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Wasserstein metric and subordination

by

Philippe Clément (Leiden) and Wolfgang Desch (Graz)

Abstract. Let (X, dX), (Ω, dΩ) be complete separable metric spaces. Denote by
P(X) the space of probability measures on X, by Wp the p-Wasserstein metric with some
p ∈ [1,∞), and by Pp(X) the space of probability measures on X with finite Wasserstein
distance from any point measure. Let f : Ω → Pp(X), ω 7→ fω, be a Borel map such that
f is a contraction from (Ω, dΩ) into (Pp(X),Wp). Let ν1, ν2 be probability measures on

Ω with Wp(ν1, ν2) finite. On X we consider the subordinated measures µi =
	
Ω
fω dνi(ω).

Then Wp(µ1, µ2) ≤ Wp(ν1, ν2). As an application we show that the solution measures
%α(t) to the partial differential equation

∂

∂t
%α(t) = −(−∆)α/2%α(t), %α(0) = δ0 (the Dirac measure at 0),

depend absolutely continuously on t with respect to the Wasserstein metric Wp whenever
1 ≤ p < α < 2.

1. Introduction. Consider a family {σt | t ≥ 0} of probability Borel
measures on RN . Several topologies are available to characterize the contin-
uous dependence of σt on t. Continuity in the sense of the variation norm is
too restrictive for many applications. At the other end, continuity with re-
spect to the narrow (weak) topology is characterized by the Prokhorov met-
ric or equivalent metrics. For laws σt with finite pth moments (1 ≤ p <∞),
the p-Wasserstein metric Wp(σt, σs) is defined by (2.1) below. If σt is more-
over absolutely continuous with respect to the p-Wasserstein metric with
1 < p <∞, i.e., there exists m ∈ L1

loc([0,∞)) such that

Wp(σt, σs) ≤
t�

s

m(τ) dτ for 0 ≤ s < t,

then ([1, Theorem 8.3.1], see also [2]) there exists a vector field vt such that
(in an appropriate sense) the following continuity equation holds:

∂tµt +∇ · (vtσt) = 0.
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In this paper, we consider a method to investigate absolute continuity of σt
with respect to the p-Wasserstein metric, if σt is obtained by subordination.

To introduce subordination, consider first an infinitely divisible family
µt (t ≥ 0) of probability measures on RN , i.e. a family of measures satisfying

• µ0 = δ0,
• µt+s = µt ∗ µs for all t, s ≥ 0,
• µt converges narrowly (weakly) to δ0 as t→ 0+.

It is well known (see e.g. [13, Section 6.1]) that

[Pt(f)](x) :=
�

RN
f(x+ y) dµt(y)

defines a Markovian C0-semigroup on Cub(RN ), the space of bounded, uni-
formly continuous functions on RN . Let % be a Borel probability measure
on RN . For shorthand we write % ∈ P(RN ). By abuse of notation we define

Pt% = µt ∗ %.

Then the function
[0,∞)→ P(RN ), t 7→ Pt%,

is a narrowly continuous curve.
As in [13, Section 6.3] we now consider another infinitely divisible family

νt with values in [0,∞), and define

(1.1) σt =
∞�

0

µs dνt(s).

This is again an infinitely divisible family on RN which is called subordinated
to µt by νt. This situation occurs, for instance, if σt is associated with a C0-
semigroup generated by −(−A)β (β ∈ (0, 1)), where −A is the generator of
a C0 contraction semigroup associated with µt (cf. Lemma 4.3).

Checking the absolute continuity leads to the natural question of esti-
mating the Wasserstein distances of subordinated measures σt in terms of
the subordinator νt. In this paper we prove the following result:

Let ν1, ν2 be Borel probability measures on [0,∞), and for t ∈ [0,∞) let
µt be a Borel probability measure in P(RN ), depending measurably on t in
an appropriate sense. We define subordinated measures

σi =
∞�

0

µt dνi(t) (i = 1, 2).

The distance d(t, s) := Wp(µt, µs) is then a metric on [0,∞). If the Wasser-
stein distance Wp(ν1, ν2) of the subordinators is defined with respect to this
metric on [0,∞), then the Wasserstein distance between the subordinated
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measures is estimated by

Wp(σ1, σ2) ≤Wp(ν1, ν2).

A precise and somewhat more general formulation of this result is given in
Theorems 3.2 and 3.3.

The proof is quite straightforward, with the exception of some fine points
concerning the precise notion of integration of measure-valued functions.
For technical reasons, we need to select a single-valued measurable function
with values in P from a multi-valued function. It turns out that we can-
not achieve Borel measurability, but only measurability with respect to the
sigma-algebra of universally measurable sets, using a sophisticated selection
theorem [10, 5.5.3].

The paper is organized as follows: In Section 2 we introduce the basic
definitions of tools used in this paper. Some definitions and results which
are slightly more general than the standard results in the literature are
justified in the appendix. In Section 3 we establish the main results. Finally,
in Section 4 we consider the semigroup generated by −(−∆)β which can be
obtained by subordination from the heat semigroup, using Gaussian kernels
(cf. [13, Section 6.3.4]).

Acknowledgements. This work was done during mutual visits of the
authors to Karl-Franzens University of Graz and to the University of Leiden.
It is our pleasure to thank both universities for their kind hospitality. We
are grateful to Onno van Gaans for helpful and stimulating discussions on
Lévy processes. We also thank an anonymous referee for his careful reading
of our manuscript.

2. Preliminaries. In this section we give the basic definitions and prop-
erties of the objects considered in this paper. For more details and proofs
see the appendix.

Let (X, dX) be a complete, separable metric space. We denote by B(X)
the Borel sigma-algebra on X; moreover, P(X) denotes the set of probability
measures on (X,B(X)). On P(X) we consider the topology of narrow con-
vergence and the corresponding Borel sigma-algebra. It is known that this
topology is induced by several metrics, among them the Prokhorov metric
and the dual bounded Lipschitz metric β. (For definition of β see [6, p. 395,
Proposition 11.3.2].) With this metric, P(X) is a complete separable metric
space ([6, 11.5.5]; for the separability see [6, Section 11, Problem 4]).

If γ ∈ P(X1 × X2) is a probability measure on a product space, then
the marginals will be denoted by π1

] γ(A1) = γ(A1 × X2) and π2
] γ(A2) =

γ(X1 ×A2) for Ai ∈ B(Xi).
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Definition 2.1. Let µ1, µ2 ∈ P(X). We define the Wasserstein distance

(2.1) Wp,X(µ1, µ2) = inf
[ �

X×X
dX(x1, x2)p dγ(x1, x2)

]1/p
,

where the infimum is taken over all probability measures γ ∈ P(X × X)
such that πi]γ = µi for i = 1, 2. If γ ∈ P(X ×X) is such that πi]γ = µi for
i = 1, 2 and W p

p,X(µ1, µ2) =
	
X×X dX(x1, x2)p dγ(x1, x2), then γ is called an

optimal plan for (µ1, µ2).

Detailed information about the Wasserstein distance can be found, e.g.,
in [1] and [6]. Notice that, according to the definition above, W p

p,X(µ1, µ2)
may be infinite. In this case, any γ ∈ P(X × X) such that πi]γ = µi is
an optimal plan. Notice also that in some references W p

p,X(µ1, µ2) is only
considered for measures µi which have finite Wasserstein distance to some
point measure. The space of these measures is usually denoted by Pp(X).
The generalization to the case µi ∈ P(X) with the possibility that the
Wasserstein distance is infinite causes only minor technical changes; some
of them will be indicated in the appendix.

In particular, in this case the infimum in (2.1) is also in fact a minimum
([1, Chapter 6, p. 133], [6, Theorem 11.8.2]). (More details are given in
Lemma 5.2 and Corollary 5.3 in the appendix.)

Although the Wasserstein metric is not necessarily finite, it satisfies the
triangle inequality, so the space P(X) can be topologized by Wp,X , for in-
stance using the metric d̃(µ1, µ2) = min(1,Wp,X(µ1, µ2)). This topology is
stronger than the topology of narrow convergence. W p

p,X is lower semicon-
tinuous with respect to narrow convergence (Corollary 5.3 in the appendix;
for the case of µ ∈ Pp(X), see [1, 7.1.3]).

Equivalently, we may characterize the Wasserstein metric by

(2.2) Wp,X(µ1, µ2) = inf[E(d(X1, X2)p)]1/p,

where the infimum is taken over all pairs of X-valued random variables
X1, X2 such that the law of Xi is µi. (This approach is taken, e.g., in [7,
Definition 1.1], where also infinite Wasserstein distances are allowed.)

We can reiterate the machinery and define a Wasserstein distance again
on the space P(P(X)): If µ̃1, µ̃2 are probability measures on P(X) (with
respect to the Borel sigma-algebra induced by β), then

(2.3) Wp,P(X)(µ̃1, µ̃2) = inf
[ �

P(X)×P(X)

W p
p,X(%1, %2) dγ̃%1,%2

]1/p
with the infimum taken over all γ̃ whose marginals are µ̃1, µ̃2.
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We also need some basic facts about integration of measure-valued func-
tions. Consider a probability space (Ω,F , θ) and a function f : Ω → P(X),
ω 7→ fω. Below, X will again be a separable complete metric space.

Definition 2.2. The map f is called measurable iff for each Borel set
A ⊂ X the map

fA : Ω → [0, 1], ω 7→ fω(A),

is measurable from (Ω,F) to ([0, 1],B([0, 1])).

By standard arguments it is sufficient to check measurability of fA for
any closed (or any open) subset A ⊂ X. If Ω is a metric space, and F is
the Borel sigma-algebra on Ω, then Definition 2.2 is just the definition of
a Borel map according to, e.g., [1, Section 5.3], where we can also find the
following concept of integration.

Definition 2.3. If f : Ω → P(X) is measurable, then we define a
probability measure

ν =
�

Ω

fω dθ

by the following formula for each A ∈ B(X):

(2.4) ν(A) =
�

Ω

fω(A) dθ(ω).

In fact,
	
Ω fω dθ(ω) is a Borel probability measure on X. For each non-

negative Borel measurable function g : X → [0,∞] we have ([1])

(2.5)
�

X

g(x) ν(dx) =
�

Ω

�

X

g(x) dfω(x) dθ(ω).

A more detailed discussion of this concept of integration will be given in
Lemma 5.8 in the appendix.

3. The main theorem. Before we state the main result we prove a
technical lemma: By Lemma 5.2, each pair µi ∈ P(X) (i = 1, 2) admits at
least one optimal plan γ ∈ P(X×X). For later use we require a measurable
function mapping each pair µ1, µ2 into an optimal plan γµ1,µ2 . However, for
technical reasons, we do not achieve Borel measurability of this function.
The following lemma states that the optimal plan can be chosen to depend
measurably on µi if we endow P(X) × P(X) with the sigma-algebra of
universally measurable sets, which contains the Borel sigma-algebra.

Lemma 3.1. Let (X, dX) be a complete separable metric space. Let p ∈
[1,∞) and let Wp denote the Wasserstein distance on P(X). Let BU (P(X)×
P(X)) be the sigma-algebra of universally measurable sets on P(X)×P(X)
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(see [5, II.32]). Then there exists a map

γ : P(X)× P(X)→ P(X ×X), (µ1, µ2) 7→ γµ1,µ2 ,

such that γµ1,µ2 is an optimal plan for each µ1, µ2. Moreover , γ is measurable
if P(X)×P(X) is endowed with the sigma-algebra BU (P(X)×P(X)), and
P(X ×X) with the Borel sigma-algebra.

Proof. Set

H = {(µ1, µ2, γ) ∈ P(X)× P(X)× P(X ×X) |
γ is an optimal plan for (µ1, µ2)}.

Define h : P(X ×X)→ [0,∞] by

h(γ) :=
�

X×X
dX(x1, x2)p dγ(x1, x2).

Then H = H1 ∩H2 where

H1 = {(µ1, µ2, γ) ∈ P(X)× P(X)× P(X ×X) | h(γ) = W p
p (µ1, µ2)},

H2 = {(µ1, µ2, γ) ∈ P(X)× P(X)× P(X ×X) | πi]γ = µi (i = 1, 2)}.

According to [1, (5.1.15)], h is lower semicontinuous with respect to the
topology of narrow convergence. By Corollary 5.3, the same holds for W p

p .
Therefore, according to Lemma 5.10, H1 is a Borel set. The set H2 is closed
with respect to narrow convergence. Thus H is a Borel set.

Now we use [10, Theorem 5.5.3] (cf. also [6, Theorem 13.2.7]) to see
that there exists a map γ : P(X) × P(X) → P(X × X) such that each
triple (µ1, µ2, γµ1,µ2) is contained in H and γ is measurable from (P(X) ×
P(X),BU (P(X)× P(X))) into (P(X ×X),B(P(X ×X))).

Now we are ready to state our main theorem:

Theorem 3.2. Let (X, dX) be a complete separable metric space. Let
p ∈ [1,∞). On X and P(X) we consider the p-Wasserstein distances Wp,X

and Wp,P(X), respectively. Let µ̃1, µ̃2 ∈ P(P(X)), and define µi ∈ P(X)
(i = 1, 2) by

µi(A) :=
�

P(X)

%(A) dµ̃i(%)

for each A ∈ B(X). Then Wp,X(µ1, µ2) ≤Wp,P(X)(µ̃1, µ̃2).

Proof. Let θ̃ ∈ P(P(X)×P(X)) be such that πi]θ̃ = µ̃i for i = 1, 2, and

(3.1)
�

P(X)×P(X)

W p
p,X(%1, %2) dθ̃(%1, %2) = W p

p,P(X)(µ̃1, µ̃2).
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Choose γ : P(X)×P(X)→ P(X ×X) according to Lemma 3.1. We define
a measure ν ∈ P(X ×X) by

ν =
�

P(X)×P(X)

γ%1,%2 dθ̃(%1, %2).

Notice that, although γ is not necessarily a Borel function, this defini-
tion makes sense, since γ is measurable with respect to the sigma-algebra
BU (P(X)×P(X)) of universally measurable sets. By construction ([5, II.32]),
this sigma-algebra is a subalgebra of the algebra of all θ̃-measurable sets,
and θ̃ can be uniquely extended to a measure on BU (P(X) × P(X)). In
particular, for A ∈ B(X) we obtain, using Lemma 5.8,

π1
] ν(A) = ν(A×X) =

�

P(X)×P(X)

γ%1,%2(A×X) dθ̃(%1, %2)

=
�

P(X)×P(X)

π1
] γ%1,%2(A) dθ̃(%1, %2) =

�

P(X)×P(X)

%1(A) dθ̃(%1, %2)

=
�

P(X)

%1(A) dπ1
] θ̃(%1) =

�

P(X)

%1(A) dµ̃1(%1) = µ1(A).

Similarly, π2
] ν = µ2. Therefore, using the definition of the Wasserstein met-

ric, (2.5), and (3.1), we obtain

W p
p,X(µ1, µ2) ≤

�

X×X
dX(x, y)p dν(x, y)

=
�

P(X)×P(X)

�

X×X
dX(x, y)p dγ%1,%2(x, y) dθ̃(%1, %2)

=
�

P(X)×P(X)

W p
p,X(%1, %2) dθ̃(%1, %2) = W p

p,P(X)(µ̃1, µ̃2).

We will use this theorem in the following form:

Theorem 3.3. Let (X, dX) and (Ω, dΩ) be complete separable metric
spaces. Let p ∈ [1,∞). On P(X) and P(Ω) we consider the p-Wasserstein
metrics Wp,X , Wp,Ω, respectively. Let

f : Ω → P(X), ω 7→ fω,

be such that Wp,X(fω1 , fω2) ≤ MdΩ(ω1, ω2) with a fixed constant M > 0.
Then f is a Borel map. Given ν1, ν2 ∈ P(Ω) the following probability mea-
sures µi ∈ P(X) are well defined :

µi :=
�

Ω

fω dνi(ω) (i = 1, 2).

Then Wp,X(µ1, µ2) ≤MWp,Ω(ν1, ν2).
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Proof. To see that f is a Borel map, note that if ωn → ω in Ω, then fωn
converges to fω in P(X) with respect to Wp,X . This implies narrow conver-
gence [1, Proposition 7.1.5]. Hence Lemma 5.9 shows that f is a Borel map.

Now, for i = 1, 2, let µ̃i be the image measure of νi under f on P(X),
i.e., for U ∈ B(P(X)) we define µ̃i(U) = νi(f−1(U)). Then, by Lemma 5.8,

µi(A) =
�

Ω

fω(A) dνi(ω) =
�

P(X)

%(A) dµ̃i(%)

for any A ∈ B(X). Theorem 3.2 now implies that

Wp,X(µ1, µ2) ≤Wp,P(X)(µ̃1, µ̃2).

To estimate Wp,P(X)(µ̃1, µ̃2), let γ ∈ P(Ω × Ω) be an optimal plan for
(ν1, ν2). Let γ̃ ∈ P(P(X)× P(X)) be the image measure of γ under f × f ,
i.e., for V ∈ B(P(X) × P(X)), we define γ̃(V ) = γ({(ω1, ω2) ∈ Ω × Ω |
(f(ω1), f(ω2)) ∈ V }). We claim that the marginals of γ̃ are πi](γ̃) = µ̃i. In
fact, for U ∈ B(P(X)), we have

(π1
] γ̃)(U) = γ̃(U × P(X)) = γ(f−1(U)× f−1(P(X)))

= π1
] γ(f−1(U)) = ν1(f−1(U)) = µ̃1(U).

The second marginal is checked similarly. Therefore we can estimate

W p
p,P(X)(µ̃1, µ̃2) ≤

�

P(X)×P(X)

W p
p,X(%1, %2) dγ̃(%1, %2)

=
�

Ω×Ω
W p
p,X(fω1 , fω2) dγ(ω1, ω2)

≤
�

Ω×Ω
MpdΩ(ω1, ω2)p dγ(ω1, ω2) = MpW p

p,Ω(ν1, ν2).

4. An application. In this section let Pt denote the heat semigroup in
L2(RN ). Its generator is the Laplacian −A = ∆ defined on W2,2(RN ). We
are interested in the so-called α-stable semigroup (α ∈ (0, 2)), denoted by
Pαt , which is generated by −Aα/2. In this section we will prove the following:

Theorem 4.1. Let N be a positive integer , α ∈ (1, 2). Then there exist
probability measures σαt ∈ P(RN ) such that

[Pαt f ](x) =
�

RN
f(x− y) dσαt (y).

For each p ∈ [1, α) there exists M > 0 such that for s, t ≥ 0,

(4.1) Wp(σαt , σ
α
s ) ≤M |t1/α − s1/α|.

In particular , σαt depends absolutely continuously on t with respect to the
p-Wasserstein metric.
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The proof will be divided into several lemmas.

Definition 4.2. Let A : D(A) ⊂ E → E be a linear operator in a (real
or complex) Banach space (E, | · |E). The operator A is called accretive (and
−A dissipative) if for all λ > 0 and all x ∈ D(A) we have |x|E ≤ |x+λAx|E .
An accretive (resp. dissipative) operator A is called m-accretive (resp. m-
dissipative) if the range of id + λA (resp. id− λA) is E for all (equivalently
for some) λ > 0.

It follows from the Hille version of the Hille–Yosida theorem that for a
densely defined m-accretive operator A in a Banach space E, for all t > 0
and x ∈ E the following limit exists:

e−tAx := lim
n→∞

(
id +

t

n
A

)−n
x.

Moreover, with e0Ax := x, the family of operators {e−tA | t ≥ 0} is a
C0-semigroup on E, called the semigroup generated by −A. We recall the
following result for linear semigroups, which we will utilize with β = α/2:

Lemma 4.3. Let A be a densely defined , linear m-accretive operator on
a Banach space E, and let e−tA be the semigroup generated by −A. Let
β ∈ (0, 1). Then the fractional power Aβ generates a semigroup e−tA

β
with

the representation

(4.2) e−tA
β
x =

∞�

0

ft,β(s)e−sAx ds.

The integral is to be understood as a strong Bochner integral. Here, the
function ft,β is given by

(4.3) ft,β(s) =
1

2πi

σ+i∞�

σ−i∞
ezs−z

βt dz

(with σ > 0, t > 0, s ≥ 0 and the branch of zβ such that <(zβ) > 0 if
<(z) > 0). It has the following properties:

∞�

0

ft,β(s) ds = 1,(4.4)

ft,β(s) ≥ 0 for all s ≥ 0.(4.5)

The Laplace transform with respect to s of ft,β(s) is

f̂t,β(σ) = e−tσ
β
.(4.6)
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For t > 0, the function ft,β solves the integro-differential equation

∂

∂t
ft,β(s) +

∂

∂s

s�

0

g1−β(s− σ)ft,β(σ) dσ = 0(4.7)

with g1−β(s) = s−β/Γ (1− β). For γ > 0 we have the rescaling identity

ft,β(s) = γ1/βfγt,β(γ1/βs).(4.8)

Proof. These results are proved in detail in [12, Chapter IX, 11]. In par-
ticular, (4.3) is equation (1), (4.4) is equation (14), (4.6) is Proposition 1, and
(4.5) is Proposition 2 there. The differential equation (4.7) is easily checked
using Laplace transforms with respect to s, in particular (4.6). Finally, to
check (4.8) we use (4.3) and make a change of variables y = zγ1/β:

γ1/βfγt,β(γ1/βs) = γ1/β 1
2πi

σ+i∞�

σ−i∞
ezγ

1/βs−zβγt dz

=
1

2πi

σγ1/β+i∞�

σγ1/β−i∞

eys−y
βt dy = ft,β(s).

To treat our special case, we have to introduce the heat kernels:

Definition 4.4. Let N ∈ N and Q be a positive definite symmetric
N × N matrix. Then NQ denotes the centered Gaussian measure in RN

with covariance matrix Q.

Lemma 4.5. For f ∈ L2(RN ),

(4.9) Pαt f = σαt ∗ f

with

σαt =
∞�

0

Ns2Igt,α(s) ds,(4.10)

gt,α(s) = t−2/αsf1,α/2(t−2/αs2/2).(4.11)

Proof. It is well known that the heat semigroup is given by

[Ptf ](x) =
�

RN
f(x− y) dN2tI(y).

Lemma 4.3 implies immediately that

[Pαt f ](x) =
∞�

0

�

RN
f(x− y) dσαt (y) with σαt =

∞�

0

N2rIft,α/2(r) dr.
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We first rescale t using (4.8) and then make a change of variable s2 = 2r to
obtain

∞�

0

N2rIft,α/2(r) dr =
∞�

0

N2rIt
−2/αf1,α/2(t−2/αr) dr

=
∞�

0

Ns2It−2/αf1,α/2(t−2/αs2/2)s ds.

Lemma 4.6. Let X be a random variable with values in RN and p ∈
[1,∞) be such that E(|X|p) = M <∞. Let c1, c2 ≥ 0 and let µi be the law of
ciX. Then Wp(µ1, µ2) ≤M1/p|c1− c2|. In particular , for centered Gaussian
measures we have

Wp(Ns1I ,Ns2I) ≤M |
√
s1 −

√
s2|,

where M is a constant depending only on p and N .

Proof. We utilize the characterization (2.2) with the random variables
Xi = ciX. Then

W p
p (µ1, µ2) ≤ E(|c1X − c2X|p) = |c1 − c2|pE(|X|p).

We recall that a probability measure µ ∈ P(R) is called β-stable if the
following holds: If Xi (i = 1, . . . , n) are independent random variables with
the same law µ, then there exists a constant bn such that µ is also the law
of n1/β

∑n
i=1Xi − bn.

Lemma 4.7. Let β ∈ (0, 1) and ft,β be as in Lemma 4.3, continued by 0
to the interval (−∞, 0). Then the probability measure κt,β with the density
ft,β is β-stable. In particular , for δ ∈ (0, β),

(4.12)
∞�

0

sδft,β(s) ds <∞.

For δ > β, the integral in (4.12) is infinite.

Proof. By (4.6), the characteristic function of the measure κt,β is
∞�

−∞
eizsft,β(s) ds = e−t|z|

β(cos(βπ/2)−i sgn(z) sin(βπ/2)),

which is a special case of the Lévy–Khinchin representation of a β-stable
measure (see [9, p. 347]). It is well known that β-stable measures for β < 2
have finite moments of any order δ < β (see [9, p. 341, Problem 6] or
the estimates in [8, p. 187]), but the moments of order δ > β are infinite
(see [11]).

Lemma 4.8. The function gt,α given by (4.11) is the density function
of a probability measure ναt . For 0 < s < t and 1 ≤ p < α, the following
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estimate holds with some constant M > 0:

(4.13) Wp(ναs , ν
α
t ) ≤M |t2/α − s2/α|.

Proof. Let X be a random variable such that f1,α/2 is a density function
for X. Then by a change of variables, gt is the density function of

Yt := t1/α
√

2X = t1/αY1.

By Lemma 4.7, X has moments of any order less than α/2, and consequently
Yt has moments of all orders p < α. Let ναt be the law of Yt. Lemma 4.6 now
implies that for p ∈ [1, α) we have Wp(ναt , ν

α
s ) ≤M |t1/α − s1/α|.

Proof of Theorem 4.1. Let gt,α be the density function given by (4.11)
and let ναt be the corresponding probability measure on [0,∞). By Lemma
4.5 we have

%α(t) =
∞�

0

Ns2I dναt (s).

By Lemma 4.6, Wp(Ns21I ,Ns22I) ≤ M1|s1 − s2| with some fixed M1 > 0.
By Lemma 4.8, Wp(ναt , ν

α
s ) ≤ M2|t1/α − s1/α| with some M2 > 0. Thus

Theorem 3.3 yields (4.1) with M = M1M2.

Finally, we may also define the α-stable semigroup Pαt on the space
P(RN ) by

Pαt % = σαt ∗ %.
We show that the trajectories of Pαt in P(RN ) are also absolutely continuous
with respect to the Wp-Wasserstein metric, if 1 < p < α:

Lemma 4.9. Let σ1, σ2, % ∈ Pp(RN ) where p ∈ [1,∞). Then % ∗ σi ∈
Pp(RN ) for i = 1, 2, and

Wp(% ∗ σ1, % ∗ σ2) ≤Wp(σ1, σ2).

Proof. Let ε > 0 and X1, X2 be RN -valued random variables whose laws
are σ1, σ2, respectively, and E(|X1 − X2|p) ≤ W p

p (σ1, σ2) + ε. Let Y be a
random variable independent of X1 and X2 such that % is the law of Y .
Then σi ∗ % is the law of Xi + Y . Consequently, σi ∗ % ∈ Pp(Rd) and

W p
p (σ1 ∗ %, σ2 ∗ %) ≤ E(|(X1 + Y )− (X2 + Y )|p) = E(|X1 −X2|p)

≤W p
p (σ1, σ2) + ε.

Corollary 4.10. Let % ∈ Pp(Rd) and let Pαt % = σt ∗ % with σt as in
Lemma 4.5. Let p ∈ (1, α). Then the map

[0,∞)→ Pp(RN ), t 7→ Pαt %,

is absolutely continuous.
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5. Appendix. In Section 2 we have stated that some of our definitions
are slightly more general than the standard ones found in the literature,
for example when we allow the Wasserstein distance Wp,X to be infinite,
or when we define a Wasserstein distance on P(P(X)) again by integrating
W p
p,X , where P(X) is topologized by another metric, namely β. Yet the basic

results still hold, without the need of changing the proofs significantly. In
this appendix we illustrate this fact by several examples. In fact, the results
stated here are not new, and their proofs are given only to emphasize that
the more general setting does not cause serious difficulties.

The existence of optimal plans follows from a more general result from
[1, p. 133]. The lower semicontinuity of the Wasserstein distance is found
in [1, Proposition 7.1.3]. We recall the reasoning given in [1] to see that
there is no need to confine the result to Pp(X), and that the same works on
P(P(X)). For shorthand we will adopt the following notation:

Definition 5.1. Let (X, dX) be a separable metric space, let µ1, µ2 ∈
P(X). We define

Γ (µ1, µ2) = {γ ∈ P(X ×X) | πi]γ = µi (i = 1, 2)}.

We recall that Γ (µ1, µ2) is closed in P(X×X) with respect to the narrow
topology, and compact by [1, Lemma 5.2.2], if (X, d) has the Radon property,
i.e., every probability measure on B(X) is tight ([1, Definition 5.1.4]).

Lemma 5.2. Let (X, dX) be a separable Radon metric space. Let c :
X ×X → [0,∞] be lower semicontinuous and for µ1, µ2 ∈ P(X) let

(5.1) C(µ1, µ2) = inf
γ∈Γ (µ1,µ2)

�

X×X
c(x, y) dγ(x, y).

Then the following assertions hold :

(1) C(µ1, µ2) is in fact a minimum, i.e., there exists some optimizing
γ ∈ Γ (µ1, µ2) for (5.1).

(2) C(µ1, µ2) is lower semicontinuous on P(X)× P(X) with respect to
the topology of narrow convergence.

Proof. Let µ1, µ2 ∈ P(X). Then Γ (µ1, µ2) is compact with respect to
the topology of narrow convergence. By [1, (5.1.15)] the map

J : P(X ×X)→ [0,∞], γ 7→
�

X×X
c(x, y) dγ(x, y),

is lower semicontinuous with respect to narrow convergence on P(X ×X).
Hence J assumes a minimum (possibly infinite) on Γ (µ1, µ2), proving (1).

To prove (2) let µni → µ0
i narrowly for i = 1, 2. The sets {µni | n =

0, 1, . . .} are relatively compact, hence tight. Thus
⋃∞
n=0 Γ (µn1 , µ

n
2 ) is also

tight and hence relatively compact. Let γn be optimal for (µn1 , µ
n
2 ). There
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exists a convergent subsequence. Without loss of generality we may assume
that γn converges narrowly to some γ. Then evidently γ ∈ Γ (µ0

1, µ
0
2). More-

over, by [1, (5.1.15)],

C(µ0
1, µ

0
2) ≤

�

X×X
c(x, y) dγ(x, y)

≤ lim inf
n→∞

�

X×X
c(x, y) dγn(x, y) = lim inf C(µn1 , µ

n
2 ).

As an immediate consequence we have

Corollary 5.3. Let (X, dX) be a Radon separable metric space. Let
µ1, µ2 ∈ P(X).

(1) There exists an optimal plan for the Wasserstein metric Wp(µ1, µ2).
(2) The Wasserstein distance is lower semicontinuous on P(X)×P(X)

with respect to the topology of narrow convergence.

To reiterate the procedure and investigate the Wasserstein distance for
measures in P(P(X)), we require that (X, dX) is complete. This implies that
(P(X), β) is complete, hence Radon, and we can again apply Lemma 5.2:

Corollary 5.4. Let (X, dX) be a complete separable metric space. On
P(X) consider the topology of narrow convergence (metrized by β) and the
corresponding Borel sigma-algebra. Let Wp,X be the Wasserstein distance on
P(X). We define the Wasserstein distance for µ̃i ∈ P(P(X)) by

(5.2) Wp,P(X)(µ̃1, µ̃2) = infeγ∈Γ (eµ1,eµ2)

�

P(X)×P(X)

W p
p,X(%1, %2) dγ̃(%1, %2).

Then for any µ̃1, µ̃2 ∈ P(P(X)) there exists an optimal plan γ̃ ∈ Γ (µ̃1, µ̃2)
minimizing (5.2).

One of the problems involved in the definition of the Wasserstein dis-
tance on P(P(X)) is that (P(X),Wp,X) is not quite a metric space, since
Wp,X(µ1, µ2) may be infinite. However, we can cope with this problem by a
simple approximation procedure. We illustrate this by the example of prov-
ing the triangle inequality. The triangle inequality for the Wasserstein dis-
tance is in fact a nontrivial result, which has been proved only for measures
in Pp(X), where, in particular, the Wasserstein distance is finite.

Lemma 5.5. Let X 6= ∅ be a set and d : X ×X → [0,∞] be a function
satisfying , for all x, y, z ∈ X,

d(x, y) = d(y, x),(5.3)

d(x, z) ≤ d(x, y) + d(y, z),(5.4)

d(x, y) = 0 ⇒ x = y.(5.5)
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For n ∈ N let dn be metrics on X such that dn ≤ dn+1 and dn(x, y) converges
to d(x, y) for all x, y ∈ X.

Suppose that for all n ∈ N and all sequences xk, yk ∈ X such that
dn(xk, yk) → 0 we have d(xk, yk) → 0, so that each metric dn induces the
same topology , hence the same Borel sigma-algebra on X. Suppose moreover
that this topological space is separable and has the Radon property.

Let Wp be the Wasserstein distance on P(X), which can be defined by
(2.1) although d is not a metric. Let Wp,n be the Wasserstein distance on
P(X) defined by (2.1) with d replaced by dn.

Then, for all µ1, µ2 ∈ P(X), Wp,n(µ1, µ2) converges monotonically to
Wp(µ1, µ2).

Proof. Let µ1, µ2 ∈ P(X). Evidently, Wp,n(µ1, µ2) ≤ Wp,n+1(µ1, µ2) ≤
Wp(µ1, µ2). Thus supn∈NWp,n(µ1, µ2) is well defined and bounded by
Wp(µ1, µ2). Again, let

Γ (µ1, µ2) = {γ ∈ P(X ×X) | πi]γ = µi (i = 1, 2)}.
Let γn be an optimal plan in the sense that

W p
p,n(µ1, µ2) =

�

X×X
dn(x, y)p dγn

(see Lemma 5.2). By compactness there exists a convergent subsequence.
Without loss of generality assume that γn converges narrowly to some γ,
which is evidently in Γ (µ1, µ2).

Let M <
	
X×X d(x, y)p dγ. By monotone convergence there exists some

m ∈ N such that M <
	
X×X dm(x, y)p dγ. We now use the lower semicon-

tinuity of the integral with respect to narrow convergence of measures ([1,
(5.1.15)]) and the fact that dm ≤ dn for large n:

M <
�

X×X
dm(x, y)p dγ ≤ lim inf

n→∞

�

X×X
dm(x, y)p dγn

≤ lim inf
n→∞

�

X×X
dn(x, y)p dγn = lim inf

n→∞
W p
p,n(µ1, µ2).

Hence we have

Wp(µ1, µ2) ≤
�

X×X
d(x, y)p dγ ≤ lim inf

n→∞
W p
p,n(µ1, µ2).

Corollary 5.6. Let X 6= ∅ be a set and d : X × X → [0,∞] be
a function satisfying (5.3)–(5.5). Let dn(x, y) = min(d(x, y), n) and sup-
pose that (X, d1) is a separable Radon metric space. Then (X, dn) satis-
fies all assumptions of Lemma 5.5. In particular , the Wasserstein distances
Wp,n(µ1, µ2) with respect to dn converge monotonically to the Wasserstein
distance Wp(µ1, µ2) with respect to d.
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We are now in a position to generalize the triangle inequality to general
measures in P(X):

Corollary 5.7. Let X 6= ∅ be a set and d : X × X → [0,∞] be
a function satisfying (5.3)–(5.5). Let dn(x, y) = min(d(x, y), n) and sup-
pose that (X, d1) is a separable Radon metric space. We define the Wasser-
stein distance on (X, d) by (2.1). Then the triangle inequality holds for all
µ1, µ2, µ3 ∈ P(X):

Wp(µ1, µ3) ≤Wp(µ1, µ2) +Wp(µ2, µ3).

Proof. Approximate d as in Corollary 5.6 by dn(x, y) = min(n, d(x, y)).
Let

Pp,n(X) = {µ ∈ P(X) | (∃x ∈ X)Wp,n(µ, δx) <∞}.
Here, δx denotes the point measure at x. It is well known that Wp,n is a
metric on Pp,n(X). Since dn is bounded on X × X, we easily infer that
Pp,n(X) = P(X). Therefore the triangle inequality holds for Wp,n on the
whole space P(X). By monotone approximation, using Lemma 5.5, we ob-
tain the triangle inequality also for Wp.

The rest of this appendix is devoted to the machinery of integrating
measurable functions.

Lemma 5.8. Let (Ω,F , θ) be a probability space, and (X, dX) a complete
separable metric space. Let

f : Ω → P(X), ω 7→ fω,

be a function. Then the following assertions hold :

(1) The function f is measurable in the sense of Definition 2.2 if for all
closed (or all open) A ⊂ X, the map

fA : Ω → R, ω 7→ fω(A),

is measurable from (Ω,F) to (R,B(R)).
(2) If f is measurable, then the map ν =

	
Ω fω dθ(ω) defined by

ν : B(X)→ R, A 7→
�

Ω

fω(A) dθ(ω),

is a probability measure.
(3) If f is measurable and g : X → [0,∞) is a nonnegative Borel mea-

surable function, and ν =
	
Ω fω dθ(ω), then

�

X

g(x) dν(x) =
�

Ω

�

X

g(x) dfω(x) dθ(ω).

Proof. (1) This is a standard technique from measure theory. Let

D = {A ⊂ X | fA : (Ω,F)→ (X,B(X)) is measurable}.
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We show that D is a Dynkin system. In fact:

(a) X ∈ D, since fX is the constant function, fX(ω) = 1.
(b) If Ai ∈ D are mutually disjoint and A =

⋃∞
i=1Ai, then fA(ω) =∑∞

i=1 fAi(ω), hence fA is a sum of measurable functions and A ∈ D.
(c) If A,B ∈ D with B ⊂ A, then fA\B = fB − fA is measurable, hence

A \B ∈ D.

By assumption, D contains all closed sets. Since the intersection of closed
sets is closed again, [4, Theorem 1.6.1] shows that D contains the sigma-
algebra generated by the closed sets, i.e. all A ∈ B(X) have fA measurable.

(2) Evidently, νA ≥ 0. For A = X we have

ν(X) =
�

Ω

fω(X) dθ(ω) =
�

Ω

1 dθ(ω) = 1.

Finally, if Ai are mutually disjoint and A =
⋃∞
i=1Ai, then

ν(A) =
�

Ω

fω(A) dθ(ω) =
�

Ω

∞∑
i=1

fω(Ai) dθ(ω)

=
∞∑
i=1

�

Ω

fω(Ai) dθ(ω) =
∞∑
i=1

ν(Ai).

(3) Let gn : X → R be a monotone sequence of simple functions con-
verging to g pointwise. By monotone convergence it is sufficient to prove�

X

gn(x) dν(x) =
�

Ω

�

X

gn(x) dfω(x) dθ(ω).

Let gn(x) =
∑m

j=1 αjχAj (x), where αj ≥ 0, Aj ∈ B(X), and χAj is the
indicator function of Aj . Then

�

X

gn(x) dν(x) =
m∑
j=1

αjν(Aj) =
m∑
j=1

αj
�

Ω

fω(Aj) dθ(ω)

=
�

Ω

m∑
j=1

αjfω(Aj) dθ(ω) =
�

Ω

�

X

gn(x) dfω(x) dθ(ω).

Lemma 5.9. Let (Ω, dΩ) and (X, dX) be metric spaces. Let f : Ω →
P(X) be continuous in the sense that ωn → ω in Ω implies that fωn con-
verges narrowly to fω. Then f is a Borel map.

Proof. For A ∈ B(X) we define fA(ω) = fω(A). By Lemma 5.8(1) it is
sufficient to show that fA : Ω → R is Borel measurable if A is an open set.
In this case, however, fA is lower semicontinuous by [6, 11.1.1].

The point of the last technical lemma is that we allow for functions which
may take ∞ as a value, hence they cannot be subtracted from each other:



52 P. Clément and W. Desch

Lemma 5.10. Let (X, d) be a metric space, and let h1, h2 : X → [0,∞]
be lower semicontinuous functions. Then {x ∈ X | h1(x) = h2(x)} is a Borel
set.

Proof. For n ∈ N, i = 1, 2, we define lower semicontinuous functions
hni (x) = min(h(x), n). Then the function hn1 −hn2 is Borel measurable, hence
Un := {x ∈ X | hn1 (x) − hn2 (x) = 0} is a Borel set. Consequently, so is
{x ∈ X | h1(x) = h2(x)} =

⋂∞
n=1 Un.

References
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[2] J. D. Benamou and Y. Brenier, A computational fluid mechanics solution to the
Monge–Kantorovich mass transfer problem, Numer. Math. 84 (2000), 375–393.

[3] P. Clément and W. Desch, An elementary proof of the triangle inequality for the
Wasserstein metric, Proc. Amer. Math. Soc. 136 (2008), 333–339.

[4] D. L. Cohn, Measure Theory, Birkhäuser, Boston, 1980.
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