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Disjoint strict singularity of inclusions
between rearrangement invariant spaces

by

Francisco L. Hernández (Madrid),
V́ictor M. Sánchez (Madrid), and
Evgueni M. Semenov (Voronezh)

Abstract. It is studied when inclusions between rearrangement invariant function
spaces on the interval [0,∞) are disjointly strictly singular operators. In particular suitable
criteria, in terms of the fundamental function, for the inclusions L1 ∩ L∞ ↪→ E and
E ↪→ L1 + L∞ to be disjointly strictly singular are shown. Applications to the classes of
Lorentz and Marcinkiewicz spaces are given.

1. Introduction. An operator between two Banach spaces is said to be
strictly singular (or Kato) if it fails to be an isomorphism on any infinite-
dimensional closed subspace. The class of strictly singular operators is a
well known closed operator ideal. A weaker notion for Banach lattices is
that of disjoint strict singularity: an operator T from a Banach lattice X to
a Banach space Y is said to be Disjointly Strictly Singular (DSS for short)
if there is no sequence (xn)∞n=1 of disjointly supported non-null vectors in X
such that the restriction of T to the closed subspace spanned by (xn)∞n=1 is
an isomorphism. This notion, introduced in [HR], is useful in the study of
the lattice structure of function spaces (e.g. in constructing function spaces
with singular `p-complemented copies).

The aim of this paper is to study the disjoint strict singularity of the
inclusion operator between arbitrary rearrangement invariant spaces (r.i.
spaces for short) on the interval [0,∞).

The analogous problem of DSS inclusions between r.i. spaces on the finite
interval [0, 1] has been studied by Astashkin ([A]), Novikov ([N1], [N2]) and
Garćıa del Amo, Ruiz and the present authors ([GHSS], [GHR]). If E is
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an r.i. space on [0, 1] different from L1[0, 1] then the canonical inclusion
E ↪→ L1[0, 1] is always DSS. This property in fact characterizes L1[0, 1]: an
r.i. space F such that for any other different r.i. space E with E ↪→ F the
inclusion E ↪→ F is DSS must be L1[0, 1]. A symmetric characterization also
holds for L∞[0, 1] and both are deduced from a factorization result given
in [GHSS]: for any inclusion E ↪→ F with E 6= L∞[0, 1] and F 6= L1[0, 1]
there exists an intermediate r.i. space G such that the inclusions E ↪→G and
G ↪→F are not DSS. In the special context of Orlicz spaces, characterizations
of when the inclusion operator Lϕ(µ) ↪→ Lψ(µ) is DSS have been given by
Kalton [K1] for sequence spaces with basis (where the notions of disjoint
strict singularity and strict singularity coincide) and in [HR] and [GHR]
for function spaces. In particular concrete criteria on the functions ϕ, ψ for
the inclusions Lp(µ) ↪→ Lψ(µ) and Lϕ(µ) ↪→ Lp(µ) to be DSS were given.
The classes of Lorentz function spaces Λ(φ)[0, 1] and Marcinkiewicz function
spaces M(φ)[0, 1] have been studied in [A].

In general it is more delicate to determine the DSS behavior in the [0,∞)
case than in the [0, 1] case. Thus, natural r.i. spaces with the same Boyd
indices may have different behavior (e.g. the spaces Lp ∩ Lq and Lp + Lq

with respect to the inclusion in L1 + L∞). First we analyse in Section 3
the inclusion L1 ∩ L∞ ↪→ E characterizing the r.i. spaces E in terms of the
associated fundamental function φE . Theorem 3.4 states that L1∩L∞ ↪→ E
is DSS if and only if

lim
t→0

φE(t) = lim
t→∞

φE(t)
t

= 0.

These conditions are also equivalent to L1 ∩ L∞ ↪→ E being either strictly
singular or weakly compact. In the proof of these statements we make use of
the Dunford–Pettis property of L1∩L∞. This was obtained by Kalton [K2],
during a visit to Madrid in the Spring of 1996, and it has also been proved
by Kamińska and Mastyło [KM]. In this section we also determine when the
canonical inclusion between a Lorentz space Λ(φ) and the Marcinkiewicz
space with the same fundamental function M(φ̃) is weakly compact (Propo-
sition 3.1). This extends earlier results for the [0, 1] case given by Kuzin-
Aleksinskĭı [K-A].

In Section 4 we study the disjoint strict singularity of the inclusion
E ↪→ L1 + L∞ which is in general more complicated to determine; here the
functions t−1/pχ(0,∞) play a special role. It is proved that if E ↪→ L1 + L∞

is DSS then

lim
t→0

φE(t)
t

= lim
t→∞

φE(t) =∞

and
sup
n
‖t−1/pχ(1/n,n)‖E =∞ for any 1 < p <∞.
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In particular the inclusion between the order continuous weak Lp-space Lp,∞0
and L1+L∞ is not DSS. One of the main results of this section (Theorem 4.5)
gives a useful sufficient condition to be DSS: if an r.i. space E (different
from L1 and L∞) has submultiplicative fundamental function, then E ↪→
L1 + L∞ is DSS, except when E = Lp,∞ or E = Lp,∞0 for some 1 < p <∞.
This result is obtained by carefully analyzing the inclusion of the associated
Marcinkiewicz space M(φ̃E) in L1 + L∞ (Lemma 4.4). As a consequence,
we deduce some sufficient conditions on intermediate spaces F between E
and L1 + L∞ for the inclusion operator E ↪→ F to be DSS (Corollaries 4.6
and 4.7). We also give a criterion for inclusions between Lorentz spaces
(Theorem 4.8): If limt→0,∞ ψ(t)/φ(t) = 0 and φ is submultiplicative then
Λ(φ) ↪→ Λ(ψ) is DSS.

2. Notations and previous results. Let us give some definitions and
notations. We consider the interval [0,∞) and the Lebesgue measure λ.
The distribution function λx associated with a measurable function x on
[0,∞) is defined by λx(s) = λ{t ∈ [0,∞) : |x(t)| > s}, and the decreasing
rearrangement function x∗ of x is

x∗(t) = inf{s ∈ [0,∞) : λx(s) ≤ t}.

A Banach space E[0,∞) ≡ E of measurable functions defined on [0,∞) is
said to be a rearrangement invariant space (briefly r.i. space) if the following
conditions are satisfied:

(a) if y ∈ E and |x(t)| ≤ |y(t)| λ-a.e. on [0,∞) then x ∈ E and ‖x‖E ≤
‖y‖E,

(b) if y ∈ E and λx = λy then x ∈ E and ‖x‖E = ‖y‖E .

It is well known that every r.i. space E satisfies the condition L1∩L∞ ↪→
E ↪→ L1 + L∞ where “↪→” means continuous inclusion. Recall that the
fundamental function φE of an r.i. space E is defined by φE(t) = ‖χ[0,t]‖E
with t ≥ 0. It is an increasing function and the associated function φ̃E ,
defined by φ̃E(t) = t/φE(t), is also increasing.

The Köthe dual E′ of an r.i. space E is formed by the measurable func-
tions x on [0,∞) such that

‖x‖E′ = sup
y∈BE

∞�

0

x(t)y(t) dt <∞

where BE is the unit ball of E. The space E′ is also an r.i. space and we
denote (E′)′ by E′′. We shall consider r.i. spaces which are either maximal
(i.e. E = E′′) or minimal (i.e. E is the closed linear span of the simple
integrable functions in E′′).
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We consider the Hardy–Littlewood–Pólya semi-order “≺”: If x, y ∈
L1 + L∞, we say that x ≺ y if

t�

0

x∗(s) ds ≤
t�

0

y∗(s) ds for every t ∈ [0,∞).

If E is an r.i. space and x ≺ y with y ∈ E, then x ∈ E and ‖x‖E ≤ ‖y‖E
(cf. [LT2, p. 125]).

An r.i. space E has the Fatou property if for any increasing positive
sequence (xn)∞n=1 in E with supn ‖xn‖E < ∞ we have supn xn ∈ E and
‖supn xn‖E = supn ‖xn‖E . The Köthe dual E′ has the Fatou property.
Given r.i. spaces E1 and E2, we consider the sum space E1 + E2 with the
norm ‖x‖E1+E2 = inf{‖x1‖E1 + ‖x2‖E2 : x = x1 + x2, x1 ∈ E1, x2 ∈ E2},
and the intersection space E1 ∩ E2 with the norm ‖x‖E1∩E2 =
max(‖x‖E1 , ‖x‖E2). Both are r.i. spaces with fundamental functions φE1+E2

= min(φE1 , φE2) and φE1∩E2 = max(φE1 , φE2). If E1 = L1 and E2 = L∞

then

‖x‖L1+L∞ =
1�

0

x∗(t) dt = sup
λ(E)=1

�

E

|x(t)| dt.

Important examples of r.i. spaces are the Orlicz, Lorentz and Marcinkie-
wicz spaces:

If ϕ is a positive convex function on [0,∞) with ϕ(0) = 0, the Orlicz
space Lϕ consists of all measurable functions x on [0,∞) for which

‖x‖Lϕ = inf
{
s > 0 :

∞�

0

ϕ

( |x(t)|
s

)
dt ≤ 1

}
<∞.

If 1 < p ≤ ∞ and 1 ≤ q ≤ ∞, the classical Lorentz space Lp,q consists
of all measurable functions x defined on [0,∞) such that

‖x‖p,q =
(∞�

0

(t1/px∗(t))q
dt

t

)1/q

<∞ if q <∞,

and
‖x‖p,∞ = sup

t>0
{t1/px∗(t)} <∞.

We shall denote by Lp,∞0 the order continuous part of Lp,∞.
Let Φ be the class of all increasing concave functions φ on [0,∞) with

φ(0) = 0. If φ ∈ Φ the Lorentz space Λ(φ) consists of all measurable functions
x defined on [0,∞) such that

‖x‖Λ(φ) =
∞�

0

x∗(t) dφ(t) <∞.
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The Marcinkiewicz space M(φ) consists of all measurable functions x defined
on [0,∞) for which

‖x‖M(φ) = sup
t>0

� t
0 x
∗(s) ds
φ(t)

<∞.

Given φ, the spaces Λ(φ) and M(φ̃) are respectively the smallest and
the biggest r.i. space having the same fundamental function φ (cf. [KPS,
Theorems 5.5 and 5.7]]):

Theorem 2.1. Every r.i. space E with fundamental function φ satisfies

Λ(φ) ↪→ E ↪→M(φ̃).

Given φ ∈ Φ, we will consider the subspace M0(φ) of M(φ) consisting of
all functions x ∈M(φ) such that

lim
t→0,∞

1
φ(t)

t�

0

x∗(s) ds = 0.

It is clear that if M0(φ) 6= {0}, then the function φ must satisfy

lim
t→0

φ(t)
t

= lim
t→∞

φ(t) =∞.

Conversely, it is well known that under both conditions and

lim
t→0

φ(t) = 0

the space M0(φ) is a separable closed subspace of M(φ) and (M0(φ))∗ =
Λ(φ) (cf. [KPS, Theorem II.5.4]). The function φ is the fundamental function
of the space M0(φ̃). Recall also that if limt→0 φ(t) = 0 and limt→∞ φ(t) =∞
then the Lorentz space Λ(φ) is separable and (Λ(φ))∗ = M(φ). In general
given an increasing function φ, since the function φ̃ is quasiconcave, there
exists a concave function φ such that φ̃ ≤ φ ≤ 2φ̃ (cf. [BS], [KPS]).

For other properties of r.i. spaces we refer to [BS], [KPS], [LT2].

3. The inclusion L1 ∩ L∞ ↪→ E. In this section we characterize when
the inclusion L1 ∩ L∞ ↪→ E is DSS. We will use the following

Proposition 3.1. Let φ ∈ Φ. The inclusion operator Λ(φ) ↪→ M(φ̃) is
weakly compact if and only if the following conditions hold :

(1) lim
t→0

φ(t)
t

= lim
t→∞

φ(t) =∞

and

(2) lim
t→0

φ(t) = lim
t→∞

φ(t)
t

= 0.
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Proof. First assume that (1) and (2) hold. If j denotes the inclusion
operator, we have, by Theorem 2.1, j : Λ(φ) ↪→M0(φ̃) ↪→M(φ̃). Hence the
adjoint operator j∗ acts from (M0(φ))∗ = Λ(φ) into (Λ(φ))∗ and then j∗∗

transforms (Λ(φ))∗∗ into M(φ). Thus, by a theorem of Gantmacher (see e.g.
[PR, p. 250]) we conclude that j is weakly compact.

Conversely, if any of the conditions in (1) or (2) fails, then the inclusion
operator Λ(φ) ↪→ M(φ̃) is not weakly compact since then it cannot be
factorized through any reflexive space. Indeed, consider the space H of all
functions x(t) =

∑
k xkχ[k−1,k) with xk → 0. It is easy to check that if

limt→∞ φ(t) <∞ then

‖x‖Λ(φ) ≈ ‖x‖M(φ̃) ≈ sup
k
|xk|

and if limt→∞ φ(t)/t > 0 then

‖x‖Λ(φ) ≈ ‖x‖M(φ̃) ≈
∑

k

|xk|
on the subspace H.

Consider now the space V of all functions x ∈ L∞ with supp(x) ⊂ [0, 1].
On V , if limt→0 φ(t) > 0 then

‖x‖Λ(φ) ≈ ‖x‖M(φ̃) ≈ ‖x‖L∞ ,
and if limt→0 φ(t)/t <∞ then

‖x‖Λ(φ) ≈ ‖x‖M(φ̃) ≈ ‖x‖L1 .

Proposition 3.2. Given φ ∈ Φ, there exists a reflexive r.i. space E
with fundamental function φE = φ if and only if the function φ satisfies
conditions (1) and (2).

Proof. The necessity part follows directly from Proposition 3.1 and The-
orem 2.1. Conversely, under conditions (1) and (2), the inclusion operator
Λ(φ) ↪→ M(φ̃) is weakly compact. Consider the real interpolation space
E = (Λ(φ),M(φ̃))θ,p for 0 < θ < 1 and 1 < p <∞. Then, using [B, Propo-
sition II.3.1] we deduce that E is a reflexive r.i. space, and it is clear that
its fundamental function φE is equal to φ.

The above statements extend previous results for r.i. spaces on [0, 1]
given by Kuzin-Aleksinskĭı [K-A].

The following lemma will also be useful in order to characterize when
the inclusion operator L1 ∩ L∞ ↪→ E is DSS.

Lemma 3.3. If φ ∈ Φ satisfies condition (2) then there exists a function
ψ ∈ Φ such that ψ satisfies conditions (1) and (2), and

∞�

0

φ′(t)ψ′(t) dt <∞.
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Proof. This can be deduced from [P, Theorem 5]. We also give a self-
contained alternative short proof provided by the referee. Using condition
(2) we have

lim
t→∞

φ′(t) ≤ lim
t→∞

1
t

t�

0

φ′(s) ds = lim
t→∞

φ(t)
t

= 0.

Choose a strictly increasing unbounded sequence (an)∞n=1 which satisfies
a1 = 1,

an+1 ≥ 2an − an−1 and φ′(an) ≤ 1/n.

Also, choose a strictly decreasing sequence (bn)∞n=0 in (0, 1] such that

φ(bn) = 2−nφ(1)

(so in particular b0 = 1). Now we consider the function f : (0,∞)→ (0,∞)
defined by

f =
∞∑

n=0

(n+ 1)χ(bn+1,bn] +
∞∑

n=1

1
n(an+1 − an)

χ(an,an+1]

and the function

ψ(t) =
t�

0

f(s) ds.

It is easy to verify that ψ has all the required properties.

Theorem 3.4. Let E be an r.i. space. The following conditions are
equivalent :

(i) The inclusion operator L1 ∩ L∞ ↪→ E is DSS.
(ii) The inclusion operator L1 ∩ L∞ ↪→ E is strictly singular.
(iii) The inclusion operator L1 ∩ L∞ ↪→ E is weakly compact.
(iv) limt→0 φE(t) = limt→∞ φE(t)/t = 0.

Proof. (i)⇒(iv). Suppose that limt→0 φE(t) = c > 0. Then

‖x‖E ≥ lim
t→0
‖x∗χ[0,t]‖E ≥ lim

t→0
x∗(t)φE(t) = c‖x‖∞

for every x ∈ E. If V is the subspace of functions x ∈ L∞ with supp(x) ⊂
[0, 1] then ‖x‖1 ≤ ‖x‖∞ for x ∈ V . Hence ‖x‖L1∩L∞ = ‖x‖∞. Thus
‖x‖L1∩L∞ ≤ c−1‖x‖E for x ∈ V . Since the converse inequality always holds,
we deduce that the norms ‖ · ‖L1∩L∞ and ‖ · ‖E are equivalent on V , so the
inclusion L1 ∩ L∞ ↪→ E is not DSS.

Suppose now that limt→∞ φE(t)/t = b > 0. Then φE(t) ≥ bt for every
t > 0. Hence φ̃E(t) ≤ 1/b. Therefore, using Theorem 2.1, we have

‖x‖E ≥ ‖x‖M(φ̃E) ≥ b‖x‖L1
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for every x ∈ E. Now, if H is the subspace of functions x =
∑

k xkχ[k−1,k),
then

‖x‖E ≥ b
∑

k

|xk|

for every x ∈ H. Hence

‖x‖L1∩L∞ =
∑

k

|xk| ≤
1
b
‖x‖E

for every x ∈ H. As the converse inequality also holds, we conclude that the
inclusion L1 ∩ L∞ ↪→ E is not DSS.

(iv)⇒(iii). Let φE be the least concave majorant function of φE . Then,
by Lemma 3.3, there exists ψ ∈ Φ which satisfies (1) and (2) and

(3)
∞�

0

φ′E(t)ψ′(t) dt <∞.

From (3) we deduce the inclusion M(ψ) ↪→ Λ(φE). Now, if we denote by
ψ the least concave majorant function of ψ̃, then Λ(ψ) ↪→ M(ψ). Thus, we
have got the factorization

L1 ∩ L∞ ↪→ Λ(ψ) ↪→M(ψ) ↪→ Λ(φE) ↪→ E.

Now, by Proposition 3.1, the inclusion Λ(ψ) ↪→ M(ψ), and hence L1 ∩
L∞ ↪→ E, is weakly compact.

(iii)⇒(ii) follows from the Dunford–Pettis property of L1 ∩ L∞ ([K2],
[KM]), and (ii)⇒(i) is trivial.

Remark. A characterization of when the inclusion L1 ∩ L∞ ↪→ E is
strictly singular has also been obtained very recently by Cobos, Manzano,
Mart́ınez and Matos in [CMMM, Theorem 3.4] using a different technique
based on qualitative interpolation methods.

Reasoning as in the above implication (iv)⇒(iii) we get the following

Corollary 3.5. Given an r.i. space E, there exists a reflexive r.i. space
F such that F ↪→ E if and only if the condition (iv) is satisfied.

Using duality arguments and the equality φE(t)φE′(t) = t we also deduce
the following

Corollary 3.6. Given an r.i. space E, there exists a reflexive r.i. space
F such that E ↪→ F if and only if the condition (1) is satisfied.

The above corollaries for r.i. spaces on [0, 1] were given in [K-A] and [N1].

4. The inclusion E ↪→ L1 + L∞. In this section we study when the
inclusion E ↪→ L1 + L∞ is DSS. First we give some necessary conditions.
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Theorem 4.1. Let E be an r.i. space. If the inclusion operator E ↪→
L1 + L∞ is DSS , then:

(i) limt→0 φE(t)/t = limt→∞ φE(t) =∞.
(ii) t−1/pχ(0,∞) 6∈ E for any 1 < p <∞.

Proof. (i) First suppose that limt→0 φE(t)/t < ∞. If we consider the
sequence (xn)∞n=1 = (2nχ(2−n,2−n+1])∞n=1, the norms of E and L1 + L∞ are
equivalent on the subspace [(xn)∞n=1], which is isomorphic to `1. Indeed,
since ‖xn‖E = 2nφE(2−n) ≤M for some M <∞ and every n ∈ N, we have

∑

n

|an| =
∥∥∥
∑

n

anxn

∥∥∥
L1+L∞

≤
∥∥∥
∑

n

anxn

∥∥∥
E
≤M

∑

n

|an|

for every scalar sequence (an)∞n=1.
If limt→∞ φE(t) = A < ∞, then the sequence (χ[n−1,n))∞n=1 in E and

L1 + L∞ is equivalent to the canonical basis of c0 since

sup
n
|an| =

∥∥∥
∑

n

anχ[n−1,n)

∥∥∥
L1+L∞

≤
∥∥∥
∑

n

anχ[n−1,n)

∥∥∥
E
≤ A sup

n
|an|

for every scalar sequence (an)∞n=1.
(ii) Suppose now that there exists 1 < p <∞ such that t−1/pχ(0,∞) ∈ E.

Let (xn)∞n=1 be a sequence of disjointly supported functions in E such that
xn and t−1/pχ(0,∞) are equimeasurable for every n ∈ N. Then the functions∑

n anxn and ‖a‖pt−1/pχ(0,∞) are equimeasurable for every scalar sequence
a = (an)∞n=1. Therefore

‖t−1/pχ(0,∞)‖L1+L∞‖a‖p =
∥∥∥
∑

n

anxn

∥∥∥
L1+L∞

≤
∥∥∥
∑

n

anxn

∥∥∥
E

= ‖t−1/pχ(0,∞)‖E‖a‖p
for every scalar sequence a = (an)∞n=1. So (xn)∞n=1 is equivalent in E and
L1 + L∞ to the canonical basis of `p.

From the above theorem we see that the inclusion Lp,∞ ↪→ L1 + L∞ is
not DSS for any 1 < p <∞.

We turn to showing that the above conditions (i) and (ii) are not in
general sufficient for E ↪→ L1 + L∞ to be DSS:

Proposition 4.2. Let 1 < p <∞ and (xn)∞n=1 be a disjointly supported
sequence of functions in Lp,∞ with ‖xn‖p,∞ ≤ 1 for every n ∈ N. Let (εn)∞n=1
be a sequence in [0, 1] with

∑
n εn < ∞ and c be a positive constant such

that

(4)
τ�

0

x∗n(t) dt ≥ cτ1−1/p
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for every n ∈ N and every τ ∈ [εn, 1]. Then there exists a constant M > 0
such that

(5)
1
M
‖a‖p ≤

∥∥∥
∑

n

anxn

∥∥∥
L1+L∞

≤
∥∥∥
∑

n

anxn

∥∥∥
p,∞
≤M‖a‖p

for every a = (an)∞n=1 ∈ `p.

Proof. Since ‖x‖L1+L∞ = supλ(E)=1

�
E
|x(t)| dt, we have

∥∥∥
∑

n

anxn

∥∥∥
L1+L∞

= sup∑
n τn=1

∑

n

|an|
τn�

0

x∗n(t) dt.

Choose n0 ∈ N such that
∑∞

n=n0
εn ≤ 1/2. Then, by (4), we have

∥∥∥
∑

n

anxn

∥∥∥
L1+L∞

≥ c sup
τn≥εn∑∞
n=n0

τn=1

∞∑

n=n0

|an|τ1−1/p
n

≥ c sup
τn≥0∑∞

n=n0
τn=1/2

∞∑

n=n0

|an|τ1−1/p
n

= 21/p−1c sup
τn≥0∑∞

n=n0
τn=1

∞∑

n=n0

|an|τ1−1/p
n

= 21/p−1c
( ∞∑

n=n0

|an|p
)1/p

.

As ‖∑n anxn‖L1+L∞ ≥ c supn |an| we obtain the first inequality of (5).
The second inequality of (5) is obvious. Finally, since Lp,∞ satisfies an

upper p-estimate (cf. [CD1]), we obtain the third inequality of (5).

Corollary 4.3. The inclusion Lp,∞0 ↪→ L1 + L∞ is not DSS for any
1 < p <∞.

Proof. For a sequence (εn)∞n=1 as in Proposition 4.2 we just consider a
disjointly supported sequence of functions (xn)∞n=1 in Lp,∞0 such that

x∗n(t) =




ε
−1/p
n if 0 ≤ t ≤ εn,
t−1/p if εn < t < 1,
0 if t ≥ 1.

Remark. The above corollary shows that in general the conditions (i)
and (ii) of Theorem 4.1 are not sufficient for E ↪→ L1 + L∞ to be DSS. It
also shows that the condition (ii) can be replaced, using the Fatou property
of E′′, by the sharper one:

sup
n
‖t−1/pχ(1/n,n)‖E =∞ for any 1 < p <∞.
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We shall give some sufficient conditions for E ↪→ L1 + L∞ to be DSS.
A very strong sufficient condition is that 1/φE ∈ Lp for some 1 < p < ∞
since in this case we have the inclusion M(φ̃E) ↪→ Lp. One of the main
results of this section (Theorem 4.5) gives a milder sufficient condition for
E ↪→ L1 +L∞ to be DSS. First we analyze the case of Marcinkiewicz spaces.

Let φ ∈ Φ and assume that M(φ) ↪→ L1 + L∞ is not DSS. Then there
exist a disjointly supported sequence of functions (xn)∞n=1 ⊂ M(φ) and a
constant D > 0 such that

(6)
∥∥∥
∑

n

anxn

∥∥∥
M(φ)

≤ D
∥∥∥
∑

n

anxn

∥∥∥
L1+L∞

for every scalar sequence (an)∞n=1. Define

ϕn(τ) =
τ�

0

x∗n(t) dt

for n ∈ N and τ > 0. We may assume without loss of generality that
ϕn(1) = 1 for every n ∈ N. Under this hypothesis we have the following

Lemma 4.4. There exists an increasing sequence (nk)∞k=1 of integers such
that

ϕn

(
1
k

)
≥ 1
Dφ(k)

for every k ∈ N and every n ≥ nk, where D is the constant in (6).

Proof. The inequality (6) implies

sup
τn≥0

∑
n |an|

� τn
0 x∗n(t)dt

φ(
∑

n τn)
≤ D sup

τn≥0∑
n τn=1

∑

n

|an|
τn�

0

x∗n(t) dt,

i.e.

sup
τn≥0

∑
n |an|ϕn(τn)
φ(
∑

n τn)
≤ D sup

τn≥0∑
n τn=1

∑

n

|an|ϕn(τn)

or

(7) sup
sn≥0

∑
n |an|sn

φ(
∑

n ϕ
−1
n (sn))

≤ D sup
sn≥0∑

n ϕ
−1
n (sn)=1

∑

n

|an|sn.

Now, each ϕn is concave, therefore ϕ−1
n is convex and the set

A =
{

(tn)∞n=1 ⊂ R :
∑

n

ϕ−1
n (|tn|) ≤ 1

}

is convex. Denote by `M the modular (or Musielak–Orlicz) sequence space
generated by the sequence (ϕ−1

n )∞n=1 (cf. [W], [LT1]). Then A is the unit ball
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of `M . The inequality (7) implies that

sup
sn≥0

∑
n |an|sn

φ(
∑

n ϕ
−1
n (sn))

≤ D‖a‖`′M .

Therefore
sup

‖a‖`′M≤1

∑

n

|an|
sn

φ(
∑

m ϕ
−1
m (sm))

≤ D

for each (sn)∞n=1 with sn ≥ 0 for every n ∈ N. Since `M is maximal we
obtain ∥∥∥∥

(
sn

φ(
∑

m ϕ
−1
m (sm))

)∞

n=1

∥∥∥∥
`M

≤ D

and then (
sn

Dφ(
∑
m ϕ
−1
m (sm))

)∞

n=1
∈ A.

Hence ∑

n

ϕ−1
n

(
sn

Dφ(
∑

m ϕ
−1
m (sm))

)
≤ 1.

Given k ∈ N and a set I ⊂ N with |I| = k, we consider the sequence
(sn)∞n=1 defined by

sn =
{

1 if n ∈ I,
0 if n 6∈ I.

Using the assumption ϕn(1) = 1 for every n ∈ N we get
∑

n∈I
ϕ−1
n

(
1

Dφ(k)

)
≤ 1.

This means that ∣∣∣∣
{
n ∈ N : ϕ−1

n

(
1

Dφ(k)

)
>

1
k

}∣∣∣∣ < k.

Consequently, there exists a sequence (nk)∞k=1 as in the statement.

Now we are able to formulate a converse of Proposition 4.2.

Theorem 4.5. Let E be an r.i. space, different from L1 and L∞, with
submultiplicative fundamental function. If the inclusion operator E ↪→
L1 + L∞ is not DSS , then E = Lp,∞ or E = Lp,∞0 for some 1 < p <∞.

Proof. There exist a sequence of disjointly supported functions (xn)∞n=1
⊂ E and a constant D > 0 such that∥∥∥

∑

n

anxn

∥∥∥
E
≤ D

∥∥∥
∑

n

anxn

∥∥∥
L1+L∞
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for every scalar sequence (an)∞n=1. Now, by Theorem 2.1, we have
∥∥∥
∑

n

anxn

∥∥∥
M(φ̃E)

≤ D
∥∥∥
∑

n

anxn

∥∥∥
L1+L∞

.

We can assume that (xn)∞n=1 is normalized in L1 + L∞ and φ̃E is concave.
Using Lemma 4.4 and the concavity of φ̃E we get

ϕn(τ) ≥ 1

2Dφ̃E(1/τ)

for every k ∈ N, τ ∈ [1/k, 1] and n ≥ nk. Indeed, suppose that ϕn(τ) <
1/(2Dφ̃E(1/τ)) for some k ∈ N, τ ∈ [1/k, 1] and n ≥ nk. Then there exists
m ∈ N such that τ ∈ (1/2m, 1/2m−1]. If 1/k ≤ 1/2m then

ϕn(1/2m) ≤ 1

2Dφ̃E(2m−1)
≤ 1

Dφ̃E(2m)
,

which contradicts Lemma 4.4. The other case is analogous.
Now, by the submultiplicativity of φE there exists C > 0 such that

φ̃E(ts) ≥ 1
C
φ̃E(t)φ̃E(s)

for every t, s > 0. Hence φ̃E(1/τ) ≤ Cφ̃E(1)/φ̃E(τ) for every τ > 0 and

(8) ϕn(τ) ≥ 1

2CDφ̃E(1)
φ̃E(τ)

for every k ∈ N, τ ∈ [1/k, 1] and n ≥ nk. Therefore, given j ∈ N, we have

sup
|I|=j

∥∥∥
∑

n∈I
xn

∥∥∥
E
≥ sup
|I|=j

∥∥∥
∑

n∈I
xn

∥∥∥
M(φ̃E)

≥ sup
|I|=j

sup
0<τ≤j

∑
n∈I ϕn(τ/j)

φ̃E(τ)

= sup
0<τ≤j

sup
|I|=j

∑
n∈I ϕn(τ/j)

φ̃E(τ)
≥ 1

2CDφ̃E(1)
sup

0<τ≤j

jφ̃E(τ/j)

φ̃E(τ)
.

Now, since ‖xn‖M(φ̃E) ≤ D for every n ∈ N, we have ϕn(τ) ≤ Dφ̃E(τ)
for every n ∈ N and τ > 0. If |I| = j then

∥∥∥
∑

n∈I
xn

∥∥∥
L1+L∞

= sup∑
n∈I τn=1

∑

n∈I
ϕn(τn)

≤ sup∑
n∈I τn=1

∑

n∈I
Dφ̃E(τn) = Djφ̃E

(
1
j

)
.

Comparing the last two inequalities we get

1

2CDφ̃E(1)
sup

0<τ≤j

φ̃E(τ/j)

φ̃E(τ)
≤ Dφ̃E

(
1
j

)
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for every j ∈ N. Consequently,

φ̃E(ts) ≤ C1φ̃E(t)φ̃E(s)

for every t, s > 0 such that ts ≤ 1 where C1 = 4CD2φ̃E(1).
Therefore

1
C
φ̃E(t)φ̃E(s) ≤ φ̃E(ts) ≤ C1φ̃E(t)φ̃E(s)

for every 0 < t, s ≤ 1. Now, using the well known fact that the only functions
which satisfy such an equivalence are those which are equivalent to powers,
and that φ̃E is an increasing concave function on [0, 1], we deduce that there
exist C2 > 1 and α ∈ [0, 1] such that

1
C2
tα ≤ φ̃E(t) ≤ C2t

α

for every t ∈ [0, 1]. If t > 1 and 0 < s ≤ 1/t, then

φ̃E(ts)

C1φ̃E(s)
≤ φ̃E(t) ≤ C φ̃E(ts)

φ̃E(s)

and
1

C1C2
2
tα ≤ φ̃E(t) ≤ CC2

2 t
α

for every t > 0. If α = 0 then E = L1 and if α = 1 then E = L∞, which are
excluded. Now, there exist 1 < p <∞ and C3 > 1 such that

1
C3
t1/p ≤ φE(t) ≤ C3t

1/p

for every t > 0. The right inequality and Theorem 2.1 imply that E ↪→ Lp,∞.
Let us now study the converse inclusion. By (8), there exist a constant

C4 > 0 and a sequence (rn)∞n=1 such that

ϕrn(τ) ≥ C4τ
1−1/p

for every n ∈ N and τ ∈ [1/2n, 1]. This means that

C4(1− 1/p) min(t−1/p, 2n/p)χ[0,1] ≺ xrn
for every n ∈ N. Since the functions (xn)∞n=1 are disjointly supported, for
every ε > 0 and j ∈ N there exist I ⊂ N with |I| = j such that

C4(1− 1/p)
j∑

i=1

(t− i+ 1)−1/pχ[i−1+ε,i](t) ≺
∑

i∈I
xi.

Applying now [LT2, Proposition 2.a.8] and Proposition 4.2 we get

C4(1− 1/p)
∥∥∥

j∑

i=1

(t− i+ 1)−1/pχ[i−1+ε,i]

∥∥∥
E
≤
∥∥∥
∑

i∈I
xi

∥∥∥
E
≤ C5j

1/p
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for some constant C5 > 0 which does not depend on ε. Since E′′ has the
Fatou property, letting ε tend to 0 we obtain

C4(1− 1/p)
∥∥∥

j∑

i=1

(t− i+ 1)−1/pχ(i−1,i]

∥∥∥
E′′
≤ C5j

1/p.

Now, since the functions

j−1/p
j∑

i=1

(t− i+ 1)−1/pχ(i−1,i] and t−1/pχ(0,j]

are equimeasurable, we have

‖t−1/pχ(0,j]‖E′′ ≤ C5[C4(1− 1/p)]−1.

Using the Fatou property again, we get t−1/pχ(0,∞) ∈ E′′. Hence Lp,∞ ↪→ E′′

and consequently E′′ = Lp,∞. Finally, if E is maximal then E = Lp,∞, and
if E is minimal then E = Lp,∞0 .

Examples. (i) The inclusion Lp,∞ ∩ Lq,∞ ↪→ L1 + L∞ is DSS for 1 <
p 6= q <∞.

(ii) If ϕ is a submultiplicative Orlicz function then the inclusion Lϕ ↪→
L1 + L∞ is DSS except when Lϕ = L1.

Remark. The submultiplicativity of φE is essential in Theorem 4.5: the
inclusion operator Lp + Lq ↪→ L1 + L∞ is not DSS for 1 ≤ p < q ≤ ∞ (cf.
[GHR]).

When considering interpolation spaces obtained by methods of genus s%
(e.g. the real and complex interpolation methods) we have the following

Corollary 4.6. Let E be an r.i. space with submultiplicative funda-
mental function and E 6= L1, L∞, Lp,∞, Lp,∞0 with 1 < p < ∞. If F is an
interpolation space between E and L1 + L∞ obtained by an interpolation
method of genus s%, then the inclusion operator E ↪→ F is DSS.

Proof. This follows from Theorem 4.5 and [GHR, Theorem 3.4].

Corollary 4.7. Let E be an r.i. space with submultiplicative funda-
mental function and E 6= L1, L∞, Lp,∞, Lp,∞0 with 1 < p < ∞. If F is an
intermediate Banach space between E and L1 + L∞ such that

‖x‖F ≤ C‖x‖θE‖x‖1−θL1+L∞

for some 0 < θ < 1 and C > 0 and for every x ∈ E, then the inclusion
operator E ↪→ F is DSS.

Proof. This follows from Corollary 4.6 and [BL, Theorem 3.5.2(b)].

Finally we give some applications to Lorentz spaces Λ(φ). For classical
Lorentz spaces Lp,q, the inclusion operator Lp,q ↪→ Lp,q

′
is DSS with 1 <
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p < ∞ and 1 ≤ q < q′ ≤ ∞. This follows easily from Proposition 2.3 and
Lemma 2.1 of [CD2].

Theorem 4.8. Let φ, ψ ∈ Φ with ψ ≤ Cφ for some constant C > 0. If

(9) lim
t→0,∞

ψ(t)
φ(t)

= 0

and φ is a submultiplicative function, then the inclusion operator Λ(φ) ↪→
Λ(ψ) is DSS.

Proof. Suppose that Λ(φ) ↪→ Λ(ψ) is not DSS. Then we can find a
subspace S ⊂ Λ(φ) generated by a sequence of disjointly supported functions
and c > 0 such that ‖x‖Λ(ψ) ≥ c for every x ∈ S with ‖x‖Λ(φ) = 1. By (9),
there exists 0 < δ < 1 depending only on φ, ψ and c such that

�

λx(s)≤δ
ψ(λx(s)) ds+

�

λx(s)≥1/δ

ψ(λx(s)) ds ≤ c

2
.

Hence �

δ<λx(s)<1/δ

ψ(λx(s)) ds ≥ c

2

and therefore

ψ

(
1
δ

)
λ{s ∈ [0,∞) : δ < λx(s) < 1/δ} ≥ c

2
.

Consequently,

x∗(δ) ≥ c

2ψ(1/δ)
.

This implies that

‖x‖L1+L∞ =
1�

0

x∗(t) dt ≥
δ�

0

x∗(t) dt ≥ δx∗(δ) ≥ cδ

2ψ(1/δ)
.

This means that the inclusion operator Λ(φ) ↪→ L1 + L∞ is not DSS. Now,
by Theorem 4.5, Λ(φ) = Lp,∞ or Λ(φ) = Lp,∞0 for some 1 < p < ∞, but
this is a contradiction.

Remark. In general the submultiplicativity of φ in Theorem 4.8 cannot
be removed as the following example shows:

Let 1 ≤ r < p < q < s < ∞. If φ(t) = min(t1/p, t1/q) and ψ(t) =
min(t1/r, t1/s) then limt→0,∞ ψ(t)/φ(t) = 0 and the inclusion operator Λ(φ)
↪→ Λ(ψ) is not DSS. Indeed, t−1/lχ(0,∞) ∈ Λ(φ) for p < l < q, so the inclu-
sion Λ(φ) ↪→ L1 + L∞, and hence the inclusion Λ(φ) ↪→ Λ(ψ), is not DSS.
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