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On some properties of
generalized Marcinkiewicz spaces

by

Evgeniy Pustylnik (Haifa)

Abstract. We give a full solution of the following problems concerning the spaces
Mϕ(~X): (i) to what extent two functions ϕ and ψ should be different in order to ensure
that Mϕ(~X) 6= Mψ(~X) for any nontrivial Banach couple ~X; (ii) when an embedding
Mϕ(~X)  Mψ(~X) can (or cannot) be dense; (iii) which Banach space can be regarded as
an Mϕ(~X)-space for some (unknown beforehand) Banach couple ~X.

Introduction. The generalized Marcinkiewicz spaces Mϕ( ~X) (some-
times denoted also by ~Xϕ,∞) apparently are the simplest intermediate (and
interpolation) spaces for every Banach couple ~X = (X0,X1). The only con-
dition for x ∈ Σ( ~X) = X0 +X1 to belong to the unit ball of Mϕ is the in-
equality K(t, x, ~X) = ‖x‖X0+tX1 ≤ ϕ(t) for all t > 0. Such simplicity makes
these spaces a good “touchstone” for various hypotheses on global proper-
ties of intermediate (or interpolation) spaces for abstract Banach couples.
Very often they turn out to be extreme spaces having a required property
and can be used for description of other spaces.

The spaces Mϕ( ~X) appeared for the first time in [D] just in such a role.
Together with their dual spaces Λϕ( ~X) they were used for description of
spaces which are interpolation with respect to one-dimensional operators.
Further they were systematically studied in [P1], where their extreme po-
sition was stated for many other problems. It was also proved there that
any real interpolation space can be represented as the sum of some collec-
tion of Mϕ( ~X)-spaces. At the same time the paper [DKO] associated these
spaces with certain extreme interpolation functors. Notice that, for some
special couples, these spaces were known and intensively studied previously,
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e.g. as usual (rearrangement invariant) Marcinkiewicz spaces for the couple
(L1, L∞) and as generalized Hölder spaces for the couple (C,C1).

A full bibliography concerning generalized Marcinkiewicz spaces is likely
to be very long. They were studied in [M] as Aϕ-spaces, in [Mi] as extrapola-
tion ones. Even some monographs (e.g., [O], [BK]) devoted significant parts
to them. These investigations concentrated on the interpolation properties of
these spaces. At the same time their inner structure has been studied rather
insufficiently. The main problem here is to compare the spaces Mϕ( ~X) and
Mψ( ~X) for different functions ϕ and ψ. A partial solution of this prob-
lem was given in [P2] and [P4]. It turned out that it is closely connected
with other difficult problems concerning K-functional properties, such as
K-divisibility and K-abundance of a given Banach couple. For example, the
usual Marcinkiewicz spaces Mϕ as well as the Hölder spaces Hϕ are different
for any two nonequivalent parameter functions.

Another problem concerns embeddings of such spaces. In the above men-
tioned particular cases every embedding Mϕ  Mψ 6= L1 (on [0, 1]) and
Hϕ  Hψ 6= C is known to be nondense. For the general case, an analogous
property was established in [P2] under the condition that the couple ~X is K-
abundant. A question concerning the embedding ∆( ~X) = X0∩X1  Mϕ( ~X)
was considered in [CM], and nondensity of this embedding was proved for
any nontrivial Banach couple. Some ideas from [CM] will be used in the
present paper.

The last problem we mention is to characterize those Banach spaces
which could be regarded as generalized Marcinkiewicz spaces for some Ba-
nach couple. Theorem 4.6.28 on p. 663 of [BK] claims to give necessary
conditions, but the proof given there is incorrect. In fact, this proof gives
some necessary conditions for a Banach space X to be the closure of ∆( ~X)
in some generalized Marcinkiewicz space Mϕ( ~X) (the usual notation for this
closure is M◦ϕ( ~X)). As mentioned in the previous paragraph, such a closure
never equals the space Mϕ( ~X) itself. However, some ideas and partial asser-
tions from the above mentioned proof can (and will) be used for a corrected
proof below.

In the present paper we give full answers to all the above mentioned
problems. As a main tool, we use a special characteristic of intermediate
spaces, which will be named K-envelope here (in fact, this characteristic
in close forms was used formerly by some authors, see Remark in Section 1
below). In short, it is the exact upper bound ofK-functionals on the unit ball
of the space considered. Various properties of K-envelopes will be stated in
the next section. In particular, we prove that for any space with K-monotone
norm (all Mϕ( ~X)-spaces are of this kind), its K-envelope can be calculated
using elements from ∆( ~X) only.
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Section 2 is devoted to the comparison of spaces Mϕ with nonequivalent
parameter functions. The core of all proofs is Lemma 2 which states that the
K-envelope of Mϕ( ~X) always coincides with ϕ on some sequence {tn} which
tends to 0 or to∞. This enables us to prove that Mϕ( ~X) 6= Mψ( ~X) for any
nontrivial Banach couple ~X if and only if limϕ(t)/ψ(t) = 0 (or∞) as t→ 0
in the case when X◦0 6⊂ X◦1 or as t→∞ in the case when X◦1 6⊂ X◦0 . Notice
that otherwise we have some monotone sequence tn → 0 (or tn → ∞) on
which the functions ϕ and ψ are equivalent (i.e. Aϕ(tn) ≤ ψ(tn) ≤ Bϕ(tn)
for some A,B > 0 and all n = 1, 2, . . .). In that case, we show that Mϕ( ~X) =
Mψ( ~X) for some couple ~X which is constructed explicitly.

In the last section we solve the remaining problems. We give a full
characterization of Banach spaces which can be regarded as generalized
Marcinkiewicz spaces. Namely, let ϕ(t), 0 < t <∞, be a quasiconcave func-
tion which is not equivalent to any of the functions 1, t,min(1, t),max(1, t).
Then a Banach space X is equal to Mϕ( ~X) for some nontrivial Banach
couple ~X if and only if X contains a subspace isomorphic to l∞. The ex-
cluded functions are not problematic either, because they correspond to
the extreme spaces X0,X1,∆( ~X) and Σ( ~X) respectively, and each X may
be taken as one of such spaces in some couple ~X = (X0,X1) without any
condition.

The same technique is used for solving the problem on embedding den-
sity. We prove the following statement: let Mψ( ~X)  Mϕ( ~X) and sup-
pose that Mϕ( ~X) is not larger than either of the spaces X0, X1. Then
Mψ( ~X) is not dense in Mϕ( ~X). A counterexample shows that the condi-
tion Xi 6⊂ Mϕ( ~X) is essential when ∆( ~X) is dense in the corresponding
Xi (i = 0, 1), but otherwise it may be omitted. All such possibilities are
described in the paper.

As a consequence of our proofs, we obtain a new result relating the
problem of K-abundance of Banach couples. Recall that a Banach couple
~X is termed K-abundant if, for any given quasiconcave function ϕ, there
exists f ∈ Σ( ~X) such that K(t, f, ~X) is equivalent to ϕ(t). As shown in
[BK], for K-abundance of a couple ~X, it is sufficient that such an f exists
for the single function ϕ(t) =

√
t. A large variety of nonabundant couples

is given in [P4]. The new assertion which we have got in the present paper
is: for any nontrivial Banach couple ~X and any quasiconcave function ϕ(t)
(not equivalent to max(1, t)), there exists an element f ∈ Σ( ~X) such that
K(tn, f, ~X) is equivalent to ϕ(tn) for some sequence {tn} which tends to 0
or to ∞.

In conclusion the author wishes to thank M. Cwikel and Yu. Brudnyi for
interesting discussions about some topics of this paper.
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1. K-envelope of an intermediate Banach space. Let us recall
some basic notions of interpolation theory. Two Banach spaces X0,X1 are
said to form a Banach couple ~X if they are continuously embedded into some
Hausdorff topological vector space. Their intersection ∆( ~X) = X0 ∩X1 and
sum Σ( ~X) = X0 +X1 are also Banach spaces endowed with the norms

‖f‖∆( ~X) = max(‖f‖X0 , ‖f‖X1), ‖f‖Σ( ~X) = inf
f=f0+f1

(‖f0‖X0 + ‖f1‖X1).

A space X is called intermediate in the couple ~X if ∆( ~X) ⊂ X ⊂ Σ( ~X);
notice that any embedding of intermediate spaces into each other is auto-
matically continuous (see, e.g., [KPS], p. 13). A Banach couple ~X is called
ordered if X0 ⊂ X1; this implies that ∆( ~X) = X0, Σ( ~X) = X1 (here and
below any equality X = Y means that the spaces have the same elements
and equivalent norms). The Banach couple ~XT = (X1,X0) is called trans-
posed with respect to ~X = (X0,X1); both couples have the same collection
of intermediate spaces.

We use the following two operations defined on all intermediate spaces.
By X◦ we denote the closure of ∆( ~X) in X (which may coincide with X
or be a closed subset of X). By Xc we denote the Gagliardo completion of
X; its unit ball is defined as the closure of the unit ball of X in the space
Σ( ~X). Obviously ∆◦( ~X) = ∆( ~X) and Σc( ~X) = Σ( ~X). If X◦i = Xi, i = 0, 1,
the couple is called regular.

An important role in this paper will be played by Peetre’s K-functional

K(t, f, ~X) = ‖f‖X0+tX1 = inf
f=f0+f1

(‖f0‖X0 + t‖f1‖X1), t > 0, f ∈ Σ( ~X).

For any fixed t it is equivalent to the norm on Σ( ~X). An intermediate
space X is called a K-space if it has K-monotone norm, i.e. the conditions
f ∈ Σ( ~X), g ∈ X, K(t, f, ~X) ≤ K(t, g, ~X) imply that f ∈ X, ‖f‖X ≤ ‖g‖X .
A fundamental study of K-spaces can be found in [BK]; there are many
Banach couples where all interpolation spaces are only of that type.

Definition. The K-envelope of an intermediate space X is the function

µ(t,X, ~X) = sup
‖f‖X≤1

K(t, f, ~X), t > 0.

Remark. The function µ(t,X, ~X) is closely connected to the funda-
mental co-function ψX(t, ~X), defined in [P1] for an arbitrary Banach couple
(for regular couples it was already considered in [D] without the use of the
K-functional). In a later version of definition, given in [P3], the functions
are exactly the same, but the term “K-envelope” seems now to be more suit-
able. Some other related functions were considered in [DKO], [M] and [MM];
in the recent paper [CCM], the function µ(t,X, ~X) plays an important role
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in interpolation of operator ideals. Note also the embedding functions from
[P5] which generalize all such characteristics, based on K and J-functionals.

Let us indicate some general properties of K-envelopes, mostly estab-
lished in the papers mentioned in the last remark. If X ⊂ Y with embedding
constant 1 then µ(t,X, ~X) ≤ µ(t, Y, ~X) and thus

(1)
µ(t,X ∩ Y, ~X) ≤ min(µ(t,X, ~X), µ(t, Y, ~X)),

µ(t,X + Y, ~X) ≥ max(µ(t,X, ~X), µ(t, Y, ~X)).

Since K(t, f, ~XT ) = tK(1/t, f, ~X), an analogous relation holds for the K-
envelopes:

µ(t,X, ~XT ) = tµ(1/t,X, ~X).

It allows us (if necessary) to study the behaviour of K-envelopes only for
t→ 0 or only for t→∞. If f ∈ X◦0 +X◦1 then K(t, f, ~X) = K(t, f, ~X◦), and
hence for spaces in which ∆( ~X) is dense, the K-envelope does not change
if we replace ~X by ~X◦. So, for such spaces, we may regard the couple ~X as
regular from the beginning.

As shown in [KPS], p. 12,

X0 6⊂ X1 ⇒ sup
‖f‖X0≤1

‖f‖Σ( ~X) = 1.

In the case when neither of X0,X1 is embedded in the other, this implies
immediately that µ(t,X0, ~X) = 1, µ(t,X1, ~X) = t for all t > 0. By (1) then
µ(t,∆( ~X), ~X) ≤ min(1, t) and µ(t,Σ( ~X), ~X) ≥ max(1, t). We can obtain
even more if we take into account that any K-functional is concave as a
function of t, and thus any K-envelope is quasiconcave, i.e. µ(t)↑, µ(t)/t↓.
This implies that µ(1) min(1, t) ≤ µ(t) ≤ µ(1) max(1, t). Consequently,
µ(t,∆( ~X), ~X) ∼ min(1, t) (∼ means equivalence), while µ(t,Σ( ~X), ~X) =
max(1, t) because µ(1, Σ( ~X), ~X) = 1 for any couple.

If X0 ⊂ X1 then µ(t,X, ~X) ∼ t on the interval (0, 1) for any intermediate
spaceX. IfX1 ⊂ X0 then always µ(t,X, ~X) ∼ 1 on (1,∞). Such behaviour of
K-envelopes allows us not to consider the corresponding intervals in the case
of ordered couples. A similar behaviour of K-envelopes can also be observed
in nonordered couples, if the space X considered is larger or smaller than
one of the spaces X0,X1. Indeed, X ⊃ X0 implies that µ(t,X, ~X) ∼ 1 on
(0, 1) and X ⊂ X0 implies the same on (1,∞). Similarly µ(t,X, ~X) ∼ t on
(0, 1) if X ⊂ X1 and on (1,∞) if X ⊃ X1.

If fn → f in Σ( ~X) then K(t, fn, ~X) → K(t, f, ~X) for any fixed t > 0.
Hence µ(t,Xc, ~X) = µ(t,X, ~X) for any intermediate space X. A problem
arises to compare analogously the K-envelopes µ(t,X, ~X) and µ(t,X◦, ~X).
It turns out that they may be inequivalent even when X is one of the basic
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spaces X0, X1 or Σ( ~X) (at least this can happen on one of the intervals
(0, 1) or (1,∞)). Such a situation occurs for Banach couples with a particular
structure, which we now describe in order to be able to exclude these couples
from further considerations.

Let us say that the space X0 is an improper component of the Banach
couple ~X if X◦0 ⊂ X1 but X0 6⊂ X1. In this case ∆( ~X) = X◦0 6= X0, so
∆( ~X) is a closed subspace of X0. Similarly we define X1 to be an improper
component if X◦1 ⊂ X0 but X1 6⊂ X0. In this case ∆( ~X) = X◦1 and it is
a closed subspace of X1. If both situations occur simultaneously, namely,
∆( ~X) is closed both in X0 and in X1, the couple ~X is called trivial. All
these “pathological” cases were studied in the fundamental paper [AG]. In
particular, it was proved there that any trivial Banach couple has only 4
interpolation spaces: X0,X1,∆( ~X) and Σ( ~X).

Summing up the above, µ(t,X◦i , ~X) is not equivalent to µ(t,Xi, ~X) (for
the same i = 0, 1) if and only if Xi is an improper component of the couple
~X. Clearly in such cases µ(t,Σ◦( ~X), ~X) is not equivalent to µ(t,Σ( ~X), ~X).
The remaining cases can be divided into three categories: (i) X0 ⊂ X1;
(ii) X1 ⊂ X0; (iii) ∆( ~X) is closed neither in X0 nor in X1. For each of
these categories the K-envelopes of X◦0 , X◦1 , Σ◦( ~X) are equivalent to the
K-envelopes of X0, X1, Σ( ~X) respectively.

In order to state the equivalence of µ(t,X, ~X) and µ(t,X◦, ~X) for every
intermediate space X we need the following lemma (which is also important
for many other results of this paper). For simplicity, we do not mention
henceforth the couple ~X in the notation of K-functionals, when it does not
lead to ambiguity.

Lemma 1. Let f ∈ Σ( ~X), t0 > 0 and suppose that for some ε ∈ (0, 1)
there exist a ∈ (0, t0) and b ∈ (t0,∞) such that

(2) K(a, f) =
1− ε

2γ
K(t0, f), K(b, f) =

1− ε
2γ

K(t0, f)
b

t0
,

where γ is the constant of K-divisibility for the Banach couple ~X (see [BK],
p. 325). Then there exists g ∈ ∆c( ~X) such that

K(t, g) ≤ K(t, f) for all t > 0, K(t0, g) ≥ ε

γ
K(t0, f).

Proof. Consider three concave functions:

ϕ1(t) = min(K(a, f),K(t, f)), ϕ2(t) = min(tK(b, f)/b,K(t, f)),

ϕ3(t) = min(tK(a, f)/a,K(t, f),K(b, f)).

We have K(t, f) ≤ ϕ1(t) +ϕ2(t) +ϕ3(t) for all t > 0, thus by K-divisibility,
there exist f1, f2, f3 ∈ Σ( ~X) such that f = f1 + f2 + f3 and K(t, fi) ≤
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γϕi(t), i = 1, 2, 3, for all t > 0. Moreover, K(t, f3) ∼ min(1, t), and thus
f3 ∈ ∆c( ~X). On the other hand, K(t0, f) is a norm on Σ( ~X), hence

K(t0, f3) ≥ K(t0, f)−K(t0, f1)−K(t0, f2)

≥ K(t0, f)− γϕ1(t0)− γϕ2(t0)

= K(t0, f)− γK(a, f)− γt0
K(b, f)

b
.

Owing to conditions (2) we obtain K(t0, f3) ≥ εK(t0, f) and the proof is
completed by setting g = (1/γ)f3.

Remark. In what follows we also use some other properties of the ele-
ment g constructed in this lemma:

(3) K(t, g) ≤ K(b, f) for t ≥ b, K(t, g) ≤ tK(a, f)
a

for t ≤ a.
An element g having all the above mentioned properties will be called an
ε-contraction of f to the point t0.

Now we are able to compare the K-envelopes µ(t,X, ~X) and µ(t,X◦, ~X).

Theorem 1. Suppose an intermediate space X has K-monotone norm.
Then µ(t,X, ~X) ∼ µ(t,X◦, ~X) for any Banach couple ~X which does not have
improper components. The same is true if X0 is an improper component of
~X but limt→0 µ(t,X, ~X) = 0 and/or if X1 is an improper component but
limt→∞ µ(t,X, ~X)/t = 0.

Proof. The definition of K-envelopes implies that for any t0 > 0, there
exists an element f from the unit ball of X such that K(t, f) ≤ µ(t,X, ~X)
and K(t0, f) ≥ 1

2µ(t0,X, ~X). If at the same time

(4) min(1, 1/t)K(t, f)→ 0 as t→ 0 and as t→∞,
then for any ε ∈ (0, 1) we can find a, b satisfying (2). Therefore there exists
a 1

2 -contraction of f to the point t0, which will be denoted by g. Recall
that g ∈ ∆c( ~X) ⊂ (X◦)c. On the other hand K(t, g) ≤ K(t, f) and thus
‖g‖X ≤ ‖f‖X ≤ 1, and we see that g belongs to the unit ball of (X◦)c. As
a result,

µ(t0,X◦, ~X) = µ(t0, (X◦)c, ~X) ≥ K(t0, g) ≥ 1
2γ
K(t0, f) ≥ 1

4γ
µ(t0,X, ~X).

Since the reverse inequality µ(t0,X◦, ~X) ≤ µ(t0,X, ~X) is obvious, this
proves the equivalence of the K-envelopes at all points t0 > 0 where the
corresponding function f satisfies the conditions (4).

Suppose now that for some f ∈ X one of the conditions (4) is not fulfilled,
e.g. limt→0 K(t, f) > 0 (recall that this is possible only when X0 is not an
improper component of ~X). From the norm monotonicity in X, it follows
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that X contains all g ∈ Σ( ~X) for which K(t, g) ∼ const, i.e. X ⊃ X0. In
this case µ(t,X, ~X) ∼ 1 on (0, 1). At the same time X◦ ⊃ X◦0 and X0 is
not improper, thus also µ(t,X◦, ~X) ∼ 1 on (0, 1) and both K-envelopes
are equivalent on this interval. Analogously the inequality limt→∞K(t, f)/t
> 0 implies that X ⊃ X1 and µ(t,X◦, ~X) ∼ µ(t,X, ~X) ∼ t on (1,∞). In
particular, µ(t,Σ◦( ~X), ~X) ∼ µ(t,Σ( ~X), ~X) on the whole (0,∞).

Assume now that X ⊃ X0 but X 6⊃ X1. It remains to compare our
K-envelopes on (1,∞), where µ(t,X, ~X) is not equivalent to t. In the case
limt→∞ µ(t,X, ~X) <∞ we have X = X0 and thus µ(t,X, ~X) ∼ µ(t,X◦, ~X),
since X0 is not an improper component of ~X. If limt→∞ µ(t,X, ~X) = ∞,
then we can find a, b satisfying (2) for any sufficiently large t0 and a suitable
f . Repeating the first part of the proof, we obtain µ(t,X, ~X) ∼ µ(t,X◦, ~X)
just on the required interval (1,∞). The case X ⊃ X1, X 6⊃ X0 can be
investigated analogously.

The following example shows that the condition on the norm in X
to be K-monotone is essential not only for the proof. Take f ∈ Σ( ~X)
such that K(t, f) is not equivalent to min(1, t), i.e. f 6∈ ∆c( ~X). Set X =
∆( ~X)⊕ f . Then µ(t,X◦, ~X) = µ(t,∆( ~X), ~X) ∼ min(1, t). At the same time
µ(t,X, ~X) ∼ K(t, f).

2. Comparison of generalized Marcinkiewicz spaces. The gener-
alized Marcinkiewicz space Mϕ = Mϕ( ~X) can be defined for any function
ϕ : (0,∞)→ (0,∞) as the collection of all f ∈ Σ( ~X) such that

‖f‖Mϕ = sup
0<t<∞

K(t, f)/ϕ(t) <∞.

It turns out that all such spaces can be obtained if we take only quasiconcave
functions ϕ. It is easy to check that always

‖f‖Xc0 = sup
t>0

K(t, f), ‖f‖Xc1 = sup
t>0

K(t, f)/t,

and thus Mϕ0 = Xc
0 and Mϕ1 = Xc

1 for ϕ0(t) = 1, ϕ1(t) = t. Just as
easily it can be shown that Mmin(1,t) = ∆c( ~X) and Mmax(1,t) = Σ( ~X). The
generalized Marcinkiewicz spaces have an important reiteration property:

ϕ = ϕ0θ(ϕ1/ϕ0) ⇒ Mϕ = Mθ(Mϕ0 ,Mϕ1)

(see e.g. [O], p. 428), which gives, in particular,

Mϕ0 ∩Mϕ1 = Mmin(ϕ0,ϕ1), Mϕ0 +Mϕ1 = Mmax(ϕ0,ϕ1).

The spaces Mϕ have K-monotone norms, hence they are interpolation in
their Banach couples. If the couple is trivial (i.e. ∆( ~X) is closed in Σ( ~X)), it
has only 4 interpolation spaces:X0,X1,∆( ~X), Σ( ~X), thus for any parameter
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function ϕ the corresponding space Mϕ should coincide with one of these
spaces. And in fact, for any trivial couple ~X, we have the relation

Mϕ( ~X) = ∆( ~X) + lim
t→0

ϕ(t) ·X0 + lim
t→∞

ϕ(t)
t
·X1,

which easily solves all problems of comparison of the spaces Mϕ for trivial
Banach couples. This enables us to consider only nontrivial couples in what
follows.

As an important example, we find the form of Mϕ-spaces for the Ba-
nach couple of sequence spaces X0 = la∞, X1 = lb∞ (as usual, the norm
of a sequence f = (f(1), f(2), . . .) in the weight space la∞ is defined as
‖fa‖l∞ = supn |f(n)|a(n)). It can be easily shown that K(t, f, la∞, l

b
∞) ∼

‖f min(a, tb)‖l∞ , hence

‖f‖Mϕ ∼ sup
t

∥∥∥∥f
min(a, tb)
ϕ(t)

∥∥∥∥
l∞

= sup
n
|f(n)| sup

t
min

(
a(n)
ϕ(t)

,
tb(n)
ϕ(t)

)

= sup
n
|f(n)| Φ(a(n), b(n)), where Φ(a, b) =

a

ϕ(a/b)
.

Thus we obtain

(5) Mϕ(la∞, l
b
∞) = lΦ(a,b)

∞ .

The correspondence between Mϕ-spaces and their parameters ϕ is, in
general, not one-to-one; the same space can be generated by different and
even inequivalent functions ϕ. As shown in [P4], for couples of weight se-
quence spaces, two spaces Mϕ and Mψ are different for any pair of inequiva-
lent functions ϕ, ψ if and only if the couple is K-abundant. Ibidem there are
also some criteria for such couples to be non-K-abundant; now we shall use
them in order to illustrate the possibility of an equality Mϕ( ~X) = Mψ( ~X)
for inequivalent parameter functions ϕ(t) and ψ(t).

Consider again the couple ~X = (la∞, l
b
∞) with all b(n) = 1 and a(n) =

an such that an↑ and limn→∞ an+1/an = ∞. Let ϕ(t) =
√
t and ψ(t) =

supn
√
an min(1, t/an). From (5) we obtain

Mϕ = lΦ(a,1)
∞ = l

√
a
∞ , Mψ = lΨ(a,1)

∞ ,

where

Ψ(t, 1) =
t

ψ(t)
=
(

sup
n

√
an min

(
1
t
,

1
an

))−1

.

Taking t = ak, we obtain

Ψ(ak, 1) = inf
n

1√
an

max(ak, an) =
√
ak,

i.e. Mψ = l
√
a
∞ just like Mϕ.



236 E. Pustylnik

It remains to show that ϕ and ψ are not equivalent. Take tk =
√
akak+1;

then tk →∞ as k →∞. Furthermore

ψ(tk)
ϕ(tk)

=
1

4
√
akak+1

sup
n

√
an min

(
1,
√
akak+1

an

)

= max
(

sup
n≤k

√
an

4
√
akak+1

, sup
n≥k+1

4
√
akak+1√
an

)
= 4

√
ak
ak+1

→ 0

as k →∞, which proves inequivalence of ϕ and ψ.
If ‖f‖Mϕ ≤ 1 then K(t, f) ≤ ϕ(t) for all t > 0, hence the correspond-

ing K-envelope ω(t) = µ(t,Mϕ, ~X) ≤ ϕ(t). Moreover, Mϕ = Mω and ω
is the minimal possible parameter function defining the same generalized
Marcinkiewicz space (up to equivalence of norms). For this reason the K-
envelope will be called the optimal parameter of this space. Using optimal
parameters, we immediately obtain a one-to-one correspondence between
parameters and spaces, namely, Mω1 = Mω2 if and only if ω1 ∼ ω2. There-
fore in order to find to what extent two parameter functions of the same
generalized Marcinkewicz space could be different, it is sufficient to study
relations between the usual and optimal parameters.

Lemma 2. Let ω be the K-envelope of a space Mϕ( ~X) with parameter
function ϕ not equivalent to min(1, t) on either of the intervals (0, 1), (1,∞).
If X◦1 6⊂ X◦0 and limt→∞ ϕ(t)/t = 0 then there exists a sequence tn → ∞
such that

ω(tn) = ϕ(tn) for all n = 1, 2, . . .

If X◦0 6⊂ X◦1 and limt→0 ϕ(t) = 0 then there exists a sequence tn → 0 with
the same property.

Proof. Notice, first of all, that Mϕ( ~X) = Mϕ∗( ~XT ) for ϕ∗(t) = tϕ(1/t),
hence it suffices to prove the first assertion. Without loss of generality we
may assume that ϕ(1) = 1 and consequently ϕ(t) ≥ t for t ≤ 1. Defining
ψ(t) = ϕ(t) for t ≥ 1, ψ(t) = t for t ≤ 1, we obtain Mψ( ~X) ⊂ Mϕ( ~X) and
µ(t,Mψ, ~X) ≤ µ(t,Mϕ, ~X). If we could find a sequence tn ≥ 1 with tn →∞
such that µ(tn,Mψ, ~X) = ψ(tn), we automatically obtain µ(tn,Mϕ, ~X) =
ϕ(tn) because the inequality µ(tn,Mϕ, ~X) > ϕ(tn) is impossible. So, we
may consider from the beginning only functions ϕ(t) which are equal to t
for t ≤ 1 and thus ϕ(t) ≤ t for all t > 0. We also have limt→∞ ϕ(t) = ∞,
since otherwise ϕ(t) ∼ min(1, t).

We now compare the spaces Mϕ and X1. The condition ϕ(t) ≤ t implies
that Mϕ ⊂ X1, and X◦1 6⊂ X◦0 implies that µ(t,X1, ~X) = t. At the same
time the functions ϕ(t) and t are inequivalent and ω(t) ≤ ϕ(t), hence the
functions ω(t) and t are also inequivalent. But the last two functions are
the optimal parameters of their spaces, thus these spaces cannot be equal.
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All these arguments can be applied to the couple (X◦0 ,X
◦
1 ), which implies

that also Mϕ( ~X◦) 6= X◦1 . In consequence, the norms of Mϕ and X1 are not
equivalent even on elements from ∆( ~X).

For every a ≥ 1, define now the space Ya ⊃Mϕ with the norm

‖f‖Ya = sup
t≤a

K(t, f)/ϕ(t).

The inequality ϕ(t) ≤ t implies that

‖f‖Ya ≥ sup
t≤a

K(t, f)/t = lim
t→0

K(t, f)/t = ‖f‖X1 .

On the other hand, t/ϕ(t) ≤ a/ϕ(a) for t ≤ a, thus

‖f‖Ya ≤
a

ϕ(a)
‖f‖X1 ,

which shows that Ya = X1. Therefore the norms ‖f‖Ya and ‖f‖Mϕ are not
equivalent even on ∆( ~X), i.e. there exists fa ∈ ∆( ~X) having norm 1 in Mϕ

and an arbitrarily small norm in Ya. This means that

1 = ‖fa‖Mϕ = sup
t
K(t, fa)/ϕ(t) = sup

t≥a
K(t, fa)/ϕ(t).

At the same time fa ∈ ∆( ~X) implies that K(t, fa) ∼ min(1, t), therefore

lim
t→∞

K(t, fa)/ϕ(t) = 0 ⇒ sup
t≥a

K(t, fa)/ϕ(t) = sup
a≤t≤b

K(t, fa)/ϕ(t)

for some b > a. From the continuity of all functions considered, we immedi-
ately see that the supremum is attained at some point ta ∈ [a, b].

Now we start with a = 1 and denote the corresponding ta by t1. The
next value of a should be taken greater than the b obtained for the previous
a. We denote the new value of ta by t2. Continuing, we obtain a sequence
fn ∈ ∆( ~X) with ‖fn‖Mϕ = 1 and a sequence tn →∞ for which K(tn, fn) =
ϕ(tn). Thus µ(tn,Mϕ, ~X) ≥ ϕ(tn), i.e. ω(tn) = ϕ(tn) for all n = 1, 2, . . .

Corollary. Let ϕ, ψ be arbitrary quasiconcave functions. If X◦1 6⊂ X◦0
and limt→∞ ϕ(t)/ψ(t) = 0, then Mϕ( ~X) 6= Mψ( ~X). The same is true if
X◦0 6⊂ X◦1 and limt→0 ϕ(t)/ψ(t) = 0.

Proof. Once again we consider only the first assertion and assume, on the
contrary, that Mϕ = Mψ. For their K-envelopes, we now obtain µ(t,Mϕ, ~X)
∼ µ(t,Mψ, ~X). Obviously ψ(t) is not equivalent to min(1, t). Therefore if
limt→∞ ψ(t)/t = 0 then, as shown in Lemma 2, there exists a sequence
tn →∞ such that µ(tn,Mψ, ~X) = ψ(tn) and thus µ(tn,Mϕ, ~X)/ψ(tn) 6→ 0.
But ϕ(tn) ≥ µ(tn,Mϕ, ~X), hence also ϕ(tn)/ψ(tn) 6→ 0, and we obtain a
contradiction. If limt→∞ ψ(t)/t > 0 then ψ(t) ∼ t on (1,∞), i.e. Mψ ⊃
X1. Being equal to Mψ, the space Mϕ should also have this property, so
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µ(t,Mϕ, ~X) ∼ t on the same interval (1,∞). Once again µ(t,Mϕ, ~X)/ψ(t)
6→ 0 as t→∞, yielding the same contradiction.

Now we are able to give a full answer to the problem of comparison of
generalized Marcinkiewicz spaces with inequivalent parameters.

Theorem 2. Let ϕ, ψ be quasiconcave functions. If there exists a se-
quence tn →∞ (or tn → 0) as n→∞ such that ϕ(tn) ∼ ψ(tn), then there
exists a Banach couple ~X for which Mϕ( ~X) = Mψ( ~X). If such a sequence
exists neither on the interval (0, 1) for the case X◦0 6⊂ X◦1 nor on the inter-
val (1,∞) for the case X◦1 6⊂ X◦0 , then Mϕ( ~X) 6= Mψ( ~X) for any nontrivial
Banach couple.

Proof. As before, we consider only the case tn → ∞. If ϕ(tn) ∼ ψ(tn),
then we set a = (t1, t2, . . .) and consider the couple (la∞, l∞). By (5),
Mϕ(la∞, l∞) = lc∞, where c = (c1, c2, . . .) with cn = tn/ϕ(tn). Similarly
Mψ(la∞, l∞) = ld∞, where d = (d1, d2, . . .) with dn = tn/ψ(tn). By assump-
tion, c ∼ d, thus lc∞ = ld∞, which we had to show.

If X◦1 6⊂ X◦0 and the required sequence tn → ∞ does not exist, then
either limt→∞ ϕ(t)/ψ(t) or limt→∞ ψ(t)/ϕ(t) exists and equals 0. Then the
inequality Mϕ 6= Mψ immediately follows from the last Corollary. The case
X◦0 6⊂ X◦1 can be considered analogously.

3. Characterization of generalized Marcinkiewicz spaces. Every
Banach space X can be taken as a component of some Banach couple, either
as X0 or as X1. So it can be regarded as a generalized Marcinkiewicz space
Mϕ with the parameter ϕ(t) = 1 or ϕ(t) = t. Moreover, taking the second
space of this couple larger or smaller than X, we may attribute to X either of
the functions min(1, t), max(1, t). A much more difficult problem is to find
a Banach couple ~X for which X = Mϕ for some parameter ϕ different from
the four extreme functions indicated above. When does such a couple exist,
and which functions ϕ can appear? All these questions will be answered in
this section.

Theorem 3. Let ϕ be a quasiconcave function which is not equivalent
to any of the functions 1, t, min(1, t),max(1, t). A Banach space X is equal
to the space Mϕ( ~X) for some nontrivial Banach couple ~X if and only if it
contains a subspace isomorphic to l∞.

Proof. Sufficiency. As is known (see e.g. [LT], p. 105), any subspace
isomorphic to l∞ is complemented, thus we have a representation X =
Y ⊕Z, where Y is isomorphic to l∞. This means that there exists a bounded
invertible linear operator T such that T l∞ = Y .

Since any equality of Banach spaces is meant as equivalence of their
norms, we may assume the function ϕ to be concave and strictly increasing



Generalized Marcinkiewicz spaces 239

on (0,∞), i.e. having a single-valued inverse function ϕ−1(t) not equivalent
to t, at least on one of the intervals (0, 1), (1,∞). As usual, let it be (1,∞).
In this case we can find two infinite sequences a = {an} and b = {bn},
connected by the relation bn = an/ϕ

−1(an), n = 1, 2, . . . , and such that
an → ∞, bn → 0 as n → ∞. As a result, the Banach couple (la∞, l

b
∞) is

nontrivial and ordered. The formula (5) gives Mϕ(la∞, l
b
∞) = l∞.

Define now Y0 = T la∞; this is possible, since the operator T can be ap-
plied to la∞ ⊂ l∞. As shown in [S], p. 166, any isomorphism can be extended
to larger spaces, so we may also define Y1 = T lb∞. Now we set X0 = Y0⊕Z,
X1 = Y1⊕Z. Recall that constructing the space Mϕ( ~X) with a given param-
eter ϕ may be considered as an interpolation functor (see e.g. [DKO], p. 48).
For any interpolation functor F , we have F(TX0, TX1) = TF(X0,X1) and
F(Y0 ⊕ Z, Y1 ⊕ Z) = F(Y0, Y1) ⊕ Z. For our functor Mϕ( ~X), this implies
that

Mϕ(X0,X1) = Mϕ(Y0, Y1)⊕ Z = TMϕ(la∞, l
b
∞)⊕ Z = T l∞ ⊕ Z = X,

which proves the sufficiency part of our theorem.
Necessity. We take an arbitrary generalized Marcinkiewicz space Mϕ( ~X)

in a nontrivial Banach couple ~X with a parameter ϕ not equivalent to the
functions 1, t,min(1, t),max(1, t) and construct a subspace Y ⊂Mϕ isomor-
phic to l∞. Nontriviality of ~X implies that the K-envelope µ(t,Mϕ, ~X) is
also not equivalent to the indicated functions at least on one of the inter-
vals (0, 1), (1,∞). For definiteness, let it be (1,∞) (the second case can be
derived from this by passing to the transposed couple ~XT ). Without loss
of generality, we may assume that ϕ is optimal, i.e. ϕ = µ(t,Mϕ, ~X). Then
ϕ(t) → ∞ and ϕ(t)/t → 0 as t → ∞, and for any tn ≥ 1 there exists
fn ∈Mϕ such that K(t, fn) ≤ ϕ(t) for all t > 0 but K(tn, fn) ≥ 1

2ϕ(tn).
If tn is sufficiently large then, by our agreement about the properties

of ϕ, there exists a 1
2 -contraction of fn to the point tn; denote it by gn. By

definition, the gn is associated with some interval [an, bn], defined by the
relations (2), which in our case take the form

K(an, gn) =
1

4γ
K(tn, fn), K(bn, gn) =

bn
4γtn

K(tn, fn).

Recall that also K(t, gn) ≤ K(t, fn) for all t > 0, K(tn, gn) ≥ 1
2γK(tn, fn),

and
K(t, gn) ≤ K(bn, fn) for t ≥ bn,
K(t, gn) ≤ tK(an, fn)/an for t ≤ an.

Now choose tn, n = 1, 2, . . . , so far apart that for all n the following
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inequalities are satisfied:

(6) ϕ(an+1) ≥ Cϕ(bn),
ϕ(an+1)
an+1

≤ ϕ(bn)
Cbn

,

where one may take an arbitrary constant C > 8γ+1. The possibility of such
a choice is once again ensured by the properties of ϕ(t) for t → ∞. Taking
some fixed n, define hn =

∑
k 6=n gk. We show that this series converges in

Σ( ~X), by estimating K(t, hn) for t ∈ [an, an+1]. Considering separately the
terms with k < n and k > n, we obtain

∑

k<n

K(t, gk) ≤
∑

k<n

K(bk, fk) ≤
∑

k<n

ϕ(bk)

≤ ϕ(t)
∞∑

k=1

1
Ck

=
1

C − 1
ϕ(t),

∑

k>n

K(t, gk) ≤ t
∑

k>n

K(ak, fk)
ak

≤ t
∑

k>n

ϕ(ak)
ak

≤ ϕ(t)
∞∑

k=1

1
Ck

=
1

C − 1
ϕ(t),

hence hn ∈ Σ( ~X) and

K(t, hn) ≤ 2
C − 1

ϕ(t) for all t ∈ [an, an+1].

Define now the space Y as the set of all f ∈ Σ( ~X) which can be repre-
sented in the form

f =
∞∑

n=1

cngn, c = {cn} ∈ l∞.

It is easy to see that such a series converges for any bounded sequence of
coefficients, considering, for example,

K(t1, f) ≤ |c1|K(t1, g1) +
∑

k 6=1

|ck|K(t1, gk)

≤ ‖c‖l∞
(
ϕ(t1) +

1
C − 1

ϕ(t1)
)
<∞.

The formula Tc = f defines a mapping of l∞ onto Y ; we show that this
mapping is one-to-one, i.e. Tc = 0 if and only if c = 0.

Indeed, let c 6= 0 and let n be such that

|cn| ≥ (1− ε)‖c‖l∞ for some ε <
C − 8γ − 1
C − 1

.
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Then
K(tn, f) ≥ |cn|K(tn, gn)−

∑

k 6=n
|ck|K(tn, gk)

≥ ‖c‖l∞ϕ(tn)
(

1− ε
4γ
− 2
C − 1

)
> 0,

hence f 6= 0.
It remains to show that the space Y , endowed with the norm ‖f‖Y =

‖c‖l∞ , is a subspace of Mϕ. Actually, the comparison of norms in one direc-
tion has already been made because

‖f‖Mϕ ≥
K(tn, f)
ϕ(tn)

≥ ‖c‖l∞
(

1− ε
4γ
− 2
C − 1

)
.

For an estimate in the other direction, consider an arbitrary t > 0. If t ∈
(0, a2) then the calculations are similar to the estimation of K(t1, f):

K(t, f) ≤ |c1|K(t, g1) + ‖c‖l∞K(t, h1) ≤ C

C − 1
ϕ(t)‖c‖l∞ .

If otherwise t ∈ [an, an+1] for some n ≥ 2, then

K(t, f) ≤ ‖c‖l∞(K(t, gn) +K(t, hn)) ≤ C + 1
C − 1

ϕ(t)‖c‖l∞ .

Thus we have proved that the norms of Y and of Mϕ are equivalent on all
functions from Y .

The analogy between generalized Marcinkiewicz spaces and weight spaces
la∞ can also be seen if one considers other properties of these spaces, for ex-
ample, nondensity of mutual embeddings.

Theorem 4. Let Xi 6⊂Mϕ( ~X), i = 0, 1. Then no embedding Mψ( ~X)  
Mϕ( ~X) is dense.

Proof. Assume, for simplicity, that both parameters ϕ, ψ are optimal
for their spaces. Then Mϕ 6= Mψ implies that the functions ϕ and ψ are not
equivalent at least on one of the intervals (0, 1), (1,∞). Both cases can be
studied analogously and, moreover, can be derived from each other. So, we
assume that ϕ(t) 6∼ ψ(t) on (1,∞). This means that limψ(tn)/ϕ(tn) = 0
for some sequence tn → ∞. The assumptions of the theorem ensure that
ϕ(t) is not equivalent to 1 and to t, thus omitting some tn (if necessary),
we can always get a sequence {tn} satisfying inequalities (6). Then we take
the same elements gn as before and define f =

∑∞
n=1 gn which corresponds

to the coefficients cn = 1 and thus belongs to Mϕ. Moreover, the previous
estimates show that

K(tn, f) ≥ λϕ(tn), where λ =
1

4γ
− 2
C − 1

> 0,
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and thus for any g ∈Mψ,

‖f − g‖Mϕ = sup
t

K(t, f − g)
ϕ(t)

≥ sup
t

(
K(t, f)
ϕ(t)

− K(t, g)
ϕ(t)

)

≥ lim sup
n→∞

(
K(tn, f)
ϕ(tn)

− K(tn, g)
ϕ(tn)

)
.

But K(tn, g) ≤ ‖g‖Mψ
ψ(tn), hence limn→∞K(tn, g)/ϕ(tn) = 0 for any g ∈

Mψ. At the same time

lim sup
n→∞

K(tn, f)
ϕ(tn)

≥ λ ⇒ ‖f − g‖Mϕ ≥ λ

for all possible g, which proves nondensity of Mψ in Mϕ.

The requirements on the space Mϕ in Theorem 4 are essential, since
without them an embedding Mψ ⊂ Mϕ may happen to be dense. For ex-
ample, taking ϕ(t) = max(ψ(t), t) for some ψ with ψ(t)/t→ 0 as t→∞, we
obtain an embeddingMψ  Mϕ = Mψ+X1, which is dense for every Banach
couple ~X where ∆( ~X) is dense in X1. Some partial extensions of Theorem 4
can be obtained under additional conditions, for example, when Mϕ ⊃ X1

but ϕ(t) → 0 as t → 0 and ψ(t) 6∼ ϕ(t) on (0, 1), or when Mϕ ⊃ X0 but
ϕ(t)/t→ 0 as t→∞ and ψ(t) 6∼ ϕ(t) on (1,∞).

If ∆( ~X) is dense neither in X0 nor in X1, the assertion of Theorem 4 is
true without any restrictions. Indeed, Mψ and Mϕ are interpolation spaces
for the couple ~X, and we may use the general theorem of Aronszajn and
Gagliardo ([AG], see also [BK], p. 131) which says that any interpolation
space X satisfies one of the following conditions: (i) X ⊂ X◦0 +X◦1 ; (ii) X0 ⊂
X ⊂ X0 + X◦1 ; (iii) X1 ⊂ X ⊂ X◦0 + X1; (iv) X = Σ( ~X). No space from
one group can be dense in a space from another group, so we should only
consider those spaces Mψ and Mϕ which both belong to one of the groups.
In case (i) we may apply Theorem 4, case (iv) is impossible, and cases (ii),
(iii) are just those which were mentioned in the preceding paragraph as
extensions of Theorem 4.
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