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Characterization of Jordan derivations on
J -subspace lattice algebras

by

Xiaofei Qi (Taiyuan)

Abstract. Let L be a J -subspace lattice on a Banach space X and AlgL the as-
sociated J -subspace lattice algebra. Assume that δ : AlgL → AlgL is an additive map.
It is shown that δ satisfies δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A) for any
A,B ∈ AlgL with AB +BA = 0 if and only if δ(A) = τ(A) + δ(I)A for all A, where τ is
an additive derivation; if X is complex with dimX ≥ 3 and if δ is linear, then δ satisfies
δ(AB+BA) = δ(A)B+Aδ(B)+δ(B)A+Bδ(A) for any A,B ∈ AlgL with AB+BA = I
if and only if δ is a derivation.

1. Introduction. Let A be a ring (or an algebra) with unit I and
δ : A → A an additive (or a linear) map. Recall that δ is called a derivation
if δ(AB) = δ(A)B + Aδ(B) for all A,B ∈ A, and a Jordan derivation if
δ(A2) = δ(A)A+Aδ(A) for all A ∈ A, or equivalently, if

δ(AB +BA) = δ(A)B +Aδ(B) + δ(B)A+Bδ(A)

for all A,B ∈ A in the case where A is not of characteristic 2. Derivations
and Jordan derivations have been extensively studied (see for instance [B,
C, H] and the references therein).

In recent years, more and more mathematicians are interested in con-
ditions under which derivations (or Jordan derivations) can be completely
determined by the action on some sets of elements. Recall that an addi-
tive (linear) map δ : A → A is derivable at a point Z ∈ A if δ(AB) =
δ(A)B + Aδ(B) for all A,B ∈ A with AB = Z, and Jordan derivable at
Z ∈ A if δ(AB +BA) = δ(A)B +Aδ(B) + δ(B)A+Bδ(A) for all A,B ∈ A
with AB +BA = Z. Lu [L] proved that every continuous linear map deriv-
able at a left (or right) invertible element on a Banach algebra is a Jordan
derivation.
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Let AlgN be a nest algebra over a Banach space X. Qi and Hou [QH1]
proved that every linear map derivable at the unit operator (or at an invert-
ible operator, or at a nontrivial idempotent) on AlgN is a derivation.

Let L be a J -subspace lattice on a Banach space X with dimX > 2 and
AlgL the associated J -subspace lattice algebra. Hou and Qi [HQ] proved
that every additive map δ derivable at zero on AlgL is of the form δ(A) =
τ(A) + cA for all A, where τ is an additive derivation and c is a scalar; if X
is complex, then every linear map on AlgL derivable at the unit operator I
is a derivation.

Let D be a strongly double triangle subspace lattice algebra on a nonzero
complex reflexive Banach spaceX. Chen and Li [CL] proved that every linear
map Jordan derivable at zero on AlgD is a generalized derivation. For other
results, see [JLL, QH2] and the references therein.

The purpose of this paper is to discuss additive or linear maps Jordan
derivable at the zero or unit operator on another important family of alge-
bras, namely, the family of J -subspace lattice algebras.

Let X be a Banach space over the real or complex field F. A family L of
subspaces of X is called a subspace lattice on X if it contains {0} and X, and
is closed under the operations of closed linear span ∨ and intersection ∧ in
the sense that

∨
γ∈Γ Lγ ∈ L and

∧
γ∈Γ Lγ ∈ L for every family {Lγ : γ ∈ Γ}

of elements in L. For a subspace lattice L on X, the associated subspace
lattice algebra AlgL is the set of operators on X leaving every subspace in
L invariant. Given a subspace lattice L on X, put

J (L) = {K ∈ L : K 6= {0} and K− 6= X},

where K− =
∨
{L ∈ L : K * L}. Call L a J -subspace lattice (simply, JSL)

on X if it satisfies the following conditions:

(1)
∨
{K : K ∈ J (L)} = X;

(2)
∧
{K− : K ∈ J (L)} = {0};

(3) K ∨K− = X, ∀K ∈ J (L);

(4) K ∧K− = {0}, ∀K ∈ J (L).

If L is a JSL, the associated subspace lattice algebra AlgL is called a J -
subspace lattice algebra, briefly, a JSL-algebra (see [LNP, LP, L1]). Note
that JSL algebras are not prime. It should be mentioned that both atomic
Boolean subspace lattices and pentagon subspace lattices are J -subspace
lattices [LP]. For L ∈ L, denote L⊥− = (L−)⊥, where L⊥ denotes the an-

nihilator of L. Denote by 〈J (L)〉 and 〈J (L)⊥−〉 the (not necessarily closed)

linear spans of
⋃
{K : K ∈ J (L)} and of

⋃
{K⊥− : K ∈ J (L)}, respec-

tively. For x ∈ X and f ∈ X∗, x ⊗ f stands for the operator on X with
rank not greater than one defined by (x ⊗ f)y = f(y)x. Sometimes we use
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〈x, f〉 for f(x). For K ∈ J (L), FL(K) stands for the subspace spanned by
{x⊗ f : x ∈ K, f ∈ K⊥−}.

This paper is organized as follows. Let L be a J -subspace lattice on a
Banach space X, and δ : AlgL → AlgL an additive map. In Section 2,
we show that δ is Jordan derivable at zero (i.e. δ(AB + BA) = δ(A)B +
Aδ(B) + δ(B)A+Bδ(A) whenever AB+BA = 0) if and only if there exists
an additive derivation τ on AlgL and a scalar λ such that δ(A) = τ(A)+λA
for all A ∈ AlgL (Theorem 2.1). In Section 3, we prove that if δ is linear
and X is complex with dimX ≥ 3, then δ(AB + BA) = δ(A)B + Aδ(B) +
δ(B)A+Bδ(A) for any A,B ∈ AlgL with AB +BA = I if and only if δ is
a derivation (Theorem 3.1).

2. Additive maps Jordan derivable at zero. In this section, we
consider the question of characterizing additive maps Jordan derivable at
zero on J -subspace lattice algebras.

Theorem 2.1. Let L be a J -subspace lattice on a Banach space X over
the real or complex field F. Suppose that δ : AlgL → AlgL is an additive
map. Then δ satisfies δ(AB + BA) = δ(A)B + Aδ(B) + δ(B)A + Bδ(A)
whenever AB + BA = 0 for any A,B ∈ AlgL if and only if there exists
an additive derivation τ : AlgL → AlgL and a scalar λ ∈ F such that
δ(A) = τ(A) + λA for all A ∈ AlgL.

To prove Theorem 2.1, we need several lemmas.

Lemma 2.2 ([L2]). Let L be a J -subspace lattice on a Banach space X.
Then x ⊗ f ∈ AlgL if and only if there exists a subspace K ∈ J (L) such
that x ∈ K and f ∈ K⊥− .

Lemma 2.3 ([LP]). Let L be a J -subspace lattice on a Banach space X
and let K ∈ J (L). Then, for any nonzero vector x ∈ K, there exists f ∈ K⊥−
such that f(x) = 1; dually, for any nonzero functional f ∈ K⊥− , there exists
x ∈ K such that f(x) = 1.

Lemma 2.4 ([HQ]). Every rank one operator x ⊗ f ∈ AlgL is a linear
combination of idempotents in AlgL.

Lemma 2.5. Let L be a J -subspace lattice on a Banach space X and
δ : AlgL → AlgL an additive map. If δ satisfies δ(AB + BA) = δ(A)B +
Aδ(B) + δ(B)A + Bδ(A) whenever AB + BA = 0 for any A,B ∈ AlgL,
then δ(I) = λI for some scalar λ.

Proof. For any idempotent P ∈ AlgL, it is obvious that P (I − P ) +
(I − P )P = 0. By the assumption on δ, we have

0 = δ(P )(I − P ) + Pδ(I − P ) + δ(I − P )P + (I − P )δ(P )

= 2δ(P )− 2δ(P )P + Pδ(I)− 2Pδ(P ) + δ(I)P,
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that is,

2δ(P ) + Pδ(I) + δ(I)P = 2δ(P )P + 2Pδ(P ).(2.1)

Multiplying (2.1) by P from the left and from the right, we get Pδ(I) =
δ(I)P. Taking any K ∈ AlgL, by Lemmas 2.2–2.3, for any x ∈ K, there
exists f ∈ K⊥− such that f(x) = 1 and x⊗ f ∈ AlgL. Thus, by Lemma 2.4,
we get x ⊗ fδ(I) = δ(I)x ⊗ f , which implies that δ(I)x and x are linearly
dependent. Let δ(I)x = λxx for some scalar λx. Since 〈J (L)〉 is dense in X,
we get δ(I) = λI for some scalar λ.

Lemma 2.6. Let L be a J -subspace lattice on a Banach space X and
δ : AlgL → AlgL an additive map satisfying δ(AB + BA) = δ(A)B +
Aδ(B) + δ(B)A + Bδ(A) whenever AB + BA = 0 for any A,B ∈ AlgL.
Then

(i) δ(P ) = δ(P )P + Pδ(P )− δ(I)P for every idempotent P ∈ AlgL,
(ii) δ(N)N +Nδ(N) = 0 for every N ∈ AlgL with N2 = 0.

Proof. (i) By (2.1), this is obvious.

(ii) For every N ∈ AlgL with N2 = 0, we have

0 = δ(N2+N2) = δ(N)N+Nδ(N)+δ(N)N+Nδ(N) = 2δ(N)N+2Nδ(N).

It follows that δ(N)N +Nδ(N) = 0.

Lemma 2.7 ([LLL, Lemma 8.3.2]). Let L be a J -subspace lattice on a
Banach space X. Assume that K ∈ J (L) with dimK ≥ 2, φ : FL(K) →
B(X) is a ring homomorphism and ψ : FL(K) → B(X) is a ring anti-
homomorphism. If φ(A) + ψ(A) = A for all A ∈ FL(K), then ψ = 0.

Now we are in a position to prove Theorem 2.1.

Proof of Theorem 2.1. Obviously, we only need to check the “only if”
part.

Assume δ : AlgL → AlgL is an additive map satisfying δ(AB +BA) =
δ(A)B + Aδ(B) + δ(B)A + Bδ(A) whenever AB + BA = 0 for any A,B ∈
AlgL. Define τ : AlgL → AlgL by τ(A) = δ(A) − δ(I)A = δ(A) − λA for
all A ∈ AlgL. It is easy to check that τ is also an additive map satisfying
τ(I) = 0 and τ(AB + BA) = τ(A)B + Aτ(B) + τ(B)A + Bτ(A) whenever
AB +BA = 0 for any A,B ∈ AlgL. Moreover, τ(P ) = τ(P )P + Pτ(P ) for
all idempotents P ∈ AlgL, and τ(N)N + Nτ(N) = 0 for every N ∈ AlgL
with N2 = 0. To complete the proof, we only need to show that τ is an
additive derivation. We will prove it by checking several claims.

Claim 1. There exists an additive map h : F → F such that τ(αI) =
h(α)I and τ(αP ) = τ(αI)P +ατ(P ) = h(α)P +ατ(P ) for every α ∈ F and
every idempotent P ∈ AlgL.
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Since αP (I − P ) + (I − P )αP = 0 and τ(I) = 0, we have

τ(αP )(I − P ) + αPτ(I − P ) + τ(I − P )αP + (I − P )τ(αP ) = 0,

that is,

2τ(αP ) = τ(αP )P + αPτ(P ) + ατ(P )P + Pτ(αP ).(2.2)

Multiplying (2.2) by P from the left and the right, one gets, respectively,

Pτ(αP ) = Pτ(αP )P + αPτ(P ) + αPτ(P )P(2.3)

and

τ(αP )P = αPτ(P )P + ατ(P )P + Pτ(αP )P.(2.4)

Comparing (2.3) and (2.4), we obtain

τ(αP )P + αPτ(P ) = Pτ(αP ) + ατ(P )P.(2.5)

Similarly, from the relation α(I − P )P + Pα(I − P ) = 0, we get

(2.6) 2ατ(P ) + Pτ(αI) + τ(αI)P

= τ(αP )P + Pτ(αP ) + αPτ(P ) + ατ(P )P.

Multiplying (2.6) by P from the left and the right, and using (2.5), one can
obtain, respectively,

Pτ(αI)P + τ(αI)P = 2Pτ(αP )P(2.7)

and

Pτ(αI)P + Pτ(αI) = 2Pτ(αP )P.(2.8)

Combining (2.7) and (2.8), we get τ(αI)P = Pτ(αI) for all idempotents
P ∈ AlgL. By a similar argument to that for Lemma 2.5, there exists
a map h : F → F such that τ(αI) = h(α)I. It is clear that h is additive.
Combining this equation, (2.6) and (2.2), we get τ(αP ) = τ(αI)P+ατ(P ) =
h(α)P + ατ(P ).

Claim 2. τ(PαQ + αQP ) = τ(P )αQ + Pτ(αQ) + τ(αQ)P + αQτ(P )
for every α ∈ F and all idempotents P,Q ∈ AlgL.

Take any T, S ∈ AlgL with ST = 0 and any idempotent P ∈ AlgL. Note
that TP (I − P )S + (I − P )STP = 0 and T (I − P )PS + PST (I − P ) = 0.
We have

τ(TP )(I − P )S + TPτ((I − P )S) + τ((I − P )S)TP + (I − P )Sτ(TP ) = 0

and

τ(T (I − P ))PS + T (I − P )τ(PS) + PSτ(T (I − P )) + τ(PS)T (I − P ) = 0.
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That is,

τ(TP )S + TPτ(S) + Sτ(TP ) + τ(S)TP

= τ(TP )PS + TPτ(PS) + PSτ(TP ) + τ(PS)TP

and

τ(T )PS + Tτ(PS) + PSτ(T ) + τ(PS)T

= τ(TP )PS + TPτ(PS) + PSτ(TP ) + τ(PS)TP.

Comparing the above two equations, one obtains

(2.9) τ(TP )S + TPτ(S) + Sτ(TP ) + τ(S)TP

= τ(T )PS + Tτ(PS) + PSτ(T ) + τ(PS)T.

Take any idempotent Q ∈ AlgL. Letting T = Q, S = I − Q, respectively
T = I −Q, S = Q in (2.9) and noting that ST = 0, we have

2τ(QP ) + τ(Q)PQ+Qτ(PQ) + PQτ(Q) + τ(PQ)Q

= τ(QP )Q+QPτ(Q) +Qτ(QP ) + τ(Q)QP

+ τ(P )Q+ Pτ(Q) +Qτ(P ) + τ(Q)P

and

2τ(PQ) + τ(QP )Q+QPτ(Q) +Qτ(QP ) + τ(Q)QP

= τ(Q)PQ+Qτ(PQ) + PQτ(Q) + τ(PQ)Q

+ τ(P )Q+ Pτ(Q) +Qτ(P ) + τ(Q)P.

The above two equations entail that

τ(QP + PQ) = τ(P )Q+ Pτ(Q) +Qτ(P ) + τ(Q)P(2.10)

for all idempotents P,Q ∈ AlgL.
Now, take any α ∈ F. Letting T = Q, S = α(I − Q), respectively

T = α(I −Q), S = Q in (2.9) one gets

(2.11) 2ατ(QP ) + 2τ(αI)QP + τ(Q)αPQ

+Qτ(αPQ) + αPQτ(Q) + τ(αPQ)Q

= τ(QP )αQ+QPτ(αQ) + αQτ(QP ) + τ(αQ)QP

+ τ(Q)αP +Qτ(αP ) + αPτ(Q) + τ(αP )Q

and

(2.12) 2ατ(PQ) + 2τ(αI)PQ+ τ(αQP )Q

+ αQPτ(Q) +Qτ(αQP ) + τ(Q)αQP

= τ(αP )Q+ αPτ(Q) +Qτ(αP ) + τ(Q)αP

+ τ(αQ)PQ + αQτ(PQ) + PQτ(αQ) + τ(PQ)αQ.
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Combining (2.10)–(2.12) and Claim 1, we get

ατ(QP+PQ)+τ(αI)(QP+PQ) = τ(Q)αP+Qτ(αP )+αPτ(Q)+τ(αP )Q.

This and (2.12) yield

(2.13) τ(QP + PQ)αQ+ (QP + PQ)τ(αQ)

+ αQτ(QP + PQ) + τ(αQ)(QP + PQ)

= τ(Q)(αPQ+ αQP ) +Qτ(αPQ+ αQP )

+ (αPQ+ αQP )τ(Q) + τ(αPQ+ αQP )Q.

Finally, by taking T = I −Q, S = αQ, respectively T = αQ, S = I −Q
in (2.9), one obtains

(2.14) τ(P )αQ+ Pτ(αQ) + αQτ(P ) + τ(αQ)P

+ τ(Q)αPQ+Qτ(αPQ) + αPQτ(Q) + τ(αPQ)Q

= τ(QP )αQ+QPτ(αQ) + αQτ(QP ) + τ(αQ)QP + 2τ(αPQ)

and

(2.15) 2τ(αQP ) + τ(αQ)PQ+ αQτ(PQ) + PQτ(αQ) + τ(PQ)αQ

= τ(αQP )Q+ αQPτ(Q) +Qτ(αQP ) + τ(Q)αQP

+ τ(αQ)P + αQτ(P ) + Pτ(αQ) + τ(P )αQ.

Comparing (2.14), (2.15) and (2.13), it follows that

2[τ(αPQ+ αQP )− (τ(P )αQ+ Pτ(αQ) + αQτ(P ) + τ(αQ)P )]

= [τ(Q)(αPQ+ αQP ) +Qτ(αPQ+ αQP ) + (αPQ+ αQP )τ(Q)

+ τ(αPQ+ αQP )Q]− [τ(QP + PQ)αQ+ (QP + PQ)τ(αQ)

+ αQτ(QP + PQ) + τ(αQ)(QP + PQ)].

This, together with (2.13), gives τ(PαQ + αQP ) = τ(αQ)P + αQτ(P ) +
Pτ(αQ) + τ(P )αQ for all idempotents P,Q ∈ AlgL and all α ∈ F, complet-
ing the proof of the claim.

Claim 3. For any A ∈ AlgL and any finite rank operator F ∈ AlgL,
we have τ(AF + FA) = τ(A)F +Aτ(F ) + τ(F )A+ Fτ(A).

Note that τ(QP + PQ) = τ(Q)P + Qτ(P ) + τ(P )Q + Pτ(Q) for all
idempotents P,Q ∈ AlgL (see (2.10)). By Lemma 2.4 and the fact that
every finite rank operator of AlgL is a sum of rank one operators in AlgL,
for any finite rank operator F ∈ AlgL we have

τ(FP + PF ) = τ(F )P + Fτ(P ) + τ(P )F + Pτ(F ).(2.16)

Since τ(αP ) = τ(αI)P + ατ(P ), by a similar argument we obtain τ(αF ) =
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τ(αI)F + ατ(F ) for all finite rank operators F ∈ AlgL. Hence

τ(F (αP ) + (αP )F )

= τ(αF )P + αFτ(P ) + Pτ(αF ) + τ(P )αF

= ατ(F )P + τ(αI)FP + αFτ(P ) + αPτ(F ) + τ(αI)PF + τ(P )αF

= τ(F )αP + αPτ(F ) + F (ατ(P ) + τ(αI)P ) + (ατ(P ) + τ(αI)P )F

= τ(F )αP + Fτ(αP ) + αPτ(F ) + τ(αP )F,

that is,

τ(F (αP ) + (αP )F ) = τ(F )αP + Fτ(αP ) + αPτ(F ) + τ(αP )F.(2.17)

Now, for any A ∈ AlgL, let T = (I − P )A(I − P ). It is clear that
T (αP ) + (αP )T = 0. So

τ(T )αP + Tτ(αP ) + τ(αP )T + αPτ(T ) = 0.(2.18)

Note that A− T is a finite rank operator. By (2.17)–(2.18), we have

τ(A(αP ) + (αP )A)

= τ((A− T )αP + αP (A− T ))

= τ(A− T )αP + (A− T )τ(αP ) + τ(αP )(A− T ) + αPτ(A− T )

= τ(A)αP − τ(T )αP +Aτ(αP )− Tτ(αP )

+ τ(αP )A− τ(αP )T + αPτ(A)− αPτ(T )

= τ(A)αP +Aτ(αP ) + τ(αP )A+ αPτ(A).

It follows that

τ(Ax⊗ f + x⊗ fA)

= τ(A)x⊗ f +Aτ(x⊗ f) + τ(x⊗ f)A+ x⊗ fτ(A)

for each A ∈ AlgL and each rank one operator x⊗f ∈ AlgL, which implies
that the claim is true.

Claim 4. For any K ∈ J (L), let τK denote the restriction to FL(K)
of τ . Then τK is an additive derivation.

We shall prove the claim by considering two cases.

Case 1: dimK = 1. In this case, we have dimK⊥− = 1, and so dimFL(K)
= 1. Take x0 ∈ K and f0 ∈ K⊥− such that 〈x0, f0〉 = 1. Write P = x0 ⊗ f0.
Then FL(K) = {λP : λ ∈ F}. We claim that

h(λµ) = h(λ)µ+ λh(µ)(2.19)

for all λ, µ ∈ F. Indeed, by Claims 1, 3 and the fact τ(P ) = τ(P )P +Pτ(P ),
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we have

2λµτ(P ) + 2h(λµ)P = 2τ(λµP ) = τ(2λµP ) = τ(λPµP + µPλP )

= τ(λP )µP + λPτ(µP ) + τ(µP )λP + µPτ(λP )

= 2h(λ)µP + 2λµτ(P )P + 2λh(µ)P + 2λµPτ(P )

= 2h(λ)µP + 2λh(µ)P + 2λµτ(P ),

which implies (2.19). Hence

τ(λP )µP + λPτ(µP ) = h(λ)µP + λµτ(P )P + λh(µ)P + λµPτ(P )

= h(λµ)P + λµτ(P ) = τ(λPµP ).

Case 2: dimK > 1. Define a map Φ : FL(K)→ B(X ⊕X) by

Φ(F ) =

(
F τK(F )

0 F

)
for all F ∈ FL(K).

By Claim 3, it is easily checked that Φ is an additive Jordan homomorphism.
Note that FL(K) is a locally matrix algebra. So, by [JR], Φ has the form

Φ(F ) = φ(F ) + ψ(F ) =

(
φ1(F ) φ2(F )

0 φ3(F )

)
+

(
ψ1(F ) ψ2(F )

0 ψ3(F )

)
,

where φ : FL(K) → B(X ⊕ X) is a ring homomorphism, ψ : FL(K) →
B(X ⊕ X) is a ring anti-homomorphism, φ1, φ3 : FL(K) → B(X) are ring
homomorphisms and ψ1, ψ3 : FL(K)→ B(X) are ring anti-homomorphisms.
Thus, for any F ∈ FL(K), we have

φ1(F ) + ψ1(F ) = F and φ3(F ) + ψ3(F ) = F.

It follows from Lemma 2.7 that ψ1 = ψ3 = 0, and so φ1(F ) = φ3(F ) = F .
Since φ(F1F2) = φ(F1)φ(F2) and ψ(F1F2) = ψ(F2)ψ(F1) for all F1, F2 ∈
FL(K), it is easy to check that φ2 is an additive derivation and ψ2 = 0.
Hence τK = φ2 is an additive derivation.

Claim 5. τ is an additive derivation.

Take any K ∈ J (L) and let τK be the restriction of τ to FL(K). Fix
fK ∈ K⊥− and xK ∈ K such that fK(xK) = 1. Then for any x ∈ K, we have
x⊗ fK ∈ FL(K). Define a map TK : K → X as follows:

TKx = τK(x⊗ fK)xK , ∀x ∈ K.(2.20)

Then for any F ∈ FL(K), by Claim 4, we have

τK(Fx⊗ fK) = τK(F )x⊗ fK + FτK(x⊗ fK), ∀x ∈ K.
Multiplying the above equation by xK from the right, one gets

τK(F )x = TKFx− FTKx, ∀x ∈ K.(2.21)
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Now take any A ∈ AlgL and any F ∈ FL(K). Since AF,FA ∈ FL(K), for
any x ∈ K, by (2.20)–(2.21), on the one hand, we have

τ(AF + FA)x = τ(AF )x+ τ(FA)x(2.22)

= TKAFx−AFTKx+ TKFAx− FATKx;

on the other hand, by Claim 3 and (2.21),

τ(AF + FA)x = τ(A)Fx+Aτ(F )x+ τ(F )Ax+ Fτ(A)x(2.23)

= τ(A)Fx+ATKFx−AFTKx
+ TKFAx− FTKAx+ Fτ(A)x.

Comparing (2.22) and (2.23), one gets

(τ(A) +ATK − TKA)Fx = F (−ATK + TKA− τ(A))x.(2.24)

In particular, taking x = xK , we have

(τ(A) +ATK − TKA)FxK = F (−ATK + TKA− τ(A))xK(2.25)

for all A ∈ AlgL and F ∈ FL(K). Letting F = x⊗fK in (2.25), one obtains
(τ(A) + ATK − TKA)x = λx for all x ∈ K, where λ = −〈(τ(A) − TKA +
ATK)xK , fK〉. This and (2.24) imply that λ = 0. So (τ(A) +ATK − TKA)x
= 0, that is, τ(A)x = (TKA−ATK)x for all x ∈ K.

For any A,B ∈ AlgL and any x ∈ K with K ∈ J (L), we have

τ(AB)x = TKABx−ABTKx
= (TKA−ATK)Bx+A(TKB −BTK)x

= τ(A)Bx+Aτ(B)x.

Since 〈J (L)〉 is dense in X, it follows that τ(AB) = τ(A)B + Aτ(B), that
is, τ is a derivation. Note that δ(A) = τ(A) + δ(I)A = τ(A) + λA for all A.
The proof of the theorem is complete.

3. Linear maps Jordan derivable at the unit operator. In this
section, we turn to a characterization of linear maps Jordan derivable at the
unit operator on AlgL. The following is our main result.

Theorem 3.1. Let L be a J -subspace lattice on a complex Banach space
X with dimX ≥ 3. Suppose that δ : AlgL → AlgL is a linear map. Then δ
satisfies δ(AB +BA) = δ(A)B +Aδ(B) + δ(B)A+Bδ(A) whenever AB +
BA = I for any A,B ∈ AlgL if and only if δ is a derivation.

We first prove two lemmas.

Lemma 3.2. Let L be a J -subspace lattice on a Banach space X and
δ : AlgL → AlgL a linear map. If δ satisfies δ(AB + BA) = δ(A)B +
Aδ(B) + δ(B)A + Bδ(A) whenever AB + BA = I for any A,B ∈ AlgL,
then
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(i) δ(P ) = δ(P )P + Pδ(P ) for every idempotent P ∈ AlgL,
(ii) δ(N)N +Nδ(N) = 0 for every N ∈ AlgL with N2 = 0.

Proof. It is obvious from I = 1
2I · I + I · 12I that δ(I) = δ(I)I + Iδ(I) =

2δ(I). So δ(I) = 0.

(i) Let P ∈ AlgL be an idempotent operator. Since

I = (P − 1
2I)(2P − I) + (2P − I)(P − 1

2I),

we have

0 = δ(I) = δ(P − 1
2I)(2P − I) + (P − 1

2I)δ(2P − I)

+ δ(2P − I)(P − 1
2I) + (2P − I)δ(P − 1

2I)

= 4δ(P )P + 4Pδ(P )− 4δ(P ).

That is, δ(P ) = δ(P )P + Pδ(P ).

(ii) For every operator N ∈ AlgL with N2 = 0, since

(I +N)(12I −
1
2N) + (12I −

1
2N)(I +N) = I,

we have

0 = δ(I) = δ(I +N)(12I −
1
2N) + (I +N)δ(12I −

1
2N)

+ δ(12I −
1
2N)(I +N) + (12I −

1
2N)δ(I +N)

= − δ(N)N −Nδ(N).

It follows that δ(N)N +Nδ(N) = 0.

Lemma 3.3. Let X be a real or complex linear space with dimX =∞, or
a complex linear space with 2 < dimX < ∞. Assume that A,B are linear
operators on X. If, for every x ∈ X, Bx is a linear combination of Ax
and x, then B is a linear combination of A and I.

Proof. Denote by L(X) the set of all linear operators from X into itself.
We consider the two cases separately.

Case 1: dimX = ∞. In this case we will use a result due to Larson
[Lar] (see also [Hou]). For a finite-dimensional subspace S ⊆ L(X), define
SG = S ∩ G(X), where G(X) denotes the set of all finite rank operators
in L(X), and define ref(S) = {A ∈ L(X) | Ax ∈ Sx, ∀x ∈ X}. Larson
[Lar] proved that ref(SG) = SG implies ref(S) = S. Applying this result to
S = span{I, A}, and noting that ref(SG) = SG as dimSG ≤ 1, we see that
ref(S) = S. Hence B ∈ ref(S) = S, that is, B = αA + βI for some scalars
α and β as desired.

Case 2: dimX = n ≥ 3, n ∈ N. Note that the hypotheses imply that
LatA ⊆ LatB, where LatT stands for the lattice of all invariant subspaces
of T .
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If A is of rank one, then there exist x ∈ X and f ∈ X∗ such that
A = x ⊗ f . The inclussion LatA ⊆ LatB implies that every subspace of
kerA is invariant under B. It follows that B is a scalar multiple of the
identity on ker f . Hence, it has the form B = y ⊗ f + βI. Now it is easily
seen that y = αx for some scalar α and thus B = αA+ βI.

Thus we may assume that A /∈ FI and the rank of A is greater than 1.

If A is diagonal, then A =
⊕k

i=1 aiIi with respect to the space decompo-

sition X =
⊕k

i=1Xi, where ai 6= aj whenever i 6= j. Then accordingly

B =
⊕k

i=1 biIi as LatA ⊆ LatB. Let x = (x1, . . . , xn) ∈ X with all
xi 6= 0. Since Bx ∈ span{Ax, x}, there are scalars βx and γx such that
Bx = βxAx+ γxx. It follows that bi = βxai + γx, i = 1, . . . , k. Thus

βx =
bi − bj
ai − aj

= α and γx = bi −
ai(bi − bj)
ai − aj

= β

are constants. It is easy to see that Bx = αAx + βx for any x ∈ X and
hence B = αA+ βI.

Now assume that A is not diagonal. Let J =
∑n−1

i=1 Ei,i+1 where Eij
stands for the n× n matrix having the (i, j)th entry 1 and all other entries
zero. If A = J + δI, then B has the form (tij)n×n with tij = 0 if i > j since
LatA ⊆ LatB. Furthermore, because Bx ∈ span{Ax, x} for every x ∈ X,
we have B = αJ+(αδ+β)I = αA+βI. Generally, since X is complex, A has

the form A =
⊕k

i=1(δiIi + εiJi) with respect to some space decomposition
X = X1⊕· · ·⊕Xk, where εi ∈ {0, 1}. We may assume that ε1 6= 0. Then the

hypotheses imply that B =
⊕k

i=1Bi, LatBi ⊇ Lat(δiIi + εiJi), and Bixi ∈
span{xi, εiJixi} for every xi ∈ Xi. Thus, by what we have just proved,

Bi = λiI + αiεiJi for some scalars λi and αi. So B =
⊕k

i=1(λiI + αiεiJi).

Now we will use the fact that Bx ∈ span{Ax, x} for all x ∈ X to check

that B = αA + βI for some scalars α and β. To do this, take x =
⊕k

i=1 xi
with J1x1 6= 0. Then Bx = βxAx + γxx for some scalars βx and γx implies
that βx = α1 and γx = λ1−βxδ1 = λ1−α1δ1. For any x ∈ X with J1x1 = 0,
by taking x′ =

⊕k
i=1 x

′
i ∈ X so that J1x

′
1 6= 0 and letting y = x + x′, we

still get βx = α1 and γx = λ1−α1δ1. Hence, B = αA+ βI with α = α1 and
β = λ1 − α1δ1.

Lemma 3.4 ([LL, Proposition 1.1]). Let E and F be nonzero subspaces
of X and X∗, respectively. Let Φ : E × F → B(X) be a bilinear map such
that Φ(x, f) ker(f) ⊆ Fx for all x ∈ E and f ∈ F . Then there exist linear
maps T : E → X and S : F → X∗ such that Φ(x ⊗ f) = Tx ⊗ f + x ⊗ Sf
for all x ∈ E and f ∈ F .

Proof of Theorem 3.1. Again, we only need to prove the “only if” part.
By Lemma 3.2, we have δ(P ) = δ(P )P + Pδ(P ) for all idempotents P , and
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δ(N)N + Nδ(N) = 0 for all operators N with N2 = 0. We complete the
proof of the theorem by checking several claims.

Claim 1. For any rank one operator x⊗ f ∈ AlgL, we have

δ(x⊗ f) ker(x⊗ f) ⊆ span{x}.
We will prove the claim by considering two cases.

Case 1: 〈x, f〉 = λ 6= 0. By the linearity of δ, we have

δ(λ−1x⊗ f) = δ(λ−1x⊗ f)(λ−1x⊗ f) + (λ−1x⊗ f)δ(λ−1x⊗ f),

that is, δ(x⊗ f) = λ−1δ(x⊗ f)(x⊗ f) + λ−1(x⊗ f)δ(x⊗ f), which implies
that the claim is true.

Case 2: 〈x, f〉 = 0. By Lemma 2.2, there exists K ∈ J (L) such that
x ∈ K and f ∈ K⊥− . Then, by Lemma 2.3, there exists z ∈ K such that
〈z, f〉 = 1. Thus (x + z) ⊗ f, z ⊗ f ∈ AlgL are both idempotents. So we
have δ((x + z) ⊗ f) ker(f) ⊆ span{x + z} and δ(z ⊗ f) ker(f) ⊆ span{z}.
Note that δ(x ⊗ f) = δ((x + z) ⊗ f) − δ(z ⊗ f). Hence δ(x ⊗ f) ker(f) ⊆
span{x+ z} − span{z}. Thus for any y ∈ ker(f), there exist α(y), β(y) ∈ C
such that

δ(x⊗ f)y = α(y)(x+ z)− β(y)z = α(y)x+ (α(y)− β(y))z.(3.1)

Since (x⊗ f)2 = 0, we get δ(x⊗ f)(x⊗ f) + (x⊗ f)δ(x⊗ f) = 0. It follows
that 0 = (δ(x ⊗ f)(x ⊗ f) + (x ⊗ f)δ(x ⊗ f))y = 〈δ(x ⊗ f)y, f〉x for every
y ∈ ker(f), that is, 〈δ(x⊗ f)y, f〉 = 0. Thus from (3.1) we get

0 = 〈δ(x⊗ f)y, f〉 = 〈α(y)x+ (α(y)− β(y))z, f〉
= (α(y)− β(y))〈z, f〉 = α(y)− β(y),

that is, δ(x⊗ f)y = α(y)x for every y ∈ ker(f), completing the proof of the
claim.

Claim 2. For each K ∈ J (L), there exist linear maps SK : K⊥− → K⊥−
and TK : K → K such that

δ(x⊗ f) = x⊗ SKf + TKx⊗ f for all x ∈ K and f ∈ K⊥− .
By Lemma 3.4, the claim is obvious.

Claim 3. There exists a linear operator T : 〈J (L)〉 → 〈J (L)〉 such that
δ(x⊗ f) = T (x⊗ f)− (x⊗ f)T for every rank one operator x⊗ f ∈ AlgL.

We first prove that TK : K → K is bounded. In fact, for any x⊗f ∈ AlgL
with x ∈ K, f ∈ K⊥− and 〈x, f〉 = 1, by Lemma 3.2, we can easily deduce
that (x⊗f)δ(x⊗f)(x⊗f) = 0. So (〈x, SKf〉+〈TKx, f〉)x⊗f = 0. It follows
that

〈x, SKf〉+ 〈TKx, f〉 = 0(3.2)
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for all x ∈ K and f ∈ K⊥− with 〈x, f〉 = 1. Now let x ∈ K and f ∈ K⊥−
be arbitrary. If 〈x, f〉 6= 0, it is obvious that (3.2) holds. If 〈x, f〉 = 0, there
exists f1 ∈ K⊥− such that 〈x, f1〉 = 1. Let f2 = f1 − f . So 〈x, f2〉 = 1. Thus
we have

〈x, SKf〉+ 〈TKx, f〉 = 〈x, SK(f1 − f2)〉+ 〈TKx, (f1 − f2)〉
= 〈x, SKf1〉+ 〈TKx, f1〉 − 〈x, SKf2〉 − 〈TKx, f2〉 = 0.

Hence

〈x, SKf〉+ 〈TKx, f〉 = 0 for all x ∈ K, f ∈ K⊥− .(3.3)

If {xn} ⊆ K with xn → x0 and TKxn → y0 as n→∞, then

0 = 〈xn, SKf〉+ 〈TKxn, f〉 7→ 〈x0, SKf〉+ 〈y0, f〉 = 0.

Combining (3.3) with the above equation, we have 〈TKx0, f〉 = 〈y0, f〉 for
all f ∈ K⊥− . This entails that TKx0 = y0, since, otherwise, there would be
some f ∈ K⊥− such that 〈TKx0, f〉 6= 〈y0, f〉. It follows from the closed graph
theorem that TK ∈ B(K). Similarly, we can check that SK ∈ B(K⊥− ).

Note thatK∧K− = {0} and K∨K− = X. We may regard that K⊥− ⊆ K∗
since, for any f ∈ K⊥− , f |K ∈ K∗. It is clear that, for any x ∈ K, 〈x, f〉 = 0
for all f ∈ K⊥− entails that x = 0. By (3.3), we have

〈x, (T ∗K + SK)f〉 = 0 for all x ∈ K, f ∈ K⊥− .

It follows that (T ∗K + SK)f = 0 since (T ∗K + SK)f ∈ K∗. Thus we get
(T ∗K + SK)|K⊥− = 0. Hence SK = −(TK)∗|K⊥− , and so δ(x⊗ f) = TKx⊗ f −
x⊗ fTK for all x ∈ K and f ∈ K⊥− .

Now define a linear map T : 〈J (L)〉 → 〈J (L)〉 such that T |K = TK
for any K ∈ J (L). Since, by Lemma 2.3, J (L) is a collection of linearly
independent subspaces K and 〈J (L)〉 = span{K | K ∈ J (L)}, T is well
defined. Thus there exists a linear map T : 〈J (L)〉 → 〈J (L)〉 such that
δ(x⊗ f) = Tx⊗ f − x⊗ fT for all x ∈ K and f ∈ K⊥− .

Claim 4. For every A ∈ AlgL, we have δ(A)|〈J (L)〉 = TA|〈J (L)〉 −AT .

Since X is complex, for any A and any x ⊗ f ∈ AlgL, take λ ∈ C
such that |λ| > ‖A‖ and ‖(λI − A)−1x‖ ‖f‖ < 1. Then both λI − A and
λI − A − x ⊗ f = (λI − A)(I − (λI − A)−1x ⊗ f) are invertible and their
inverses are still in AlgL. It is obvious that (I − (λI − A)−1x ⊗ f)−1 =
I + (1− α)−1(λI −A)−1x⊗ f , where α = 〈(λI −A)−1x, f〉. Hence we have

0 = δ(λI −A− x⊗ f)(I + (1− α)−1(λI −A)−1x⊗ f)(λI −A)−1

+ (λI −A− x⊗ f)δ((λI −A)−1 + (1− α)−1(λI −A)−1x⊗ f(λI −A)−1)

+ δ((λI −A)−1 + (1− α)−1(λI −A)−1x⊗ f(λI −A)−1)(λI −A− x⊗ f)

+ ((λI −A)−1 + (1− α)−1(λI −A)−1x⊗ f(λI −A)−1)δ(λI −A− x⊗ f)
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= [δ(λI −A)− Tx⊗ f + x⊗ fT ][(λI −A)−1

+ (1− α)−1(λI −A)−1x⊗ f(λI −A)−1] + [λI −A− x⊗ f ][δ((λI −A)−1)

+ (1− α)−1T (λI −A)−1x⊗ f(λI −A)−1

− (1− α)−1(λI −A)−1x⊗ f(λI −A)−1T ]

+ [δ((λI −A)−1) + (1− α)−1T (λI −A)−1x⊗ f(λI −A)−1

− (1− α)−1(λI −A)−1x⊗ f(λI −A)−1T ][λI −A− x⊗ f ]

+ [(λI −A)−1 + (1− α)−1(λI −A)−1x⊗ f(λI −A)−1]

· [δ(λI −A)− Tx⊗ f + x⊗ fT ].

Note that δ(B)B−1+Bδ(B−1)+δ(B−1)B+B−1δ(B) = 0 for each invertible
operator B ∈ AlgL by the assumption on δ and δ(I) = 0. The above
equation reduces to

0 = (1− α)−1δ(A)(λI −A)−1x⊗ f(λI −A)−1 − x⊗ fT (λI −A)−1

+ (1− α)−1Tx⊗ f(λI −A)−1

− (1− α)−1(λI −A)T (λI −A)−1x⊗ f(λI −A)−1

+x⊗ f(λI −A)−1T + x⊗ fδ((λI −A)−1) + δ((λI −A)−1)x⊗ f
−T (λI −A)−1x⊗ f + (1− α)−1(λI −A)−1x⊗ f(λI −A)−1T (λI −A)

+ (λI −A)−1Tx⊗ f + (1− α)−1(λI −A)−1x⊗ f(λI −A)−1δ(A)

− (1− α)−1(λI −A)−1x⊗ fT.

That is,

(3.4) 0 = [δ(A)(λI −A)−1 + T − (λI −A)T (λI −A)−1]x⊗ f(λI −A)−1

+ x⊗ f(1− α)[δ((λI −A)−1) + (λI −A)−1T − T (λI −A)−1]

+ (1− α)[δ((λI −A)−1) + (λI −A)−1T − T (λI −A)−1]x⊗ f
+ (λI −A)−1x⊗ f [(λI −A)−1δ(A)− T + (λI −A)−1T (λI −A)].

Now fix λ. Let Xλ = δ(A)(λI − A)−1 + T − (λI − A)T (λI − A)−1 and
Yλ = (λI−A)−1. It is clear that f and (λI−A∗)−1f are linearly independent.
So there exists a vector z ∈ X such that 〈z, (λI−A∗)−1f〉 = 1 and 〈z, f〉 = 0.
Acting at z in (3.4), we find that, for every x ∈ 〈J (L)〉, Xλx is a linear
combination of Yλx and x. By Lemma 3.3, Xλ is a linear combination of Yλ
and I. That is, there exist scalars αλ and βλ such that

δ(A)(λI −A)−1 + T − (λI −A)T (λI −A)−1 = αλ(λI −A)−1 + βλI.

Multiplying the above equation by (λI −A)−1 from the right, we obtain

δ(A)− TA+AT = αλI + βλ(λI −A)(3.5)

on 〈J (L)〉. By taking different λ in (3.5), we see that βλ is independent of λ.
Let β = βλ. Thus δ(A) − TA + AT + βA = (αλ + βλ)I on 〈J (L)〉, which
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implies that α = αλ + βλ is independent of λ. Hence

δ(A) = TA−AT − βA+ αI

on 〈J (L)〉. Note that δ is Jordan derivable at I and δ(I) = 0. One can easily
check that α = β = 0, and consequently δ(A)|〈J (L)〉 = TA|〈J (L)〉−AT . The
claim holds.

Claim 5. δ is a derivation.

For any A,B ∈ AlgL, by Claim 5, we have

δ(AB)|〈J (L)〉 = TAB|〈J (L)〉 −ABT = TA|〈J (L)〉B|〈J (L)〉 −ABT
and

(δ(A)B +Aδ(B)|〈J (L)〉 = (TA|〈J (L)〉 −AT )B|〈J (L)〉 +A(TB|〈J (L)〉 −BT )

= TA|〈J (L)〉B|〈J (L)〉 −ABT.
Comparing the above two equations, we get δ(AB)|〈J (L)〉 = (δ(A)B +
Aδ(B)|〈J (L)〉. Thus δ(AB) = δ(A)B + Aδ(B) for all A,B ∈ AlgL since
〈J (L)〉 is dense in X.
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