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Some properties of packing measure with doubling gauge

by

Sheng-You Wen (Hubei) and Zhi-Ying Wen (Beijing)

Abstract. Let g be a doubling gauge. We consider the packing measure Pg and the
packing premeasure Pg0 in a metric space X. We first show that if Pg0 (X) is finite, then as
a function of X, Pg0 has a kind of “outer regularity”. Then we prove that if X is complete
separable, then λ supPg0 (F ) ≤ Pg(B) ≤ supPg0 (F ) for every Borel subset B of X, where
the supremum is taken over all compact subsets of B having finite Pg0 -premeasure, and λ
is a positive number depending only on the doubling gauge g. As an application, we show
that for every doubling gauge function, there is a compact metric space of finite positive
packing measure.

1. Introduction. Let g: [0,∞) → [0,∞) be a gauge, i.e., a function
which is non-decreasing for t ≥ 0, right-continuous at t = 0, and g(t) = 0
if and only if t = 0. A gauge g is said to be doubling if there are numbers
c, δ > 0 such that g(2t) ≤ cg(t) for all t ∈ (0, δ). For a doubling gauge g we
introduce a non-decreasing function g∗(x) as follows:

(1) g∗(x) = lim inf
t↓0

g(xt)
g(t)

, x ∈ [0,∞).

We write g∗(1− 0) for the left limit of g∗(x) at x = 1.
Let X be a metric space. Let E ⊂ X and δ > 0. A δ-packing of E

is defined to be a countable family {B(xi, ri)} of disjoint closed balls with
2ri ≤ δ and centers xi ∈ E. The packing premeasure of E with respect to
the gauge g is defined by

Pg0 (E) = lim
δ→0
Pgδ (E),

where Pgδ (E) := sup
∑
g(2ri), the supremum being taken over all δ-packings
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of E. The packing measure of E with respect to the gauge g is defined by

Pg(E) = inf
{ ∞∑

i=1

Pg0 (Ei) : E ⊂
∞⋃

i=1

Ei

}
.

The packing premeasure and measure with respect to the gauge ts (s≥0),
which we denote by Ps0 and Ps respectively, are the ordinary s-dimensional
packing premeasure and measure. From the definitions above, Pg0 is mono-
tonic and finitely subadditive, and Pg is an outer measure of Pg0 ; for more
details, we refer to [3], [8], [9].

Let K ⊂ Rn be a compact set and 0 ≤ s ≤ n. Feng, Hua and Wen [4]
proved that if Ps0(K) <∞, then

(2) Ps0(K) = Ps(K).

The above conclusion may fail for doubling gauges. M. Csörnyei [1] con-
structed a compact set K ⊂ R1 and a doubling gauge g such that

(3) Pg(K) < Pg0 (K) <∞.
Motivated by this fact, we discuss some measure-theoretic properties of the
packing measure Pg and the premeasure Pg0 with respect to a doubling gauge
g in a metric space X. It will be shown that if Pg0 (X) <∞ then Pg0 is “outer
regular-like”, meaning that

g∗(1− 0) inf Pg0 (U) ≤ Pg0 (F ) ≤ inf Pg0 (U)

for any compact set F ⊂ X, where the infimum is over all open sets contain-
ing F (Theorem 1). Furthermore we get a relationship between Pg and Pg0
when X is complete separable. Namely, for any Borel set B ⊂ X we have

(g∗(1− 0))2 supPg0 (F ) ≤ Pg(B) ≤ supPg0 (F ),

where the supremum is taken over all compact subsets contained in B with
Pg0 (F ) < ∞ (Theorem 2). As a corollary, we show that for every doubling
gauge function there is a compact metric space of finite positive packing
measure (Theorem 3), which can be regarded as a dual to a result on the
Hausdorff measure obtained by A. Dvoretzky [2].

2. The “outer regularity” of a packing premeasure. We start
with some statements equivalent to the doubling condition.

Lemma 1. Let g be a gauge. Then the following statements are equiva-
lent :

(a) g is doubling ;
(b) g∗(x) > 0 for some x ∈ (0, 1);
(c) g∗(x) > 0 for all x > 0;
(d) g∗(1− 0) > 0.
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Proof. (a)⇒(b). The doubling condition implies that there is a constant
c ∈ (0,∞) such that g(t) ≤ cg(t/2) for all t > 0 small enough, so g∗(1/2) ≥
1/c > 0.

(b)⇒(c). Let a ∈ (0, 1) with g∗(a) > 0. Then g(at) ≥ 1
2g∗(a)g(t) for

t > 0 small enough. For every x > 0 choose a positive integer m such that
x ≥ am. For all t > 0 small enough we get inductively

g(xt) ≥ g(amt) ≥ 1
2
g∗(a)g(am−1t) ≥ · · · ≥

(
1
2
g∗(a)

)m
g(t),

which yields g∗(x) ≥
(1

2g∗(a)
)m

> 0.
(c)⇒(d). This is trivial since g∗ is non-decreasing.
(d)⇒(a). Since g∗(1 − 0) > 0, we obtain g∗(x) > 0 for some x ∈ (0, 1).

By an argument analogous to (b)⇒(c), we get g∗(1/2) > 0, which implies
that g is doubling.

In the rest of the paper, we assume that g is a doubling gauge. The
following theorem shows that if the packing premeasure is finite then it is
“outer regular”.

Theorem 1. Suppose X is a metric space with Pg0 (X) < ∞. Then for
any compact subset F of X,

(4) g∗(1− 0)AF ≤ Pg0 (F ) ≤ AF ,
where AF = inf{Pg0 (U) : U open and U ⊇ F}.

Proof. From the monotonicity of Pg0 , the second inequality of (4) is evi-
dent, so we only need to prove the first. Let % denote the metric of X. For
ε > 0 denote by Fε the open ε-neighborhood of F , i.e.

(5) Fε = {x ∈ X : %(x, y) < ε for some y ∈ F}.
Then AF = infε>0 Pg0 (Fε) and 0 ≤ AF <∞ since Pg0 (X) is finite. Let ω > 0
be arbitrary and choose ε > 0 small enough such that

(6) AF ≤ Pg0 (Fε) ≤ AF + ω.

Then, by the definition of Pg0 , we have

(7) Pg0 (Fε) ≤ Pgδ (Fε) ≤ Pg0 (Fε) + ω

for δ > 0 small enough. Now let {B(xi, ri)}mi=1 be a δ-packing of Fε such
that

(8) Pgδ (Fε)− ω ≤
m∑

i=1

g(2ri) ≤ Pgδ (Fε).

By the compactness of F , we may choose {yi}mi=1 ⊂ F such that

%(xi, yi) = %(xi, F ), 1 ≤ i ≤ m.
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Let
r∗i = max{ri − %(xi, yi), 0}, r∗∗i = min{%(xi, yi), ri}.

By the definitions above, we easily see that r∗i + r∗∗i = ri. Let I = {i :
B(xi, ri)∩F 6= ∅, 1 ≤ i ≤ m}. It is obvious that {B(yi, r∗i )}i∈I is a δ-packing
of F . Thus

(9) P gδ (F ) ≥
∑

i∈I
g(2r∗i ) =

m∑

i=1

g(2r∗i ).

Now let J = {i : xi 6∈ F, 1 ≤ i ≤ m} and 1/2 < t < 1, and choose
0 < ε1 ≤ 3δ such that Fε1∩

⋃
i∈J B(xi, tr∗∗i ) = ∅. We see that if {B(zi, li)}∞i=1

is a 3−1ε1-packing of F3−1ε1 then {B(zi, li)}∞i=1∪{B(xi, tr∗∗i )}i∈J is a δ-packing
of Fε. Thus, in view of (6) and (7), we have

∞∑

i=1

g(2li) +
∑

i∈J
g(2tr∗∗i ) ≤ AF + 2ω,

so ∑

i∈J
g(2tr∗∗i ) ≤ 2ω,

which together with the doubling property of g yields

(10)
m∑

i=1

g(2r∗∗i ) =
∑

i∈J
g(2r∗∗i ) ≤ c

∑

i∈J
g(2tr∗∗i ) ≤ 2cω,

where c > 0 is a constant.
Now we are going to estimate the sum on the right hand side of (9). Let

x(ω) = ω + 2 sup{x ≥ 0 : g∗(x) < ω1/2}.
From Lemma 1, we have limω→0 x(ω) = 0 and limω→0 ω/g∗(x(ω)) = 0.

Let Iω = {i : r∗∗i ≥ rix(ω)} and Jω = {i : r∗∗i < rix(ω)}. Then, by (10),
we have

(11)
∑

i∈Iω
g(2ri) ≤

∑

i∈Iω

g(2r∗∗i )g(2ri)
g(2rix(ω))

≤ 2cω
(

inf
0<t≤δ

g(tx(ω))
g(t)

)−1

,

which combined with (6), (7), (8) and (11) yields
∑

i∈Jω
g(2ri) =

m∑

i=1

g(2ri)−
∑

i∈Iω
g(2ri)(12)

≥ AF − ω − 2cω
(

inf
0<t≤δ

g(tx(ω))
g(t)

)−1

.

From (9) and (12),

Pgδ (F ) ≥
∑

i∈Jω
g(2r∗i ) ≥

∑

i∈Jω

g(2ri(1− x(ω)))g(2ri)
g(2ri)
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≥ inf
0<t≤δ

g(t(1− x(ω)))
g(t)

∑

i∈Jω
g(2ri)

≥ inf
0<t≤δ

g(t(1− x(ω)))
g(t)

(
AF − ω − 2cω

(
inf

0<t≤δ
g(tx(ω))
g(t)

)−1)
.

Thus by letting δ → 0 we get

Pg0 (F ) ≥ g∗(1− x(ω))
(
AF − ω −

2cω
g∗(x(ω))

)
.

Letting ω → 0, finally we obtain Pg0 (F ) ≥ g∗(1− 0)AF .

3. The relationship between Pg and Pg0 . In this section, we will
investigate the relation between the packing measure and the premeasure
with respect to a doubling gauge in a complete separable metric space.

Lemma 2. Let X be a metric space and let g be a gauge. Then:

(a) for any subset F of X, we have

(13) g∗(1− 0)Pg0 (cl(F )) ≤ Pg0 (F ) ≤ Pg0 (cl(F )),

where cl(F ) denotes the closure of F ;
(b) if g is left-continuous for t > 0, then Pg0 (F ) = Pg0 (cl(F )).

Proof. (a) To prove (13), it suffices to prove the first inequality. Let
ε, δ ∈ (0, 1). For every δ-packing {B(xi, ri)} of cl(F ), choose {yi} ⊂ F such
that {B(yi, (1− ε)ri)} is a δ-packing of F . Then we have

Pgδ (F ) ≥
∑

g(2(1− ε)ri) ≥ inf
0<t≤δ

g((1− ε)t)
g(t)

∑
g(2ri),

so

Pgδ (F ) ≥ inf
0<t≤δ

g((1− ε)t)
g(t)

Pgδ (cl(F )).

Letting δ → 0 and ε→ 0, we immediately get the desired inequality.
(b) Now assume that g is left-continuous for t > 0. In this case, from a

δ-packing {B(xi, ri)} of cl(F ) we may construct a δ-packing {B(yi, r∗i )} of
F such that for every i,

g(2r∗i ) ≥ g(2ri)− ε/2i.
From this we get Pg0 (F ) ≥ Pg0 (cl(F )), which yields the required equality
immediately.

Lemma 3. Let X be a metric space. Then for any compact subset K with
Pg0 (K) <∞, we have

(14) (g∗(1− 0))2Pg0 (K) ≤ Pg(K) ≤ Pg0 (K).
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Proof. It suffices to prove the first inequality of (14). Let ε > 0. By the
definition of Pg, there exists a countable family {Fi}i≥1 of sets such that⋃
i≥1 Fi = K and

Pg(K) + ε ≥
∞∑

i=1

Pg0 (Fi).

From Theorem 1 we see that for every i there is an open set Ui such that
Ui ⊃ cl(Fi) and

(15) Pg0 (cl(Fi)) ≥ g∗(1− 0)(Pg0 (Ui)− ε/2i).
Since K is compact and {Ui} is an open covering of K, we may choose a
finite subcovering, say K ⊂ ⋃N

i=1 Ui. From the finite subadditivity of Pg0 and
the inequalities (13) and (15), we get

Pg(K) + ε ≥
∞∑

i=1

Pg0 (Fi) ≥ g∗(1− 0)
∞∑

i=1

Pg0 (cl(Fi))

≥ (g∗(1− 0))2
( ∞∑

i=1

Pg0 (Ui)− ε
)

≥ (g∗(1− 0))2
( N∑

i=1

Pg0 (Ui)− ε
)

≥ (g∗(1− 0))2(Pg0 (K)− ε).
Letting ε→ 0, we finally obtain Pg(K) ≥ (g∗(1− 0))2Pg0 (K).

Lemma 3 implies immediately

Corollary 1. For any compact set K ⊂ X with Pg0 (K) <∞, we have:

(a) 0 < Pg(K) <∞⇔ 0 < Pg0 (K) <∞;
(b) g∗(1− 0) = 1⇒ Pg(K) = Pg0 (K).

Remark 1. It is known that a countable compact subset E of Rd may
have strictly positive upper box-counting dimension. However, from the re-
sult above we see that either Pg0 (E) = 0 or Pg0 (E) = ∞ for every doubling
gauge g.

Lemma 4. Let X be a complete separable metric space with Pg(X) <∞
and let B be a Borel subset of X. Then for any ε > 0, there is a compact
set F ⊂ B with Pg0 (F ) <∞ such that

(16) Pg(F ) ≥ Pg(B)− ε.
Proof. Since Pg is a finite Borel measure on a complete separable metric

space X, Pg is inner regular, thus it suffices to prove the statement under
the assumption that B is compact. By the definition of Pg, the condition
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Pg(X) <∞ implies that there is a family {Fi} of subsets with B =
⋃∞
i=1 Fi

such that

(17)
∞∑

i=1

Pg0 (Fi) <∞.

Since g is doubling we have g∗(1 − 0) > 0. By Lemma 2, we may assume
that all Fi are compact. Let ε > 0 and choose a positive integer m such that

(18)
∞∑

i=m+1

Pg0 (Fi) < ε.

Take F =
⋃m
i=1 Fi. In view of (17) and (18), we see that F is a compact

subset of B such that

Pg0 (F ) ≤
m∑

i=1

Pg0 (Fi) <∞

and

Pg(B)− Pg(F ) ≤ Pg
( ∞⋃

i=m+1

Fi

)
≤

∞∑

i=m+1

Pg(Fi) ≤
∞∑

i=m+1

Pg0 (Fi) < ε.

Theorem 2. Let X be a complete separable metric space. Then for any
Borel set B ⊂ X we have

(19) (g∗(1− 0))2 supPg0 (F ) ≤ Pg(B) ≤ supPg0 (F ),

where the supremum is taken over all compact subsets of B with Pg0 (F ) <∞.

Proof. The first inequality in (19) follows directly from Lemma 3, and
the second can be obtained immediately from Lemma 4 if Pg(X) < ∞.
To complete the proof, it suffices to prove the second inequality in the
case Pg(X) = ∞. Without loss of generality, assume Pg(B) > 0. Let
β ∈ (0,Pg(B)). From the existence theorem of H. Joyce and D. Preiss [5],
there is a compact subset E ⊂ B such that β ≤ Pg(E) < ∞. Applying
Lemma 4 to the set E, we get supPg0 (F ) ≥ β. Since β ∈ (0,Pg(B)) can be
picked arbitrarily, we obtain supPg0 (F ) ≥ Pg(B) as required.

Theorem 2 immediately gives the following corollary.

Corollary 2. Let B be a Borel subset of a complete separable space.
Then:

(a) Pg(B) > 0 if and only if B contains a compact subset F such that
0 < Pg0 (F ) <∞;

(b) Pg(B) < ∞ if and only if there is λ ∈ [0,∞) such that for any
compact subset F ⊂ B, either Pg0 (F ) ≤ λ or Pg0 (F ) =∞;

(c) g∗(1− 0) = 1⇒ Pg(B) = supPg0 (F ).
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Using the above results, we are going to prove that for every doubling
gauge, there is a compact metric space which has finite positive packing
measure with respect to the gauge. This result is analogous to the existence
theorem proved by A. Dvoretzky for Hausdorff measures [2].

Lemma 5. Suppose that X is a separable metric space. Then for any
subset K of X,

Hg(K) ≤ Pg(K),

whereHg(K) denotes the Hausdorff measure of K with respect to the gauge g.

Proof. The proof is completely analogous to the proof of the case g(t) =
ts and X = Rn which can be found in P. Mattila [6].

Theorem 3. Let g be any doubling gauge. Then there is a compact met-
ric space X such that
(20) 0 < Pg(X) <∞.

Proof. There is a compact metric space Ω such that Hg(Ω) > 0 (see
Theorem 36 in [7]), so Pg(Ω) > 0 by Lemma 5. By Corollary 2(a), there is a
compact subset X ⊂ Ω such that 0 < Pg0 (X) <∞. Then by Corollary 1(a),
we finally get 0 < Pg(X) <∞.

4. An example. Theorem 2 states that for any Borel set G in a com-
plete separable metric space,

g∗(1− 0) = 1 ⇒ Pg(G) = supPg0 (F ),

where the supremum is taken over all compact subsets contained in G with
Pg0 (F ) <∞. We will show by giving a counterexample that the implication
cannot be inverted, even if both Pg(G) and supPg0 (F ) are finite positive.

Let G = [0, 1] and g : [0,∞)→ [0,∞) be defined by

g(t) =
{

2−n if 2−n ≤ t ≤ (1− 2−n)2−n+1, n ∈ N,
2n−1t+ 2−n+1 − 1 if (1− 2−n)2−n+1 ≤ t ≤ 2−n+1, n ∈ N.

It is easy to verify that

(21)
1
2

= lim inf
t→0

g(t)
t
≤ lim sup

t→0

g(t)
t

= 1,

and thus g is a doubling gauge. We are going to prove that

(22) Pg(G) = Pg0 (G) = 1, but g∗(1− 0) = 1/2.

Let xk = 1−2−k and tn = 2−n, k, n ∈ N. Fix k ∈ N. By the construction
of g we have

lim inf
t→0

g(txk)
g(t)

≤ lim inf
n→∞

g(tnxk)
g(tn)

≤ lim inf
n→∞

g((1− 2−n−1)2−n)
g(2−n)

= lim
n→∞

2−n−1

2−n
=

1
2
,
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which yields g∗(xk) ≤ 1/2. Letting k →∞, we get g∗(1− 0) ≤ 1/2 since g∗
is non-decreasing. On the other hand, by the inequality (21), we have

lim inf
t→0

g(tx)
g(t)

≥ x

2

for all x > 0, and thus g∗(1−0) ≥ 1/2. We have thus proved the last equality
of (22).

Notice that (21) implies that 1
2P1

0 (F ) ≤ Pg0 (F ) ≤ P1
0 (F ) for any Borel

set F on the real line, thus
1
2P1 ≤ Pg ≤ P1

for any Borel sets. Note that P1 is equal to the 1-dimensional Lebesgue
measure and Pg is translation invariant and locally finite, so there is a
number c > 0 such that Pg = cP1. In addition, analogously to the lower
density theorem for the s-dimensional packing measure (see Theorem 6.10
of [6]), we have

lim inf
r→0

Pg(G ∩B(x, r))
g(2r)

= 1

for Pg-almost all x ∈ G. Invoking the Lebesgue density theorem we get

c = lim sup
r→0

g(t)
t

= 1,

and so Pg = P1. Since P1
0 (G) = P1(G) = 1 we then get

1 = P1(G) = Pg(G) ≤ Pg0 (G) ≤ P1
0 (G) = 1,

which yields the first two equalities in (22).
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