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Positive Schatten class Toeplitz operators on the ball

by

Boo Rim Choe (Seoul), Hyungwoon Koo (Seoul)
and Young Joo Lee (Gwangju)

Abstract. On the harmonic Bergman space of the ball, we give characterizations
for an arbitrary positive Toeplitz operator to be a Schatten class operator in terms of
averaging functions and Berezin transforms.

1. Introduction. For a fixed integer n ≥ 2, let B = Bn denote the
open unit ball in Rn. The harmonic Bergman space b2 = b2(B) is the set of
all complex-valued harmonic functions f on B such that

‖f‖2 =
{ �

B

|f |2 dV
}1/2

<∞,

where V denotes the Lebesgue volume measure on B. For simplicity, we use
the notation dy = dV (y), etc.

For 0 < p ≤ ∞, let Lp = Lp(V ) be the Lebesgue spaces on B. As is
well known, b2 is a closed subspace of L2 and hence is a Hilbert space. By
the mean value property of harmonic functions, it is easily seen that point
evaluations are continuous on b2. Thus, to each x ∈ B, there corresponds a
unique R(x, ·) ∈ b2 which has the following reproducing property:

f(x) =
�

B

f(y)R(x, y) dy, x ∈ B,(1.1)

for all f ∈ b2. The explicit formula for the kernel function R(x, y) is well
known:

R(x, y) =
1
|B|
· 1

[x, y]n

{(
1− |x|2|y|2

[x, y]

)2

− 4|x|2|y|2

n

}
(1.2)

for x, y ∈ B, where [x, y] =
√

1− 2x · y + |x|2|y|2. Here, as elsewhere, we
write x · y for the dot product of x, y ∈ Rn and |E| = V (E) for the volume

2000 Mathematics Subject Classification: Primary 47B35; Secondary 31B05.
Key words and phrases: Toeplitz operator, harmonic Bergman space, Schatten class.
This research was supported by KOSEF(R01-2003-000-10243-0).

[65] c© Instytut Matematyczny PAN, 2008



66 B. R. Choe et al.

of Borel sets E ⊂ B. Hence the kernel function R(x, y) is real and hence
the complex conjugation in the integral of (1.1) can be removed. See [2] for
more information and related facts.

Let R be the Hilbert space orthogonal projection from L2 onto b2. The
reproducing property (1.1) yields the following integral representation of R:

(1.3) Rψ(x) =
�

B

ψ(y)R(x, y) dy, x ∈ B,

for functions ψ ∈ L2. It is easily seen that the projection R can be extended
to an integral operator via (1.3) from L1 into the space of all harmonic func-
tions on B. It even extends to M, the space of all complex Borel measures
on B. Namely, for each µ ∈M, the integral

Rµ(x) =
�

B

R(x, y) dµ(y), x ∈ B,

defines a function harmonic on B. For µ ∈M, the Toeplitz operator Tµ with
symbol µ is defined by

Tµf = R(fdµ)

for f ∈ b2 ∩ L∞. Note that Tµ is defined on a dense subset of b2, because
the bounded harmonic functions form a dense subset of b2.

A Toeplitz operator Tµ is called positive if µ is a positive finite Borel
measure (hereafter we simply write µ ≥ 0). For positive Toeplitz operators
on harmonic Bergman spaces, basic operator-theoretic properties such as
boundedness, compactness and the membership in the Schatten classes Sp
(see Section 4), 1 ≤ p <∞, have been studied in various settings; see [7], [11],
[12] and references therein. In this paper we extend the characterization in [7]
for Schatten class positive Toeplitz operators to the full range 0 < p <∞.

To state our result we briefly introduce some notation. Given µ ≥ 0,
µ̂r denotes the averaging function over pseudohyperbolic balls with radius r,
and µ̃ denotes the Berezin transform. See Section 3 for relevant definitions.
Also, we let λ denote the measure on B defined by

dλ(x) = (1− |x|2)−ndx.

The next theorem is the main result of this paper. In the case 1 ≤ p <∞,
that theorem (with slightly different averaging functions) has been proved
in [7]. In the case 0 < p < 1, extending results in [15] for holomorphic
Bergman spaces to the harmonic case, the authors [4] have obtained the
corresponding results on the harmonic Bergman space of the upper half-
space. While the main scheme of our proof is adapted from [4] or [15], we
need to establish corresponding theorems for the harmonic Bergman space
on the ball. The cut-off point (n− 1)/n is sharp in the theorem below.
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Theorem 1.1. Let 0 < p <∞, 0 < r < 1 and µ ≥ 0. Then the following
two statements are equivalent :

(a) Tµ ∈ Sp.
(b) µ̂r ∈ Lp(λ).

Moreover , if (n− 1)/n < p < ∞, then the above statements are also equiv-
alent to

(c) µ̃ ∈ Lp(λ).

In Section 2 we recall some basic properties of Möbius transformations,
and collect some basic estimates for the pseudohyperbolic distance and the
kernel function. In Section 3 we investigate weighted Lp-behavior of averag-
ing functions and Berezin transforms. In Section 4 we prove Theorem 1.1. In
Section 5 we provide examples indicating that the parameter ranges required
for all the results of the previous sections are best possible.

Constants. In the rest of the paper the same letter C will denote various
positive constants, unless otherwise specified, which may change at each
occurrence. The constant C may often depend on the dimension n and some
other parameters like δ, p, k, or r, etc., but it will always be independent of
particular functions, measures, points or sequences under consideration. We
will often abbreviate inessential constants involved in inequalities by writing
X . Y or Y & X for positive quantities X and Y if the ratio X/Y has a
positive upper bound. Also, we write X ≈ Y if X . Y and X & Y .

2. Preliminaries. In this section we introduce notation and collect
several basic lemmas which will be used in later sections.

2.1. Möbius transformation. We first recall Möbius transformations
on B. All relevant details can be found in [1, pp. 17–30]. Let a ∈ B. The
canonical Möbius transformation φa that exchanges a and 0 is given by

φa(x) = a+ (1− |a|2)(a− x∗)∗

for x ∈ B (note φa = −Ta in the notation of [1]). Here x∗ = x/|x|2 denotes
the inversion of x with respect to the sphere ∂B. Avoiding the x∗ notation,
we have

φa(x) =
(1− |a|2)(a− x) + |a− x|2a

[x, a]2
.

The map φa is an involution of B, i.e., φ−1
a = φa. We will tacitly use the

following identities:

|φa(x)| = |x− a|
[x, a]

,

1− |φa(x)|2 =
(1− |x|2)(1− |a|2)

[x, a]2
,

[φa(x), a] =
1− |a|2

[x, a]
,

Jφa(x) =
(

1− |a|2

[x, a]2

)n
,
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where Jφa denotes the Jacobian of φa. Also, using these identities, one may
easily verify that the measure λ is Möbius invariant.

2.2. Pseudohyperbolic distance. The hyperbolic distance β(x, y) between
two points x, y ∈ B is given by

β(x, y) =
1
2

log
1 + |φy(x)|
1− |φy(x)|

.(2.1)

As is well known, β is Möbius invariant. Let %(x, y) = |φy(x)|. Then % is also
a Möbius invariant distance on B. We shall work with this pseudohyperbolic
distance %.

For a ∈ B and r ∈ (0, 1), let Er(a) denote the pseudohyperbolic ball
with radius r and center a. A straightforward calculation shows that Er(a)
is a Euclidean ball with

center =
(1− r2)

1− |a|2r2
a and radius =

(1− |a|2)r
1− |a|2r2

.(2.2)

A straightforward calculation gives

inf
x∈Er(a)

(1− |x|) =
(1− |a|)(1− r)

1 + |a|r
.

This yields the following observation.

Lemma 2.1. The inequality

1− %(z, w)
1 + %(z, w)

≤ 1− |z|
1− |w|

≤ 1 + %(z, w)
1− %(z, w)

holds for z, w ∈ B.

We also have the following result.

Lemma 2.2. The inequality

1− %(z, w)
1 + %(z, w)

≤ [z, a]
[w, a]

≤ 1 + %(z, w)
1− %(z, w)

holds for z, w, a ∈ B.

Proof. Let z, w, a ∈ B and assume %(z, w) < r. We may assume a 6= 0.
Using (2.2), we note that Er(w) is contained in the Euclidean ball with
center w and radius s, where

s =
r(1− |w|2)

1− |w|r
<

2r(1− |w|)
1− r

<
2r|w − a∗|

1− r
.

It follows that

|z − a∗| ≤ |w − a∗|+ |z − w| < 1 + r

1− r
|w − a∗|
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and hence

[z, a]
[w, a]

=
|a| |z − a∗|
|a| |w − a∗|

=
|z − a∗|
|w − a∗|

<
1 + r

1− r
.(2.3)

This implies the lemma.

Note that by (2.2) we have

|Er(a)| = |B|
(

(1− |a|2)r
1− |a|2r2

)n
.(2.4)

Consequently, we obtain by Lemma 2.1 an estimate on the size of pseudo-
hyperbolic balls: Given δ, t ∈ (0, 1), there is a constant C = C(δ, t, n) > 0
such that

(2.5) C−1 ≤ |Er1(z)|
|Er2(w)|

≤ C, w ∈ Er3(z),

whenever r1, r2, r3 < δ and t < r1/r2 < t−1.

2.3. Kernel estimates. Given an integer k ≥ 0, we let Rk(x, y) be the
reproducing kernel for the weighted harmonic Bergman space with respect to
the weight (1−|x|)k. So, R0 = R is the harmonic Bergman kernel mentioned
before. Explicit formulas for these kernels are given in [8, (3.1)]. Note that
Rk(x, y) is real-valued and Rk(x, y) = Rk(y, x) for every x, y ∈ B. We have
the following estimates of these kernels:

|Rk(x, x)| ≈ 1
(1− |x|)n+k

and |Rk(x, y)| . 1
[x, y]n+k

,(2.6)

|∇yRk(x, y)| . 1
[x, y]n+k+1

(2.7)

for all x, y ∈ B. Here and in what follows, ∇y denotes the gradient with
respect to the y-variable. For the second estimate of (2.6), see [8, Chapter 3].
Also, one can verify the first estimate for (2.6) by using the explicit formula
for Rk given in [8, Chapter 3] (or see [11, Proposition 4] for similar estimates
with slightly different weighted reproducing kernels).

Lemma 2.3. Given an integer k ≥ 0, there exist some rk = rk(n) ∈ (0, 1)
and a constant C = C(n, k) such that

C−1 ≤ Rk(x, y)(1− |x|)n+k ≤ C

whenever y ∈ Er(x) and 0 < r ≤ rk.

Proof. By (2.6) we only need to prove the lower estimate. Let x ∈ B
and y ∈ Er(x) where r is to be chosen later. Since y ∈ Er(x), by (2.6) and
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Lemma 2.2 we have

Rk(x, x)−Rk(x, y) ≤ |y−x| sup
z∈Er(x)

|∇zRk(x, z)| . r[x, y] sup
z∈Er(x)

1
[x, z]n+k+1

<
r

(1− |x|)n+k
sup

z∈Er(x)

[x, y]
[x, z]

<
r

(1− |x|)n+k

(
1 + r

1− r

)2

.

Now, since Rk(x, x) ≈ (1− |x|)−n−k by (2.6), we have

Rk(x, y) &
1

(1− |x|)n+k

[
1− Cr

(
1 + r

1− r

)2]
for some constant C = C(n, k) > 0. Accordingly, taking r = rk small enough,
we obtain the desired lower estimate.

In what follows, dS denotes the surface area measure on ∂B.

Lemma 2.4. Given c real , the following estimates hold :

�

∂B

dS(ζ)
|x− ζ|n−1+c

≈


(1− |x|2)−c if c > 0,
1 + |log(1− |x|2)| if c = 0,
1 if c < 0

for x ∈ B. The constants suppressed above are independent of x.

Proof. Let x ∈ B and denote the integral under consideration by Jc(x).
We will actually prove that the ratios of Jc(x) and quantities in the desired
estimates converge to a positive finite limit as |x| → 1. Note that if x = |x|η
with η ∈ S, then |x− ζ|2 = (1− |x|)2 + 2|x|(1− η · ζ) for ζ ∈ S. Thus, using
the slice integration formula (see [2, Corollary A.5]) and making a change
of variables, we have

Jc(x) = cn

1�

−1

(1− r2)(n−3)/2

[(1− |x|)2 + 2|x|(1− r)](n−1+c)/2
dr

= cn

2�

0

[t(2− t)](n−3)/2

[(1− |x|)2 + 2|x|t](n−1+c)/2
dt

for some constant cn depending only on n. It is clear from this that Jc(x)
converges to a positive finite limit as |x| → 1 for c < 0. Now, assume c ≥ 0.
Making another change of variables, we have

Jc(x) = cn(1− |x|)−c(2|x|)−(n−1)/2

×
4|x|/(1−|x|)2�

0

[
2− (1− |x|)2s

2|x|

](n−3)/2 s(n−3)/2

(1 + s)(n−1+c)/2
ds

for x 6= 0. It is now easily seen that Jc(x)(1− |x|2)c converges to a positive
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finite limit as |x| → 1 for c > 0. Also, one can show that J0(x) log(1−|x|2)−1

converges to a positive finite limit as |x| → 1.

We need to estimate the integrals Ic,α defined for α > −1 and c real as
follows:

Ic,α(x) =
�

B

(1− |y|2)α

[x, y]n+α+c
dy, x ∈ B.

The following estimate is proved in [13, Lemma 4.2]. Here we provide
another proof by means of Lemma 2.4 for the reader’s convenience.

Lemma 2.5. Let α > −1 and c be any real number. Then

Ic,α(x) ≈


(1− |x|2)−c if c > 0,
1− log(1− |x|2) if c = 0,
1 if c < 0

for x ∈ B. The constants suppressed above are independent of x.

Proof. Let x ∈ B. We may assume |x| > 1/2. Since [y, ζ] = |y − ζ| for
y ∈ B and ζ ∈ ∂B, integrating in polar coordinates yields

Ic,α(x) = n|B|
1�

0

�

∂B

dS(ζ)
|rx− ζ|n+α+c

rn−1(1− r2)α dr

and thus the estimate for α+ c ≤ −1 is clear by Lemma 2.4. So, we assume
α+ c > −1. By Lemma 2.4 we have

Ic,α(x) ≈
1�

0

(1− r)α

(1− r|x|)1+α+c
dr ≈

( 1�

|x|

+
|x|�

0

) (1− r)α

(1− r|x|)1+α+c
dr = I + II .

Note that 1− |x| ≤ 1− r|x| ≤ 2(1− |x|) for |x| ≤ r < 1. It follows that

I ≈ (1− |x|)−1−α−c
1−|x|�

0

rα dr ≈ (1− |x|)−c.

Meanwhile, since 1− r ≤ 1− r|x| ≤ 2(1− r) for 0 < r < |x|, we have

II ≈
|x|�

0

dr

(1− r)1+c
≈

1�

1−|x|

dr

r1+c

and thus

II ≈


(1− |x|)−c if c > 0,
− log(1− |x|) if c = 0,
1 if c < 0.

Now, the lemma follows from the above estimates for I and II .
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3. Averaging functions and Berezin transform. In this section we
collect the weighted Lp-behavior of the averaging function (as well as its
discretized version) and of the Berezin transform.

Given µ ≥ 0 and r ∈ (0, 1), the averaging function µ̂r and the Berezin
transform µ̃ are defined by

µ̂r(x) =
µ[Er(x)]
|Er(x)|

and µ̃(x) = (1− |x|2)n
�

B

|R(x, y)|2 dµ(y)

for x ∈ B. While it is customary to put R(x, x)−1 in place of (1 − |x|2)n

in the definition of the Berezin transform, we adopted the above definition
for simplicity. For measurable functions f , we define f̂r and f̃ similarly,
whenever they are well defined.

Given α real, we let Lpα = Lp(Vα), where Vα denotes the weighted mea-
sure defined by dVα(x) = (1− |x|2)α dx. For α = 0, we have Lp0 = Lp. Note
λ = V−n. Given r ∈ (0, 1), it is easily seen from (2.4) and Lemma 2.1 that

Vα[Er(x)] ≈ (1− |x|2)n+α(3.1)

for x ∈ B. Also, given a sequence a = {am} in B, we let `p,α(a) denote the
p-summable sequence space weighted by {(1 − |am|2)α}. For α = 0, we let
`p = `p,0(a).

To obtain the weighted Lp-behavior of averaging functions and of the
Berezin transform, we need to prove several preliminary results. We begin
with a simple observation which in particular shows that averaging func-
tions, when the radii are small enough, are dominated by the Berezin trans-
form.

Lemma 3.1. Let k ≥ 0 be an integer , µ ≥ 0 and 0 < r ≤ rk, where
rk is the number provided by Lemma 2.3. Then there exists a constant C =
C(n, k, r) such that

µ̂r(a) ≤ C(1− |a|2)n+2k
�

B

|Rk(x, a)|2 dµ(x), a ∈ B.

In particular , µ̂r ≤ Cµ̃ for 0 < r ≤ r0.
Proof. Let a ∈ B be given. By Lemma 2.3 and (2.4), we have

�

Er(a)

|Rk(x, a)|2 dµ(x) &
µ[Er(a)]

(1− |a|2)2(n+k)
≈ µ̂r(a)

(1− |a|2)n+2k

where the constants suppressed depend only on n, k and r. This implies the
first part of the lemma. The second part is clear (with k = 0).

Let {am} be a sequence in B and r ∈ (0, 1). We say that {am} is r-
separated if the balls Er(am) are pairwise disjoint, or simply say that {am} is
separated if it is r-separated for some r. Also, we say that {am} is an r-lattice
if it is r/2-separated and B =

⋃
mEr(am). One can explicitly construct an
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r-lattice by using the same argument as in [8]. Note that any “maximal”
r/2-separated sequence is an r-lattice.

The next two lemmas are basic properties involving separated sequences
we use later. The first lemma can be proved by a standard volume argument.
We include a proof for the reader’s convenience.

Lemma 3.2. For α > 0 and r ∈ (0, 1) with αr < 1, there is a constant
N = N(α, r) with the following property : If {am} is an r-separated sequence,
then more than N of the balls Eαr(am) contain no point in common.

Proof. By (2.2), we first note that there exists a constant C = C(n) such
that

C−1%n ≤ (1− |a|2)−n|E%(a)| ≤ C
(

%

1− %

)n
for all a ∈ B and 0 < % < 1. Fix z ∈ B and let Jz be the set of all indices
m such that %(z, am) < αr. Let β = min{(1− αr)/2, r}. Note Eβ(am) ⊂
E(1+αr)/2(z) for all m ∈ Jz. Since Eβ(am) ⊂ Er(am) and the balls Er(am)
are disjoint, it follows that∑

m∈Jz

|Eβ(am)| ≤ |E(1+αr)/2(z)| ≤ C(1− |z|2)n
(

1 + αr

1− αr

)n
.

Also, for each m ∈ Jz, by Lemma 2.1 we have

1− αr
1 + αr

≤ 1− |am|2

1− |z|2
.

Thus, letting Mz denote the cardinality of Jz, by the above we deduce∑
m∈Jz

|Eβ(am)| ≥ C−1Mzβ
n(1− |z|2)n

(
1− αr
1 + αr

)n
.

Combining these estimates we conclude

Mz ≤ Cβ−n
(

1 + αr

1− αr

)2n

(3.2)

for some constant C depending only on n.

Lemma 3.3. Given 0 < r < δ < 1, there exists a positive integer
N = N(δ, r) with the following property : Any r-separated sequence can be
decomposed into N δ-separated subsequences.

Proof. Before proceeding, we mention that the hyperbolic balls and pseu-
dohyperbolic balls are related by

Qtanh−1 r(a) = Er(a),(3.3)

where Qs(a) denotes the hyperbolic ball with center a and radius s.
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Now, assume 0 < r < δ < 1 and let s = tanh(2 tanh−1 δ). By Lemma 3.2
there exists a number N = N(r, δ) such that N of the balls Es(am) con-
tain no point in common. Let F1 be a maximal δ-separated subcollection
of {am}. Given a positive integer n, suppose Fn ⊂ {am} has been chosen.
If {am} \

⋃n
j=1 Fj 6= ∅, choose a maximal δ-separated subcollection Fn+1

of {am} \
⋃n
j=1 Fj . If {am} =

⋃n
j=1 Fj , then we simply let Fn+1 = ∅. Con-

tinue this process. We claim {am} =
⋃N
j=1 Fj . Suppose not. Then there exists

some am0 ∈ FN+1. For each 1 ≤ j ≤ N there exists some amj ∈ Fj such that
Eδ(am0) ∩ Eδ(amj ) 6= ∅ by maximality. Now, we have am0 ∈

⋂N
j=1Es(amj )

by (3.3), which is impossible.

We also need some properties of φx(a) as a function of x (with a fixed).
So, given a ∈ B, let ψa denote the function on B defined by

ψa(x) = φx(a), x ∈ B.
A routine calculation shows that ψa : B → B is also invertible and

ψ−1
a (x) =

1− |a|2

1− |a|2|x|2

(
x+

1− |x|2

1− |a|2
a

)
.

The Jacobian Jψa of ψa can be explicitly computed as follows.

Lemma 3.4. The identity

Jψa(x) =
1− |a|2

[x, a]2

(
1− 2a · x+ |a|2

[x, a]2

)n−1

holds for a, x ∈ B.

Proof. Let a, x ∈ B. We have

ψa(x) = x+ (1− |x|2)F (x− a∗),
where F (x) = x∗. For a = 0, we have ψ0(x) = x and thus Jψ0(x) = 1. So,
assume a 6= 0. Note F ′(x) = |x|−2(I−2Q(x)), where I is the identity matrix
and Q(x) is the matrix with entries Q(x)ij = xixj/|x|2. Thus, denoting by
M(x, a) the matrix with entries M(x, a)ij = xj(x− a∗)i|x− a∗|−2, we have

ψ′a(x) = I − 2M(x, a) +
1− |x|2

|x− a∗|2
[I − 2Q(x− a∗)].(3.4)

Given an n× n orthogonal matrix U , note that

UM(x, a)U t = M(Ux,Ua) and UQ(x− a∗)U t = Q(U(x− a∗)),
where U t is the transpose of U . Now, choose U such that U(x − a∗) =
(|x − a∗|, 0, . . . , 0). Note that the first entry of Q(U(x − a∗)) is 1 and all
others are 0. Also, row vectors of M(Ux,Ua) except the first one are all
zero. Thus U [(ψ−1

a )′(x)]U t is an upper triangular matrix. Since the first
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entry of M(Ux,Ua) is
Ux · [Ux− (Ua)∗]
|Ux− (Ua)∗|2

=
Ux · U(x− a∗)
|U(x− a∗)|2

=
x · (x− a∗)
|x− a∗|2

,

we see from (3.4) that the first entry of U [(ψ−1
a )′(x)]U t is

1− 2
x · (x− a∗)
|x− a∗|2

− 1− |x|2

|x− a∗|2
=

1− |a|2

[x, a]2

and the other diagonal entries are

1 +
1− |x|2

|x− a∗|2
= 1 +

|a|2(1− |x|2)
[x, a]2

=
1− 2a · x+ |a|2

[x, a]2
.

Accordingly, we conclude

Jψa(x) = detU [(ψ−1
a )′(x)]U t =

1− |a|2

[x, a]2

(
1− 2a · x+ |a|2

[x, a]2

)n−1

,

as required.

As a consequence of Lemma 3.4, we have

(1− |x|2)α = (1− |ψa(x)|2)αJψa(x)
(

[x, a]2

1− |a|2

)α+1( [x, a]2

1− 2a · x+ |a|2

)n−1

for a, x ∈ B and α real. Thus, making a change of variables, we have the
following inequality.

Corollary 3.5. Given α real and a compact subset K ⊂ B, there is a
constant C = C(K,α) such that�

B

f(φx(a))(1− |x|2)α dx ≤ C
�

B

f(x)(1− |x|2)α dx

for a ∈ K and measurable functions f ≥ 0 on B.

Now, we prove that the Lpα-behavior of the averaging functions of positive
measures is independent of the radii. In what follows, L0 denotes the space
of all functions f bounded on B and such the f(x)→ 0 as |x| → 1.

Proposition 3.6. Let 0 < p ≤ ∞, r, δ ∈ (0, 1) and α be real. Assume
µ ≥ 0. Then the following statements hold :

(a) µ̂r ∈ Lpα if and only if µ̂δ ∈ Lpα.
(b) µ̂r ∈ L0 if and only if µ̂δ ∈ L0.

Proof. We first prove (a). By symmetry it suffices to establish the esti-
mate

(3.5) ‖µ̂r‖Lpα . ‖µ̂δ‖Lpα .
Since the case r ≤ δ is easily treated by (2.5), we may assume δ < r. Choose
a finite set {a1, . . . , aN} in Er(0) which is maximal subject to the condition
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Eδ/2(ai) ∩ Eδ/2(aj) = ∅ for i 6= j. We then have Er(0) ⊂
⋃N
j=1Eδ(aj) by

maximality and hence

Er(x) = φxEr(0) ⊂
N⋃
j=1

φxEδ(aj) =
N⋃
j=1

Eδ(φx(aj))

for every x ∈ B. Since φx(aj) ∈ Er(x), we note by (2.5) that |Eδ(φx(aj))|
≈ |Er(x)| for all j and x ∈ B. Consequently,

µ̂r(x)≤
N∑
j=1

µ[Eδ(φx(aj))]
|Er(x)|

=
N∑
j=1

|Eδ(φx(aj))|
|Er(x)|

µ̂δ(φx(aj)) ≈
N∑
j=1

µ̂δ(φx(aj))

for every x ∈ B. This implies (3.5) for p =∞. For p <∞, the above yields

µ̂r(x)p . max{1, Np−1}
N∑
j=1

µ̂δ(φx(aj))p(3.6)

for all x ∈ B. Now, integrating both sides of (3.6) against the measure
dVα(x), we deduce (3.5) by Corollary 3.5.

Now, we prove (b). It is easily seen that |φx| → 1 as |x| → 1 uniformly
on every compact subset of B. So, we see that µ̂δ ∈ L0 implies µ̂r ∈ L0

by (3.6), and vice versa by symmetry.

The next two lemmas will be used in establishing the discretized version
of Proposition 3.6. The first one is a special case of [5, Theorem 3.6].

Lemma 3.7. Let 1 ≤ p ≤ ∞ and α be real. Then the Berezin transform
is bounded on Lpα if and only if −n < (α+ 1)/p < 1.

Lemma 3.8. Given δ ∈ (0, 1), there exists a constant Cδ such that µ̃ ≤
Cδ ˜̂µδ for µ ≥ 0.

In the proof below and elsewhere, χE denotes the characteristic function
of E ⊂ B.

Proof. Fix δ ∈ (0, 1). We will actually prove a more general fact asserting
that �

B

f dµ ≤ Cδ
�

B

fµ̂δ dV(3.7)

for all f ≥ 0 subharmonic on B and µ ≥ 0.
Let µ ≥ 0 and f be a positive subharmonic function. By (2.2) and

subharmonicity we have

f(x) .
1

|Eδ(x)|

�

Eδ(x)

f(y) dy
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for all x ∈ B. Also, by Lemma 2.1,
�

Eδ(y)

dµ(x)
|Eδ(x)|

≈
�

Eδ(y)

dµ(x)
(1− |x|2)n

≈ µ(Eδ(y))
(1− |y|2)n

≈ µ̂δ(y)

for y ∈ B. The constants suppressed above depend only on δ (and n). Now,
one may use the equality χEδ(x)(y) = χEδ(y)(x) and Fubini’s theorem to
conclude the proof.

Now, we are ready to prove the main result of this section.

Theorem 3.9. Let 0 < p ≤ ∞, r, δ ∈ (0, 1) and α be real. Let µ ≥ 0 and
a = {am} be an r-lattice. Then the following two statements are equivalent :

(a) µ̂δ ∈ Lpα.
(b) {µ̂r(am)} ∈ `p,n+α(a).

Moreover , if

max
{

1 + α, 1 +
α

n
,−α+ 1

n

}
< p ≤ ∞,(3.8)

then the above statements are also equivalent to

(c) µ̃ ∈ Lpα.
It is clear from (3.1) that (b) is a discretized version of (a). Thus the

equivalence of (a) and (b) is not surprising. However, it seems quite in-
teresting to see that the restricted range (3.8) is best possible for (c); see
Section 5.

Proof. (a)⇒(b). Assume (a). Pick a positive ε < min{r/2, 1 − r}. By
Proposition 3.6(a), in order to prove (b), it is sufficient to establish the
estimate

‖{µ̂r(am)}‖`p,n+α(a) . ‖µ̂r+ε‖Lpα .(3.9)

Since ε < r/2 and {am} is an r-lattice, the balls Eε(am) are pairwise disjoint.
Also, given x ∈ Eε(am), we have Er(am) ⊂ Er+ε(x) and thus

µ̂r+ε(x) ≥ µ[Er(am)]
|Er+ε(x)|

=
|Er(am)|
|Er+ε(x)|

µ̂r(am) ≈ µ̂r(am)

by (2.5). This implies (3.9) for p =∞. For p <∞, it follows from (3.1) that�

B

µ̂r+ε(x)p dVα(x) &
∑
m

�

Eε(am)

µ̂r+ε(x)p dVα(x) &
∑
m

µ̂r(am)p(1−|am|2)n+α

and thus (3.9) holds.
(b)⇒(a). Assume (b). In order to prove (a), we may assume δ < 1 − r

by Proposition 3.6(a). Given x ∈ B, let N(x) = {m : Er(am) ∩ Eδ(x) 6= ∅}.
Since {am} is an r-lattice, we have Eδ(x) ⊂

⋃
m∈N(x)Er(am) and thus
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µ[Eδ(x)] ≤
∑

m∈N(x) µ[Er(am)]. It follows from this and (2.5) that

µ̂δ(x) .
∑

m∈N(x)

|Er(am)|
|Eδ(x)|

µ̂r(am) ≈
∑

m∈N(x)

µ̂r(am).(3.10)

Meanwhile, for m ∈ N(x), since the balls Eε(am) are pairwise disjoint
and are all contained in Er+δ+ε(x) for a fixed positive number ε <
min{r/2, 1− r − δ}, we see from (2.5) that

N = N(r, δ, ε) := sup
x∈B

]N(x) <∞,

where ]N(x) denotes the number of elements in the set N(x). Thus, we have
‖µ̂δ‖L∞(λ) . ‖{µ̂r(am)}‖L∞(λ) by (3.10). Also, for p <∞, by (3.10) again,

µ̂δ(x)p . max{1, Np−1}
∑

m∈N(x)

µ̂r(am)p

for all x ∈ B. Now, integrating both sides of the above against the measure
dVα(x) and then applying Fubini’s theorem, we obtain�

B

µ̂δ(x)p dVα(x) .
�

B

∑
m∈N(x)

µ̂r(am)p dVα(x) =
∑
m

µ̂r(am)pVα[Q(m)],

where Q(m) = {x ∈ B : Er(am) ∩Eδ(x) 6= ∅}. Note that Q(m) ⊂ Er+δ(am)
and thus Vα[Q(m)] ≤ Vα[Er+δ(am)] ≈ (1 − |am|2)n+α by (3.1). Combining
this with the above estimate, we conclude that (a) holds.

(c)⇒(a). This follows from Lemma 3.1 and Proposition 3.6(a).
Now, we assume (3.8) and prove that either (a) or (b) implies (c). If

p ≥ 1, one may use Lemmas 3.7 and 3.8 to see that (a) implies (c). If p < 1,
we have α < 0 by (3.8) and thus (3.8) reduces to

max
{

1 +
α

n
,−α+ 1

n

}
< p < 1.(3.11)

We now assume this and proceed to prove that (b) implies (c).
(b)⇒(c). Assume {µ̂r(am)} ∈ `p,n+α(a). By (2.6) and Lemma 2.2, we

note

µ̃(x) = (1− |x|2)n
�

B

|R(x, y)|2 dµ(y) ≤ (1− |x|2)n
∑
m

�

Er(am)

1
[x, y]2n

dµ(y)

.
∑
m

µ[Er(am)]
(1− |x|2)n

[x, am]2n
≈
∑
m

(1− |am|2)nµ̂r(am)
(1− |x|2)n

[x, am]2n

and thus (recall p < 1)

µ̃(x)p .
∑
m

(1− |am|2)npµ̂r(am)p
(1− |x|2)np

[x, am]2np
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for all x ∈ B. Now, since np+ α > −1 and np− n− α > 0 by (3.11), from
Lemma 2.5 we obtain

�

B

µ̃(x)p dVα(x) .
∑
m

µ̂r(am)p(1− |am|2)np
�

B

(1− |x|2)np+α

[x, am]2np
dx

≈
∑
m

µ̂r(am)p(1− |am|2)n+α

and thus (c) holds.

We also have the little oh version of Theorem 3.9. We let `0 denote the
space of all complex sequences vanishing at ∞.

Proposition 3.10. Let r, δ ∈ (0, 1) and µ ≥ 0. Suppose a = {am} is an
r-lattice. Then the following statements are equivalent :

(a) µ̂δ ∈ L0.
(b) {µ̂r(am)} ∈ `0.
(c) µ̃ ∈ L0.

Proof. Since limm→∞ |am| = 1, we have (a)⇒(b). Also, (c)⇒(a) from
Lemma 3.1 and Proposition 3.6(b). Now, we prove (b)⇒(c). Note 1− |a| ≤
[x, a] for all x, a ∈ B. Given a positive integer j, put Mj = supm≥j µ̂r(am)
and let N be the positive integer provided by Lemma 3.2. By the proof
of (b)⇒(c) of Theorem 3.9 and by Lemmas 2.2 and 2.5, for each j we
have

µ̃(x) .
∑
m

µ̂r(am)
(1− |x|2)n(1− |am|2)n

[x, am]2n

.
∑
m<j

µ̂r(am)
(1− |x|2)n

(1− |am|2)n
+Mj

∑
m≥j

�

Er(am)

(1− |x|2)n

[x, y]2n
dy

.
∑
m<j

µ̂r(am)
(1− |x|2)n

(1− |am|2)n
+NMj(1− |x|2)n

�

B

dy

[x, y]2n

.
∑
m<j

µ̂r(am)
(1− |x|2)n

(1− |am|2)n
+NMj .

Thus, fixing j and taking the limit |x| → 1 in the above, we obtain

lim
|x|→1

µ̃(x) . sup
m≥j

µ̂r(am)

for each j. Now, letting j →∞, we get (c) by assumption.

As a consequence of Theorem 3.9 and Proposition 3.10, we have the
following.
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Corollary 3.11. Let 0 < p ≤ ∞, r, δ ∈ (0, 1) and α be real. Assume
µ ≥ 0. Then {µ̂r(am)} ∈ `p,α(a) (resp. `0) for all r-lattices a = {am} if and
only if {µ̂δ(am)} ∈ `p,α(a) (resp. `0) for some δ-lattice a = {am}.

4. Schatten class Toeplitz operators. In this section we prove The-
orem 1.1. We first briefly review the notion of Schatten class operators. For
a positive compact operator T on a separable Hilbert space H, there exist
an orthonormal set {em} in H and a sequence {λm} that decreases to 0 such
that

Tx =
∑
m

λm〈x, em〉em

for all x ∈ H, where 〈 , 〉 denotes the inner product on H. For 0 < p <∞,
we say that a positive operator T belongs to the Schatten p-class Sp(H) if

‖T‖p :=
{∑

m

λpm

}1/p
<∞.

More generally, given a compact operator T on H, we say that T ∈ Sp(H)
if the positive operator |T | = (T ∗T )1/2 belongs to Sp(H), and we define
‖T‖p =

∥∥|T |∥∥
p
. Of course, we will take H = b2 in our applications below

and, in that case, we put Sp = Sp(b2).
First, we recall a couple of basic facts about Sp(H), which we need later.

The following lemma is taken from [9, Lemma 5] where further references
are given.

Lemma 4.1. Let 0 < p ≤ 2 and T be a compact operator on H. Then

‖T‖pp ≤
∑
i

∑
j

|〈Tei, ej〉|p

for any orthonormal basis {ek} of H.

The proof of the following lemma is implicit in that of [14, The-
orem 1.4.7], where the equality for the case 1 ≤ p <∞ is proved.

Lemma 4.2. Let 0 < p < 1 and T be a positive compact operator on H.
Then

‖T‖pp ≤ sup
∑
m

〈Tem, em〉p,

where sup is taken over all orthonormal bases {em} of H.

For 0 < q ≤ ∞, we use the notation `q for the q-summable sequence
space. Let {am} be a sequence in B and k ≥ 0 be an integer. For ξ =
{ξm} ∈ `2, let Qk(ξ) denote the formal series defined by

(4.1) Qk(ξ)(x) =
∑
m

ξm(1− |am|2)k+n/2Rk(x, am), x ∈ B.
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For the proof of Theorem 1.1, we need the following representation theorem
for b2-harmonic functions, which is essentially proved in [8, Theorem 3].
In [8] Coifman and Rochberg used local estimates directly instead of Möbius
transformations and provided only a sketch of proof. We refer to [6] for a
detailed proof via Möbius transformations.

Lemma 4.3. Let k ≥ 0 be an integer. Then the following statements
hold :

(a) If {am} is a separated sequence, then Qk : `2 → b2 is bounded.
(b) There exists δk > 0 with the following property : If {am} is a δ-lattice

with δ < δk, then Qk : `2 → b2 is onto.

We also need a lemma which is useful in estimating certain quantities
related to the operators Qk.

Lemma 4.4. Let s, t be real and r, δ ∈ (0, 1). Then

(1− |b|2)t

[x, b]s
≈

�

Er(b)

(1− |y|2)t

[a, y]s
dλ(y)

whenever b ∈ B and x ∈ Eδ(a). The constants suppressed above depend only
on n, s, t, r and δ.

Proof. Let a, b ∈ B. By Lemma 2.2, we note [x, b]s ≈ [a, b]s for x ∈ Eδ(a).
Also, by Lemmas 2.1 and 2.2,

(1− |b|2)t

[a, b]s
≈ (1− |y|2)t

[a, y]s

for y ∈ Er(b). Thus we conclude the proof by (3.1). One can check that all
the constants suppressed above depend on parameters, but not on particular
points.

We are now ready to prove the following version of Theorem 1.1.

Theorem 4.5. Let 0 < p < ∞, µ ≥ 0 and assume that {am} is an
r-lattice. Then the following three statements are equivalent :

(a) Tµ ∈ Sp.
(b) {µ̂r(am)} ∈ `p.
(c) µ̂r ∈ Lp(λ).

Moreover , if (n− 1)/n < p, then the above statements are also equivalent
to

(d) µ̃ ∈ Lp(λ).

For p ≥ 1, we have Tµ ∈ Sp if and only if µ̃ ∈ Lp(λ) by [7, Theorem 3.13].
So, by Theorem 3.9 (with α = −n), we only need to prove that (a) and (b)
are equivalent for 0 < p < 1.
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Proof of (a)⇒(b). Assume (a). By Corollary 3.11, it suffices to consider
r sufficiently small. Fix a large integer k > 0 such that

k >
n(2− p)

2p
and let rk be the constant provided by Lemma 2.3. To begin with, fix r <
min{rk, 1/2} and let 2r < δ < 1. Later the constant δ will be chosen to be
sufficiently close to 1.

By Lemma 3.3, we can decompose the lattice {am} into finitely many,
say N , δ/2-separated subsequences. Let {bm} be one of such subsequences
and define a measure ν by

dν =
∑
m

χEr(bm)dµ.

Note that the balls Er(bm) are pairwise disjoint, because 2r < δ. Also, note
that ‖Tν‖p ≤ ‖Tµ‖p, because 0 ≤ ν ≤ µ.

Now, we introduce some auxiliary operators. Fix an orthonormal basis
{em} for b2 and let J : b2 → `2 be the unitary operator defined by Jf =
{〈f, em〉} for f ∈ b2. Put A = QkJ , where Qk is the operator associated with
the sequence {bm} as in (4.1). By Lemma 4.3(a), A : b2 → b2 is bounded.
Put

hm := Aem = (1− |bm|2)k+n/2Rk(·, bm)

for simplicity. Put T = A∗TνA. Note T ≥ 0. Since A is bounded and Tν ∈
Sp, we have T ∈ Sp with ‖T‖p ≤ ‖A‖2‖Tν‖p ≤ ‖A‖2‖Tµ‖p (see, for ex-
ample, [10]).

Note that

〈Tej , em〉 = 〈Tνhj , hm〉 =
�

B

hjhm dν(4.2)

for each m and j. The change of the order of integrations, which is implicit
in the last equality above, is justified by [7, Lemma 3.8]. Since ν = µ on the
balls Er(bm), we see from Lemma 3.1 that

(4.3)
∑
m

〈Tem, em〉p ≥ C1

∑
m

µ̂r(bm)p

for some constant C1 = C1(n, p, k, r) > 0. We claim that there exists a
constant Cδ = Cδ(n, p, k, r) > 0 such that∑

m 6=j
|〈Tej , em〉|p ≤ Cδ

∑
m

µ̂r(bm)p(4.4)

and Cδ → 0 as δ → 1.
Now, we prove (4.4). Let m and j be given. Since

〈Tej , em〉 =
∑
i

�

Er(bi)

hjhm dµ,
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we have

|〈Tej , em〉|p ≤
∑
i

{ �

Er(bi)

|hjhm| dµ
}p
.(4.5)

Note that by (2.6) and Lemma 4.4 we have

|hj(x)|p .

{
(1− |bj |2)n/2+k

[x, bj ]n+k

}p
≈ Iij , x ∈ Er(bi),

for all i, j, where

Iij =
�

Er(bj)

{
(1− |y|2)n/2+k

[bi, y]n+k

}p
dλ(y).

It follows that{ �

Er(bi)

|hjhm| dµ
}p

. µ[Er(bi)]pIijIim ≈ (1− |bi|2)npµ̂r(bi)pIijIim

for all i, j and m. Thus, by (4.5), we have

|〈Tej , em〉|p .
∑
i

(1− |bi|2)npµ̂r(bi)pIijIim.

Now, summing up both sides of the above over all m and j with m 6= j and
then changing the order of summations, we obtain∑

m 6=j
|〈Tej , em〉|p .

∑
i

(1− |bi|2)pnµ̂r(bi)pIi,(4.6)

where Ii =
∑

m 6=j IijIim. Since the balls Er(bm) are pairwise disjoint, we
have

Ii =
∑
m 6=j

�

Er(bj)

�

Er(bm)

{
(1− |x|2)n/2+k

[x, bi]n+k

(1− |y|2)n/2+k

[y, bi]n+k

}p
dλ(x) dλ(y)

=
� �

Ωr,δ

{
(1− |x|2)n/2+k

[x, bi]n+k

(1− |y|2)n/2+k

[y, bi]n+k

}p
dλ(x) dλ(y),

where
Ωr,δ =

⋃
j 6=m

Er(bj)× Er(bm).

Note that, for (x, y) ∈ Ωr,δ, we have

β(x, y) ≥ 1
2

log
1 + δ

1− δ
− log

1 + r

1− r
;(4.7)

recall that β denotes the hyperbolic distance given by (2.1). Thus, denoting
by Gr,δ the set of all (z, w) satisfying (4.7), we note that the region Gr,δ is
Möbius invariant. Also, note that the measure dλ is Möbius invariant. Thus,
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making the change of variables x = φbi(z) and y = φbi(w), we have

Ii .
� �

Gr,δ

{
(1− |x|2)n/2+k

[x, bi]n+k

(1− |y|2)n/2+k

[y, bi]n+k

}p
dλ(x) dλ(y)

=
1

(1− |bi|2)pn
� �

Gr,δ

{
(1− |z|2)n/2+k

[z, bi]k
(1− |w|2)n/2+k

[w, bi]k

}p
dλ(z) dλ(w).

Since 0 < p < 1, we note 1 < 2/(2−p). Choose t such that 1 < t < 2/(2−p)
and let s be the conjugate exponent of t. Then, by Hölder’s inequality, we
see that

� �

Gr,δ

{
(1− |z|2)n/2+k

[z, bi]k
(1− |w|2)n/2+k

[w, bi]k

}p
dλ(z) dλ(w)

=
� �

Gr,δ

(1− |z|2)p(n/2+k)−n

[z, bi]pk
(1− |w|2)p(n/2+k)−n

[w, bi]pk
dz dw

≤ |Gr,δ|1/s
{

sup
i

�

B

(1− |z|2)pt(n/2+k)−nt

[z, bi]ptk
dz

}2/t

,

where |Gr,δ| denotes the 2n-dimensional volume of Gr,δ ⊂ B×B. Note that
pt(n/2 + k) − nt > −1 and nt − ptn/2 < n by our choice of k and t. Thus
the supremum in the braces above is finite by Lemma 2.5. Hence, combining
these observations, we have

Ii ≤ C
|Gr,δ|1/s

(1− |bi|2)pn

for some constant C = C(n, p, k) independent of i. Note |Gr,δ| → 0 as δ → 1
by (4.7). Finally, fixing δ sufficiently close to 1, we see from (4.6) that (4.4)
holds.

We introduce some auxiliary operators. Associated with T is the diagonal
operator D : b2 → b2 whose diagonal components are inherited from T . More
precisely, D is defined by

Df =
∑
m

〈Tem, em〉〈f, em〉em

for f ∈ b2. Note that D is compact by [14, Proposition 1.3.10] and positive.
Put E = T −D. Note that

〈Dem, em〉 = 〈Tem, em〉 and 〈Eej , em〉 = 〈Tej , em〉(4.8)

for any m and j with m 6= j.
Assume for the moment that µ is supported on a compact set. Then a

standard volume argument as in the proof of Theorem 3.9 shows that only
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finitely many of the balls Er(am) can intersect the support of µ. Thus it
follows from (4.4), (4.8) and Lemma 4.1 that E ∈ Sp with

‖E‖pp ≤
∑
m6=j
|〈Eej , em〉|p ≤ Cδ

∑
m

µ̂r(bm)p <∞.

Since T,E ∈ Sp, we also have D ∈ Sp with

‖D‖pp ≥ C1

∑
m

µ̂r(bm)p

by (4.3) and (4.8). Thus the triangle inequality ‖D‖pp − ‖E‖pp ≤ ‖T‖pp for
0 < p < 1 yields

(C1 − Cδ)
∑
m

µ̂r(bm)p ≤ ‖T‖pp ≤ ‖A‖2p‖Tµ‖pp.

Now, choosing δ sufficiently close to 1 so that Cδ < C1 and then applying
the above to each of the N subsequences {bm}, we conclude that∑

m

µ̂r(am)p ≤ N

C1 − Cδ
‖A‖2p‖Tµ‖pp.

This estimate holds for all µ with compact support and thus for arbitrary µ
by an approximation argument. The proof of Theorem 4.5(a)⇒(b) is com-
plete.

Proof of (b)⇒(a). Assume (b). The proof is quite similar to that of (4.4).
Fix a large integer k > 0 such that

k >
n− 1

2p
− n

2
.

By Corollary 3.11 again, we may assume r < min{δk, 1/2}, where δk is
the constant as in Lemma 4.3(b). Let {em} be an arbitrary orthonormal
basis for b2 and let A = QkJ as in the proof of (a)⇒(b). But this time
the operator Qk is associated with the sequence {am}. Put hm = Aem =
(1−|am|2)k+n/2Rk(·, am) as before. Let T = A∗TµA. Note that A is bounded
and surjective on b2 by Lemma 4.3(b). Thus there exists a bounded right
inverse of A, say B, so that Tµ = B∗TB. It follows that Tµ ∈ Sp if and only
if T ∈ Sp. We now prove T ∈ Sp in the rest of the proof.

Since µ̂r(am) → 0 as m → ∞, we have µ̃ ∈ L0 by Proposition 3.10 and
thus Tµ is compact by [7, Theorem 3.12]. So T is also compact. Note T ≥ 0.
Therefore, in order to prove T ∈ Sp, it is sufficient to show that∑

m

〈Tem, em〉p ≤ C
∑
j

µ̂r(aj)p(4.9)

for some constant C = C(n, p, r) by Lemma 4.2. To prove (4.9), we first
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note (as in (4.2)) that

〈Tem, em〉p =
{ �

B

|hm|2 dµ
}p
≤
∑
j

{ �

Er(aj)

|hm|2 dµ
}p

for each m, because 0 < p < 1 and {Er(aj)} is a covering of B. Let m and
j be given. By (2.6) and Lemma 4.4, we have

|hm(x)|2p .

{
(1− |am|2)n+2k

[x, am]2n+2k

}p
≈

�

Er(am)

{
(1− |y|2)n+2k

[aj , y]2n+2k

}p
dλ(y)

for all x ∈ Er(aj). It follows that

〈Tem, em〉p .
∑
j

µ[Er(aj)]p
�

Er(am)

{
(1− |y|2)n+2k

[aj , y]2n+2k

}p
dλ(y)

for all m. Since µ[Er(aj)] ≈ (1 − |aj |2)nµ̂r(aj), summing up both sides of
the above over all m and then changing the order of summation, we obtain∑

m

〈Tem, em〉p .
∑
j

(1− |aj |2)npµ̂r(aj)pIj ,(4.10)

where

Ij =
∑
m

�

Er(am)

{
(1− |y|2)n+2k

[aj , y]2n+2k

}p
dλ(y).

Now, since p(n+ 2k)−n > −1 by our choice of k, we obtain, by Lemma 3.2
(with α = 1) and Lemma 2.5,

Ij . N
�

B

{
(1− |y|2)n+2k

[aj , y]2n+2k

}p
dλ(y) ≈ (1− |aj |2)−np

for all j, where N = N(1, r) is the number provided by Lemma 3.2. Hence,
combining this estimate with (4.10), we deduce (4.9). The proof of Theorem
4.5 is complete.

5. Examples. In this section we show that the parameter range (3.8)
is sharp. Throughout the section we consider arbitrary 0 < p ≤ ∞ and α
real, unless otherwise specified.

We first recall the following fact:

If p ≤ −(α+ 1)/n or p ≤ 1 + α, then there exists some f ≥ 0 such that
f ∈ Lpα but f̃ /∈ Lpα.

The above fact is implicit in [3, Examples 4.8 and 4.9]. Moreover, the
proofs in [3] show that the example of function f above also satisfies f̂r ∈ Lpα
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for each r ∈ (0, 1). Note that the above fact takes care of an example we
need for the case α ≥ 0. For α < 0, note that the parameter range for which
we need an example in (3.8) reduces as follows:

p ≤ 1 + α/n.(5.1)

Given δ > 1, let Γδ be the nontangential approach region with vertex
e := (1, 0, . . . , 0) consisting of all points x ∈ B such that

|x− e| < δ(1− |x|).

In case α < 0, certain radial functions restricted to nontangential approach
regions will be our examples. To estimate such functions we need positivity
of the kernel function as in the next lemma.

Lemma 5.1. There exist some δ > 1 and a constant C > 0 such that

R(x, y) ≥ C/[x, y]n

for x, y ∈ Γδ with |x|, |y| ≥ 1/
√

2.

Proof. Let x, y ∈ Γδ, where δ > 1 is to be chosen later. Assume |x|, |y| ≥
1/
√

2. Taking δ sufficiently close to 1, we may assume x1, y1 > 0. Let x′ =
(0, x2, . . . , xn). Since x ∈ Γδ, we have

|x′|2 + (1− |x|)2 ≤ |x′|2 + (1− x1)2 = |x− e|2 < δ2(1− |x|)2

and thus |x′|/|x| < ε(1− |x|), where ε =
√

2(δ2 − 1). Hence

|x′| |y′|
|x| |y|

< ε2(1− |x|)(1− |y|) ≤ ε2(1− |x| |y|)2

and

1− x1y1

|x| |y|
= 1−

(
1− |x

′|2

|x|2

)1/2(
1− |y

′|2

|y|2

)1/2

≤ 1−
(

1− |x
′|2

|x|2

)(
1− |y

′|2

|y|2

)

<
|x′|2

|x|2
+
|y′|2

|y|2
≤ ε2[(1− |x|)2 + (1− |y|)2] ≤ 2ε2(1− |x| |y|)2.

Combining these inequalities, we obtain

1− x · y
|x| |y|

≤ 1− x1y1

|x| |y|
+
|x′| |y′|
|x| |y|

≤ 3ε2(1− |x| |y|)2

and thus

(5.2) [x, y]2 = (1− |x| |y|)2 + 2(|x| |y| − x · y) ≤ (1 + 6ε2)(1− |x| |y|)2.
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Therefore, we conclude that(
1− |x|2|y|2

[x, y]

)2

− 4|x|2|y|2

n
>

(1 + |x| |y|)2

(1 + 6ε2)
− 4
n
≥ 9/4

(1 + 6ε2)
− 2 > 0,

if ε is sufficiently small. This, together with (1.2), implies the lemma.

Now, given γ ≥ 0, let fγ be the function on B defined by

fγ(x) =
1

(1− |x|)n

(
log

2
1− |x|

)−γ
.

It is clear from Lemma 2.1 that (̂fγ)r ≈ fγ for each r ∈ (0, 1).

Lemma 5.2. Given δ > 1 and γ ≥ 0, the function g = fγχΓδ has the
following properties:

(a) g ∈ Lpα if and only if one of the following conditions holds:

(i) p < 1 + α/n;
(ii) p = 1 + α/n and γ > 1/p.

(b) Given r ∈ (0, 1), we have fγχΓδ1 . ĝr . fγχΓδ2 for some δ1 and δ2.
(c) If γ > 1, then g̃ & fγ−1χΓδ3 for some δ3.
(d) If γ ≤ 1, then g̃ =∞ on some open set.

Proof. Fix δ > 1/2 and γ ≥ 0. Since 1−|x| ≈ |x−e| for x ∈ Γδ, we have
�

B

|g|p dVα ≈
�

Γδ

1
|x− e|pn−α

(
log

2
|x− e|

)−pγ
dx.

Integrating the last integral in polar coordinates, we have (a).
Now we prove (b). Fix r ∈ (0, 1). Put δ1 = (1+δ)/2 and pick a sufficiently

small radius s in such a way that ε := (s+δ1)(1+s)/(1−s) < δ. For x ∈ Γδ1
and y ∈ Es(x), by Lemmas 2.1 and 2.2 we have

|y − e| ≤ |x− y|+ |x− e| < s[x, y] + δ1(1− |x|) ≤ ε(1− |y|).

So, Γδ∩Es(x) = Es(x) for x ∈ Γδ1 . Thus ĝr ≥ (̂fγ)rχΓδ1 ≈ fγχΓδ1 . A similar
argument shows Γδ∩Er(x) = ∅ for x /∈ Γδ2 , where δ2 = (r+δ)(1+r)/(1−r).
Thus ĝr ≤ (̂fγ)rχΓδ2 ≈ fγχΓδ2 .

Finally, we show (c) and (d). We may assume that δ is sufficiently close
to 1 so that Lemma 5.1 is available. Assume x ∈ Γδ for the rest of the proof.
We may further assume |x| ≥ 1/

√
2. Since 1−|x| |y| = 1−|x|+ |x|(1−|y|) ≤

2(1− |x|) for |y| ≥ |x|, by Lemma 5.1 and (5.2) we have

|R(x, y)|2 &
1

[x, y]2n
&

1
(1− |x| |y|)2n

≈ 1
(1− |x|)2n
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for y ∈ Γδ with |y − e| ≤ 1− |x|. Thus

g̃(x) & (1− |x|)−n
�

Γδ∩{|y−e|≤1−|x|}

fγ(y) dy

≈ (1− |x|)−n
�

Γδ∩{|y−e|≤1−|x|}

1
|y − e|n

(
log

2
|y − e|

)−γ
dx

≈ (1− |x|)−n
1−|x|�

0

1
t

(
log

2
t

)−γ
dt

≈ fγ−1(x) if γ > 1.

So, (c) holds. Also, the last integral above diverges for γ ≤ 1 and thus (d)
holds.

Now, using Lemma 5.2, we have examples for the remaining parameters
in (5.1) as follows.

Example 5.3. Let γ ≥ 0 and δ > 1. Put g = fγχΓδ . Assume 0 < p ≤
1 + α/n. Then the following statements hold for each r ∈ (0, 1):

(a) If p < 1 + α/n and γ ≤ 1, then ĝr ∈ Lpα and g̃ = ∞ on some open
set.

(b) If p = 1 + α/n and max{1, 1/p} < γ ≤ 1 + 1/p, then ĝr ∈ Lpα but
g̃ /∈ Lpα.
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