν has an atom, then Aν(ν,X) is not dense in ca(Σ, ν,X).
(c) If ν is atomic, then Eν(X) and Aν(X) are closed in ca(Σ,X).
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Proof. To show (a) and (b), fix a ν-atom A. For every ϕ ∈ ca(Σ, ν,X)
we have |ϕ|(A) = ‖ϕ(A)‖. This yields

Eν(X) ⊂ {ϕ ∈ ca(Σ, ν,X) : ‖ϕ(A)‖ = ν(A)},
Aν(ν,X) ⊂ {ϕ ∈ ca(Σ, ν,X) : ‖ϕ(A)‖ ≥ ν(A)},

and (a) and (b) follow.
To prove (c) it is enough, in view of Lemma 1, to establish the closed-

ness of Aν(X). Suppose ν is atomic and nonzero, and Aν(X) is nonempty.
Choose λ according to Lemma 3(b). We shall show that Aν(λ,X) is closed
in ca(Σ,λ,X). This yields the assertion, by (LP).

There exists a (countable) family {Ai : i ∈ I} of pairwise disjoint λ-atoms
with S =

⋃
i∈I Ai. The closedness of Aν(λ,X) is an obvious consequence of

the formula

Aν(λ,X) = {ϕ ∈ ca(Σ,λ,X) : ‖ϕ(Ai)‖ ≥ ν(Ai) for all i ∈ I}.(2)

Let ϕ ∈ ca(Σ,λ,X). As in the proof of (a) and (b), we get

|ϕ|(Ai) = ‖ϕ(Ai)‖ for all i ∈ I.
This yields the inclusion “⊂” in (2). To establish the other inclusion, fix
E ∈ Σ, and observe that

E =
(⋃

i∈J
Ai

)
4 F for some J ⊂ I and F ∈ Σ with λ(F ) = 0.

It follows that
|ϕ|(E) = |ϕ|

(⋃

i∈J
Ai

)
=
∑

i∈J
|ϕ|(Ai).

If ‖ϕ(Ai)‖ ≥ ν(Ai) for all i ∈ I, this implies

|ϕ|(E) ≥
∑

i∈J
ν(Ai) = ν(E),

completing the proof.

The following lemma will be used in the proofs of Theorem 2 and Lemma 8.

Lemma 5. If ν 6= 0, then Eν(X) has empty interior in ca(Σ, ν,X).

Proof. In view of Lemma 4(a), we may assume that ν is nonatomic.
Assume, moreover, that Eν(X) is nonempty, and fix ϕ ∈ Eν(X) and ε > 0.
According to (BDS), ν ≡ λ for some λ ∈ ca+(Σ). On account of [2, Theorem
I.2.1 or Corollary I.2.6], there exists δ > 0 such that ‖ϕE‖ < ε whenever
E ∈ Σ and λ(E) < δ. Fix E0 ∈ Σ with 0 < λ(E0) < δ. Set ψ = ϕS\E0 .
Clearly,

ψ ∈ ca(Σ, ν,X) \ Eν(X) and ‖ϕ− ψ‖ < ε.

It follows that ϕ is not in the interior of Eν(X).

The next lemma will be used in the proofs of Theorems 2, 3 and 5.
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Lemma 6. If X is finite-dimensional , then Eν(X) and Aν(X) are closed
in ca(Σ,X).

Proof. As is well known, there exists a constant C such that

|ϕ|(S) ≤ C‖ϕ‖ for all ϕ ∈ ca(Σ,X).(3)

(We can take C = 2 dimX or 4 dimX according as X is real or complex,
respectively.)

Given ϕ1, ϕ2 ∈ ca(Σ,X), we have

|ϕ1| − |ϕ2| ≤ |ϕ1 − ϕ2|.(4)

Combining (3) and (4), we get∥∥|ϕ1| − |ϕ2|
∥∥ ≤ |ϕ1 − ϕ2|(S) ≤ C‖ϕ1 − ϕ2‖.

It follows that the map M : ca(Σ,X) → ca(Σ) defined, for ϕ ∈ ca(Σ,X),
by M(ϕ) = |ϕ| is continuous. To complete the proof, it is now enough to
observe that

Eν(X) = M−1 ({µ ∈ ca(Σ) : µ = ν}) ,
Aν(X) = M−1 ({µ ∈ ca(Σ) : µ ≥ ν}) .

We proceed to a result which will be used in the proof of Theorem 5.
This result can also be considered a supplement to [8].

Theorem 1. If Aν(X) is nonempty , then so is Eν(X) ∩ cca(Σ,X).

Proof. Fix ϕ ∈ Aν(X). We first consider two special cases.

Case 1: ϕ is nonatomic. Then ν is also nonatomic, by Lemma 3(a). The
assertion then follows from Lemma 3(b) and [8, Lemma 4] if X is infinite-
dimensional. Otherwise, ν is finite (cf. (3) in the proof of Lemma 6) and the
assertion is obvious.

Case 2: ϕ is atomic. In view of (BDS), we can choose pairwise disjoint
Ai ∈ Σ, i = 1, 2, . . . , such that each Ai is either a ϕ-atom or Ai = ∅, and
S =

⋃∞
i=1Ai. Clearly, for each i, we then have ν(Ai) = 0 or Ai is a ν-atom.

Take 0 ≤ ti ≤ 1 with
ti|ϕ|(Ai) = ν(Ai).

This yields

ti|ϕ|(Ai ∩ E) = ν(Ai ∩ E) for all i and E ∈ Σ.(5)

Set

ψ(E) =
�

E

∞∑

i=1

ti1Ai dϕ for E ∈ Σ.

(The integral we use here is that of [2, pp. 5–6].) By [2, Theorem II.4.1], we
get ψ ∈ ca(Σ,X). Since

ψ(Ai ∩ E) = tiϕ(Ai ∩E),
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we have
|ψ|(Ai ∩ E) = ti|ϕ|(Ai ∩E),

which, together with (5), implies

|ψ|(Ai ∩ E) = ν(Ai ∩E) for all i and E ∈ Σ.
Hence |ψ| = ν. It follows that ψ ∈ cca(Σ,X) (see, e.g., [9, Theorem 3]).

In the general case, appealing to (BDS) again, we can take disjoint
S1, S2 ∈ Σ with ϕS1 nonatomic and ϕS2 atomic and S = S1 ∪ S2. Clearly,

ϕSj ∈ AνSj (X) for j = 1, 2.

By what we have proved so far, there exist

ψj ∈ EνSj (X) ∩ cca(Σ,X), j = 1, 2.

Set ψ = ψ1 + ψ2. It is plain that ψ ∈ Eν(X) ∩ cca(Σ,X).

3. Denseness. Recall that throughout the paper, ν stands for a positive
measure on a σ-algebra Σ of subsets of a set S, and X for a Banach space.

We shall now establish two denseness results. The implication (iv)⇒(i)
of the first of them is essentially a special case of [3, Theorem 4.1] (see also
[1, Theorem 2.4] for a closely related result).

Theorem 2. The following four conditions are equivalent :

(i) Eν(X) is dense in ca(Σ, ν,X);
(ii) Eν(X) is not nowhere dense in ca(Σ, ν,X);
(iii) Eν(X) is of second category in ca(Σ, ν,X);
(iv) either ν = 0, or ν =∞·λ for some nonatomic λ ∈ ca+(Σ) and X is

infinite-dimensional.

Proof. As mentioned above, (iv) implies (i). Clearly, (i) implies (ii) and
(iii) implies (ii). By Theorem 4(a) below and the Baire category theorem, (i)
implies (iii). We shall complete the proof by showing that (ii) implies (iv).

Suppose (ii) holds and ν 6= 0. By Lemma 4(a), ν is then nonatomic. It
now follows from Lemmas 5 and 6 that X is infinite-dimensional. Therefore,
ν(Σ) = {0,∞}, by Lemma 2. Combined with an application of (BDS), this
yields (iv).

Theorem 3. The following three conditions are equivalent :

(i) Aν(X) is dense in ca(Σ,X);
(ii) Aν(ν,X) is dense in ca(Σ, ν,X);
(iii) either ν = 0, or ν ≡ λ for some nonatomic λ ∈ ca+(Σ) and X is

infinite-dimensional.

Proof. In view of Lemma 3(b), the equivalence of (i) and (ii) follows
from (LP). We shall show that (ii) and (iii) are also equivalent.
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Suppose (ii) holds and ν 6= 0. Then 0 6∈ Aν(X), and so, in view of
Lemma 6, X is infinite-dimensional. Moreover, Lemma 4(b) implies that ν
is nonatomic. Thus, (iii) holds, by Lemma 3(b).

Suppose (iii) holds. The case where ν = 0 is obvious. The other case
follows from Theorem 2, (iv)⇒(i), since we then have

E∞·λ(X) ⊂ Aν(ν,X).

4. Gδ-sets. We start with an auxiliary result which is a variant of [3,
Proposition 3.3(b)]. The proof below is a modification of the corresponding
proof given in [3, pp. 22–23].

Lemma 7. Given λ, µ ∈ ca+(Σ) and δ > 0, the set F(λ, µ, δ) of all
ϕ ∈ ca(Σ,X) such that there exists E ∈ Σ with

λ(E) ≥ δ and |ϕ|(F ) ≤ µ(F ) whenever F ∈ Σ and F ⊂ E
is closed in ca(Σ,X).

Proof. Let ϕ0 be in the closure of F(λ, µ, δ). Choose ϕn in F(λ, µ, δ) so
that ‖ϕ0 − ϕn‖ ≤ n−2 for all n. By definition, there exist En ∈ Σ with

λ(En) ≥ δ and |ϕn|(F ) ≤ µ(F ) whenever F ∈ Σ and F ⊂ En.
Set E0 =

⋂∞
k=1

⋃∞
n=k En. Clearly, λ(E0) ≥ δ. Fix F ⊂ E0 and k. There exist

pairwise disjoint Fn ∈ Σ, n ≥ k, with

Fn ⊂ En and F =
∞⋃

n=k

Fn.

It follows that

‖ϕ0(F )‖ ≤
∞∑

n=k

‖ϕ0(Fn)‖ ≤
∞∑

n=k

‖ϕ0(Fn)− ϕn(Fn)‖+
∞∑

n=k

‖ϕn(Fn)‖

≤
∞∑

n=k

n−2 +
∞∑

n=k

µ(Fn) =
∞∑

n=k

n−2 + µ(F ).

Hence ‖ϕ0(F )‖ ≤ µ(F ). Consequently, ϕ0 ∈ F(λ, µ, δ), which completes the
proof.

Part (a) of the following result generalizes the corresponding assertion
of [3, Theorem 4.1] (see also [1, Corollary 2.4]). Namely, what is considered
in [3] is the situation where ν = ∞ · λ for some nonatomic probability
measure λ on Σ.

Theorem 4. (a) Eν(X) is a Gδ-set in ca(Σ,X).
(b) Aν(X) is a Gδ-set in ca(Σ,X).

Proof. Part (a) follows from (b) and Lemma 1. We first establish (b)
under the additional assumption that ν be finite. With the notation of
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Lemma 7, we then have

ca(Σ,X) \ Aν(X) =
∞⋃

n,m=1

F
(
ν,

n

n+ 1
ν,

1
m

)
.(6)

Indeed, if ϕ ∈ F
(
ν, n

n+1ν,
1
m

)
, then there exists E ∈ Σ with

ν(E) ≥ 1
m

and |ϕ|(E) ≤ n

n+ 1
ν(E).

Hence |ϕ|(E) < ν(E), and so ϕ 6∈ Aν(X).
Conversely, let ϕ ∈ ca(Σ,X) \ Aν(X), and fix E0 ∈ Σ with |ϕ|(E0) <

ν(E0). Choose n0 so that

|ϕ|(E0) <
n0

n0 + 1
ν(E0).

According to the Hahn decomposition theorem, applied to the measure
n0

n0 + 1
ν − |ϕ| on {F ∈ Σ : F ⊂ E0},

there exists E ∈ Σ such that E ⊂ E0,

|ϕ|(F ) ≤ n0

n0 + 1
ν(F ) whenever F ∈ Σ and F ⊂ E,

and ν(E) > 0. Thus, ϕ ∈ F
(
ν, n0

n0+1ν,
1
m

)
for some m.

In view of (6) and Lemma 7, (b) holds for finite ν.
Consider the general case and assume Aν(X) is nonempty. By (BDS)

and [4, (3.16.5)], there exist ν1, ν2, . . . in ca+(Σ) with

ν(E) = sup{νn(E) : n = 1, 2, . . .} for all E ∈ Σ.
We then have

Aν(X) =
∞⋂

n=1

Aνn(X),

and so the general case follows from the already established special case.

5. Fσ-sets. To establish Theorem 5, which is the main result of this
section, we shall need, in addition to some material of Section 2, Lem-
mas 8 and 10 below. The latter, in turn, will be established with the help
of Lemma 9.

Lemma 8. If λ ∈ ca+(Σ) is nonatomic and λ 6= 0, and X is infinite-
dimensional , then E∞·λ(X) is not an Fσ-set in ca(Σ,λ,X).

Proof. Otherwise, by Lemma 5, ca(Σ,λ,X) \ E∞·λ(X) would be a dense
Gδ-set in ca(Σ,λ,X). On the other hand, E∞·λ(X) is also a dense Gδ-set in
ca(Σ,λ,X), by [3, Theorem 4.1] (see also Theorem 2, (iv)⇒(i), and The-
orem 4(a) above). Thus, we get a contradiction with the Baire category
theorem.
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Given λ∈ca+(Σ), we denote by caσ(Σ,λ,X) the subspace of ca(Σ,λ,X)
consisting of all measures which are of σ-finite variation. For the purpose of
the next two lemmas we denote by τ the F -space (i.e., complete metrizable
linear) topology on caσ(Σ,λ,X) introduced in [5]. A base of neighbourhoods
of zero for τ consists of the sets Uε, ε > 0, where ϕ ∈ caσ(Σ,λ,X) is in Uε
if and only if ‖ϕ‖ ≤ ε and there exists E ∈ Σ with

λ(E) ≤ ε and |ϕ|(S \E) ≤ ε.
Lemma 9. For every λ∈ca+(Σ) the set Eλ(X) is τ -closed in caσ(Σ,λ,X).

Proof. Let ϕn ∈ Eλ(X), let ϕ ∈ caσ(Σ,λ,X), and let ϕn → ϕ with
respect to τ . We have to show that ϕ ∈ Eλ(X). In view of Lemma 1 we
have |ϕ| ≤ λ. To prove the opposite inequality, fix ε > 0 and choose n0 with
ϕn0 − ϕ ∈ Uε. Then, in particular, there exists E ∈ Σ with

λ(E) ≤ ε and |ϕn0 − ϕ|(S \ E) ≤ ε.
This implies, for every F ∈ Σ,

|ϕn0 |(F \E) ≤ |ϕ|(F \E) + |ϕn0 − ϕ|(F \ E) ≤ |ϕ|(F ) + ε.

It follows that
λ(F ) ≤ λ(F \E) + ε ≤ |ϕ|(F ) + 2ε.

Hence λ(F ) ≤ |ϕ|(F ), completing the proof.

The main idea of the proof of the next lemma is taken from the proof of
[3, Theorem 5.2].

Lemma 10. If λ ∈ ca+(Σ) is nonatomic and λ 6= 0, and X is infinite-
dimensional , then Eλ(X) is not an Fσ-set in ca(Σ,λ,X).

Proof. Denote by τ0 the restriction of τ to Eλ(X). In view of Lemma 9,
(Eλ(X), τ0) is a complete metrizable space. We claim that every G ⊂ Eλ(X)
with nonempty τ0-interior is nonclosed in ca(Σ,λ,X). By the Baire category
theorem, this yields the assertion.

To prove the claim, fix ϕ ∈ G and ε > 0 such that

(7) for each ψ ∈ Eλ(X) with ψ − ϕ ∈ Uε we have ψ ∈ G.
Choose E ∈ Σ with 0 < λ(E) < ε. Applying [3, Proposition 2.2], we can
find, for n = 1, 2, . . . ,

ωn ∈ ca(Σ,X) with ‖ωn‖ ≤ min
(

1
n
, ε− ‖ϕE‖

)
and |ωn| = λE .(8)

Set ψn = ωn + ϕS\E . It follows from (8) that ψn ∈ Eλ(X). Since ψn − ϕ =
ωn − ϕE , (8) also implies that

‖ψn − ϕ‖ ≤ ε and |ψn − ϕ|(S \E) = 0.
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In view of (7), we conclude that ψn ∈ G. Set ψ0 = ϕS\E . Clearly, ψ0 ∈
ca(Σ,λ,X) \ Eλ(X). Moreover, (8) shows that ‖ψn − ψ0‖ → 0. Thus, the
claim is proved.

Theorem 5. The following six conditions are equivalent :

(i) Eν(X) is an Fσ-set in ca(Σ, ν,X);
(ii) Eν(X) is closed in ca(Σ, ν,X);
(iii) Eν(X) is empty or ν is atomic or X is finite-dimensional ;
(iv) Aν(X) is an Fσ-set in ca(Σ,X);
(v) Aν(X) is closed in ca(Σ,X);
(vi) Aν(X) is empty or ν is atomic or X is finite-dimensional.

Proof. The implications (ii)⇒(i) and (v)⇒(iv) are obvious. The impli-
cations (iii)⇒(ii) and (vi)⇒(v) are the contents of Lemmas 4(c) and 6. The
implication (iv)⇒(i) follows from Lemma 1. In view of Theorem 1, (iii)
implies (vi).

To complete the proof, we shall assume that (iii) does not hold and show
that (i) does not then hold either. The negation of (iii) and (BDS) yield
λ ∈ ca+(Σ) with ν ≡ λ and P ∈ Σ with λ(P ) > 0 and λP nonatomic.
Consequently, there exists Q ∈ Σ such that

Q ⊂ P and 0 < ν(Q) <∞ or νQ(Σ) = {0,∞}.
Applying Lemma 10 in the former case and Lemma 8 in the latter, we deduce
that EνQ(X) is not an Fσ-set in ca(Σ, νQ,X). Set R = S \Q and

Q = ca(Σ, νQ,X), R = ca(Σ, νR,X).

Clearly, Q and R are closed subspaces of ca(Σ, ν,X) and the map

U : ca(Σ, ν,X)→ Q×R, U(ϕ) = (ϕQ, ϕR),

is a (linear) homeomorphism. Moreover, we have

U(Eν(X)) = EνQ(X)× EνR(X).

Since EνQ(X) is not an Fσ-set in Q and EνR(X) is nonempty, the negation
of (i) follows.

Corollary 1. (a) Eν(X) is open in ca(Σ, ν,X) if and only if Eν(X) is
empty or ν = 0.

(b) Aν(X) is open in ca(Σ,X) if and only if Aν(X) is empty or ν = 0.

Proof. Part (a) follows from Lemma 5. Part (b) follows from Theorem 5,
(iv)⇒(v), since ca(Σ,X) is connected.

The following corollary is a consequence of Theorems 4 and 5.

Corollary 2. (a) Eν(X) is either closed or a Gδ-, but not an Fσ-, set
in ca(Σ, ν,X).

(b) Aν(X) is either closed or a Gδ-, but not an Fσ-, set in ca(Σ,X).
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6. Sets of measures with relatively compact range. With the ex-
ception of Theorem 1, such measures have not been considered in this paper
so far. Nevertheless, all other previous results have natural counterparts
for vector measures with relatively compact range. We shall formulate only
some of those counterparts. To this end, we shall use the following notation:

cEν(X) = Eν(X) ∩ cca(Σ,X),

cAν(X) = Aν(X) ∩ cca(Σ,X),

cAν(ν,X) = cAν(X) ∩ ca(Σ, ν,X),

cca(Σ, ν,X) = ca(Σ, ν,X) ∩ cca(Σ,X).

Theorem 2′. The following four conditions are equivalent:

(i) cEν(X) is dense in cca(Σ, ν,X);
(ii) cEν(X) is not nowhere dense in cca(Σ, ν,X);
(iii) cEν(X) is of second category in cca(Σ, ν,X);
(iv) either ν = 0, or ν =∞·λ for some nonatomic λ ∈ ca+(Σ) and X is

infinite-dimensional.

(Note that Theorem 2′, (iv)⇒(i), is due essentially to Anantharaman
and Garg [1, Theorem 2.4]; see also [3, Theorem 4.1]).

Theorem 3′. The following three conditions are equivalent:

(i) cAν(X) is dense in cca(Σ,X);
(ii) cAν(ν,X) is dense in cca(Σ, ν,X);
(iii) either ν = 0, or ν ≡ λ for some nonatomic λ ∈ ca+(Σ) and X is

infinite-dimensional.

Theorem 5′. The following six conditions are equivalent:

(i) cEν(X) is an Fσ-set in cca(Σ, ν,X);
(ii) cEν(X) is closed in cca(Σ, ν,X);
(iii) cEν(X) is empty or ν is atomic or X is finite-dimensional;
(iv) cAν(X) is an Fσ-set in cca(Σ,X);
(v) cAν(X) is closed in cca(Σ,X);
(vi) cAν(X) is empty or ν is atomic or X is finite-dimensional.

To establish those theorems, it is enough to adapt the proofs of Theorems
2, 3 and 5, respectively. This is also true of some other “relatively compact”
counterparts of our previous results (e.g., Lemma 4(a),(b)). In many cases,
however, a direct application of a previous result would do (e.g., Lemma 4(c)
and Theorem 4).

Finally, let us note that the adaptation of some previous arguments to the
new setting involves the following obvious property of the space cca(Σ,X):

For all ϕ ∈ cca(Σ,X) and E ∈ Σ we have ϕE ∈ cca(Σ,X).
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