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Intersection properties for cones of monotone
and convex functions with respect to the couple (Lp,BMO)

by

Inna Kozlov (Haifa)

Abstract. The paper is devoted to some aspects of the real interpolation method in
the case of triples (X0, X1, Q) where X := (X0,X1) is a Banach couple and Q is a convex
cone. The first fundamental result of the theory, the interpolation theorem, holds in this
situation (for linear operators preserving the cone structure). The second one, the reiter-
ation theorem, holds only under some conditions on the triple. One of these conditions,
the so-called intersection property, is studied for cones with respect to (Lp,BMO).

1. Introduction. Let Y be a linear space over the field of reals. Suppose
that X ⊂ Y is a linear subspace and that Q ⊂ Y is a cone. A norm on X∩Q
is a map ‖ · ‖ of X ∩Q to [0,∞) having the properties usually required for
a norm on a linear space, except that the formula ‖λx‖ = |λ| · ‖x‖ is only
required to hold for λ ≥ 0.

Definition 1.1. A cone Q has the intersection property (IP) with re-
spect to the Banach couple X = (X0,X1) if for all t > 0,

(1.1) (X0 + tX1) ∩Q = (X0 ∩Q) + t(X1 ∩Q)

where the norms are equivalent up to constants independent of t.

Here the norm of (X0 + tX1) ∩ Q is taken to be simply the restriction
to Q of the natural norm (K-functional) on X0 + tX1, and the norm on
(X0 ∩Q) + t(X1 ∩Q) is

K(f, t;X ∩Q) = inf{‖f0‖X0 + t‖f1‖X1 | f = f0 + f1, fi ∈ Xi ∩Q},
i.e., it is the K-functional of the couple of cones X ∩Q := (X0 ∩Q,X1∩Q).

Hence the intersection property (1.1) is equivalent to the double inequal-
ity

(1.2) K(f, t;X ∩Q) ≈ K(f, t;X) (f ∈ Q, t > 0).

Here F ≈G means that C1F ≤G≤C2F for some constants 0<C1, C2<∞
independent of the arguments of F , G. In particular, (1.2) holds uniformly
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with respect to t > 0 and f ∈ Q. We also use the notation F ≺ G (or G � F )
if F ≤ C1G for some constant C1 > 0 independent of the arguments of F, G.

If Q has the intersection property then it also satisfies the formula

(1.3) (X0 ∩Q,X1 ∩Q)θ,q = Q ∩ (X0,X1)θ,q (0 < θ < 1, 1 ≤ q ≤ ∞)

with equivalence of norms.
Let us recall that the norm of the cone on the left is

‖f‖(X0∩Q,X1∩Q)θ,q :=
(∞�

0

(
K(t, f ;X ∩Q)

tθ

)q
dt

t

)1/q

.

Definition 1.2. The cone Q has the weak intersection property (WIP)
with respect to the Banach couple (or seminormed couple) X = (X0,X1) if
(1.3) holds with equivalence of norms.

Cones satisfying (1.3) were first introduced and studied by Y. Sagher
([12], [13]). He called them “Marcinkiewicz cones”. He also gave some inter-
esting applications of his results to harmonic analysis. Other applications of
this property, connected with the sharpness of Sobolev embedding theorems
and approximation with constraints, are studied in [10].

Let us now define the main cones which are studied in this paper.

Definition 1.3. (a) For k ∈ N the cone Mk[0, 1) of k-monotone func-
tions consists of all (k−1)-times differentiable functions f : [0, 1)→ R which
satisfy f (i) ≥ 0 for i = 0, 1, . . . , k−1 and for which f (k−1) is non-decreasing.

(b) The cone M+ consists of all non-negative non-increasing continuous
functions on R+ := (0,∞).

In particular, M1[0, 1) is the cone of non-negative non-decreasing func-
tions and M2[0, 1) is the cone of non-negative non-decreasing everywhere
differentiable convex functions. We may also consistently define M0[0, 1) to
be the cone of non-negative functions.

We recall that the space BMO(A), A ⊂ R, of John–Nirenberg consists
of all functions f ∈ Lloc

1 (A) for which

|f |BMO := sup
I

{
1
|I|

�

I

|f − fI | dx
}

is finite, where the supremum is taken over all intervals I ⊂ A, and fI :=
|I|−1 �

I
f dx.

Let BMO(A), A := [0, 1), denote the normed BMO-space, defined by
the norm

‖f‖BMO(A) := |f |BMO +
1�

0

|f | dx.
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In Section 3 we study the IP for the cone of k-monotone functions
Mk, k = 1, 2, with respect to couples of Lp-spaces and BMO. For instance,
we prove the following theorems.

Theorem. (i) The cone M1[0, 1) has the WIP with respect to (Lp[0, 1),
BMO[0, 1)), 1 ≤ p <∞.

(ii) M1[0, 1) does not have the IP with respect to (Lp[0, 1),BMO[0, 1))
for 1 ≤ p <∞.

(iii) The cone M2[0, 1) has the IP with respect to (Lp[0, 1),BMO[0, 1)),
1 ≤ p <∞.

There is a striking difference between the cases of monotone functions
on a bounded and unbounded interval:

Theorem. The cone M+ of non-negative non-increasing continuous
functions on R+ has the IP with respect to (Lp(R+),BMO(R+)), 1 ≤ p
<∞.

We consider cones of functions for which all derivatives up to a fixed
order are non-negative. In certain applications it is also important to con-
sider cones of functions which are differentiable up to some order, and for
which derivatives of different orders have fixed prescribed signs. One of the
simplest examples is the cone C of concave non-decreasing non-negative
functions on R+. The intersection property for this cone was first studied
by I. Asekritova [1]. She proved that C has the IP with respect to a couple
of weighted L∞ spaces where the weights are quasi-concave on R+.

Recently J. Cerdà and J. Mart́ın [6] have obtained a similar result for
the cone of non-negative non-increasing functions on R+ with respect to
(Lp, Lq) and also with respect to couples of Lorentz spaces.

2. Reiteration theorems for couples of cones. One of the basic
results in the real method of interpolation is the following formula of Holm-
stedt for couples of Banach spaces X := (X0,X1) (see, for instance, [3]):

Theorem 2.1. Let Y := (Xθ0,q0 ,Xθ1,q1) and K(s) := K(f, s;X) for
f ∈∑(X) := X0 +X1. Then

K(f, tθ1−θ0 ;Y ) ≈
( t�

0

[s−θjK(s)]q0
ds

s

)1/q0

(2.4)

+ tθ1−θ0
(∞�

t

[s−θjK(s)]q1
ds

s

)1/q1

.

In particular , the reiteration formula

(2.5) (Xθ0,q0 ,Xθ1,q1)θ,q = Xθ′,q
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holds with equivalent norms. Here q0, q1, q ∈ [1,∞], θ0, θ1, θ ∈ (0, 1), θ0 < θ1

and θ′ = (1− θ)θ0 + θθ1.

Unfortunately, we cannot apply Holmstedt’s proof [8] directly to the
case of a couple of cones XQ := (X0 ∩Q,X1 ∩Q) because we have to avoid
taking differences of two functions from a cone. Nevertheless, we can use the
following version of the reiteration theorem in our setting.

Theorem 2.2. Suppose that for fixed θj ∈ (0, 1) and qj ∈ [1,∞] we have
an isomorphism

(2.6) (X0 ∩Q,X1 ∩Q)θi,qi = (X0,X1)θi,qi ∩Q
for i = 0, 1. For all f ∈∑(XQ) := X0 ∩Q+X1 ∩Q and j = 0, 1 let

PQj (t) =
( t�

0

[s−θjK(f, s;X0 ∩Q,X1 ∩Q)]qj
ds

s

)1/qj

,

RQj (t) =
(∞�

t

[s−θjK(f, s;X0 ∩Q,X1 ∩Q)]qj
ds

s

)1/qj

.

Let , in addition,

KQ(f, s) := K(f, s; (XQ)θ0,q0 , (X
Q)θ1,q1).

Then

(2.7) KQ(f, tλ) ≈ PQ0 (t) + tλRQ1 (t).

Here, as above, θ0 < θ1 and λ := θ1 − θ0.

Proof. We adapt Holmstedt’s proof to our case of a couple of cones. The
inequality

PQ0 (t) + tλRQ1 (t) ≤ CKQ(f, tλ)

is proved as in [8], pp. 180–182.
To obtain the converse inequality, for f ∈ ∑(XQ) and t > 0 we choose

a decomposition f = gt + ht ∈ X0 ∩Q+X1 ∩Q, gt ∈ X0 ∩Q, ht ∈ X1 ∩Q,
such that

(2.8) ‖gt‖X0 + t‖ht‖X1 ≤ 2K(f, t;X0 ∩Q,X1 ∩Q).

With this choice we have

KQ(f, tλ) ≤ ‖gt‖(XQ)θ0,q0
+ tλ‖ht‖(XQ)θ1,q1

(2.9)

=
(∞�

0

[s−θ0K(gt, s;X0 ∩Q,X1 ∩Q)]q0
ds

s

)1/q0

+ tλ
(∞�

0

[s−θ1K(ht, s;X0 ∩Q,X1 ∩Q)]q1
ds

s

)1/q1

.
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To estimate the right hand side of (2.9) we have to apply (2.6):

KQ(f, tλ) ≤ C
{(∞�

0

[s−θ0K(gt, s;X0,X1)]q0
ds

s

)1/q0

(2.10)

+ tλ
(∞�

0

[s−θ1K(ht, s;X0,X1)]q1
ds

s

)1/q1}

≤ C
{( t�

0

[s−θ0K(gt, s;X0,X1)]q0
ds

s

)1/q0

+
(∞�

t

[s−θ0K(gt, s;X0,X1)]q0
ds

s

)1/q0

+ tλ
( t�

0

[s−θ1K(ht, s;X0,X1)]q1
ds

s

)1/q1

+ tλ
(∞�

t

[s−θ1K(ht, s;X0,X1)]q1
ds

s

)1/q1}
.

For the first term we obtain, by the triangle inequality,

(2.11)
( t�

0

[s−θ0K(gt, s;X0,X1)]q0
ds

s

)1/q0

≤
( t�

0

[s−θ0K(f, s;X0,X1)]q0
ds

s

)1/q0

+
( t�

0

[s−θ0K(ht, s;X0,X1)]q0
ds

s

)1/q0

.

Since for every cone Q,

K(f, s;X0,X1) ≤ K(f, s;X0 ∩Q,X1 ∩Q),

it follows that
( t�

0

[s−θ0K(f, s;X0,X1)]q0
ds

s

)1/q0

≤ PQ0 (t).

According to the choice of ht (see 2.8) the last integral in (2.11) is
bounded by

(2.12)
( t�

0

[s−θ0s‖ht‖X1 ]q0
ds

s

)1/q0

= C1(‖ht‖X1t)t
−θ0
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≤ 2C1K(f, t;X0 ∩Q,X1 ∩Q)t−θ0

≤ C2
K(f, t;X0 ∩Q,X1 ∩Q)

t

t�

t/2

s−θ0 ds.

Since the function t 7→ K(f, t;X0 ∩Q,X1 ∩Q) is concave, we have

K(f, t;X0 ∩Q,X1 ∩Q)
t

≤ K(f, s;X0 ∩Q,X1 ∩Q)
s

if s ≤ t.

Therefore the right hand side of (2.12) does not exceed

(2.13) C2

t�

t/2

[s−θ0K(f, s;X0 ∩Q,X1 ∩Q)]q0
ds

s

≤ C2

( t�

t/2

[s−θ0K(f, s;X0 ∩Q,X1 ∩Q)]q0
ds

s

)1/q0

≤ C3

( t�

0

[s−θ0K(f, s;X0 ∩Q,X1 ∩Q)]q0
ds

s

)1/q0

= C3P
Q
0 (t).

(The first inequality in (2.13) follows from Hölder’s inequality.)
The second term of (2.10) is estimated by similar arguments:

(2.14)
(∞�

t

[s−θ0K(gt, s;X0,X1)]q0
ds

s

)1/q0

≤
(∞�

t

[s−θ0‖gt‖X0 ]q0
ds

s

)1/q0

≤ 2
(∞�

t

[s−θ0K(f, t;X0 ∩Q,X1 ∩Q)]q0
ds

s

)1/q0

≤ CK(f, t;X0 ∩Q,X1 ∩Q)t−θ0

≤ C
( t�

0

[s−θ0K(f, s;X0 ∩Q,X1 ∩Q)]q0
ds

s

)1/q0

= CPQ0 (t).

The remaining two terms of (2.10) are treated analogously. Summing the
four estimates we obtain the required inequality

KQ(f, tλ) ≤ C(PQ0 (t) + tλRQ1 (t)),

completing the proof of the theorem.

The following result is easily proved by an adaptation of the previous
proof.

Theorem 2.3. Suppose that for fixed θ ∈ (0, 1) and q ∈ [1,∞] we have
an isomorphism

(X0 ∩Q,X1 ∩Q)θ,q = (X0,X1)θ,q ∩Q.
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Then

K(f, tθ;X0, (XQ)θ,q) ≈ tθ
(∞�

t

[s−θK(f, s;X0 ∩Q,X1 ∩Q)]q
ds

s

)1/q

and

K(f, t1−θ; (XQ)θ,q,X1) ≈
( t�

0

[s−θK(f, s;X0 ∩Q,X1 ∩Q)]q
ds

s

)1/q

.

Corollary 2.4. If the cone Q has the WIP with respect to X :=
(X0,X1), then

(2.15) ((XQ)θ0,q0 , (X
Q)θ1,q1)θ,q = XQ

θ′,q

with equivalent norms. Here q0, q1, q ∈ [1,∞], θ0, θ1, θ ∈ (0, 1), θ0 < θ1 and
θ′ := (1− θ)θ0 + θθ1.

This result is proved in exactly the same way as Theorem 3.1 of [8].
It is worth noting that since the (strong) IP implies the WIP, the same

reiteration theorems also hold if the cone Q has the IP with respect to
X := (X0,X1).

Almost identical arguments to those used above lead to the following
variants of the preceding reiteration theorems.

Theorem 2.5. Suppose that for fixed θj ∈ (0, 1) and qj ∈ [1,∞] we have
an isomorphism

Q ∩ (X0,X1 ∩Q)θi,qi = (X0,X1)θi,qi ∩Q
for i = 0, 1. Then for every f ∈ [X0 + (X1 ∩Q)] ∩Q,

(2.16) K(f, tλ; (X0,X1 ∩Q)θ0,q0 , (X0,X1 ∩Q)θ1,q1)

≈
( t�

0

[s−θ0K(f, s;X0,X1 ∩Q)]q0
ds

s

)1/q0

+ tλ
(∞�

t

[s−θ1K(f, s;X0,X1 ∩Q)]q1
ds

s

)1/q1

.

Here λ := θ1 − θ0 and θ0 < θ1.

Theorem 2.6. Suppose that for fixed θ ∈ (0, 1) and q ∈ [1,∞] we have
an isomorphism

Q ∩ (X0,X1 ∩Q)θ,q = (X0,X1)θ,q ∩Q.
Then

K(f, tθ;X0, (X0,X1 ∩Q)θ,q) ≈ tθ
(∞�

t

[s−θK(f, s;X0,X1 ∩Q)]q
ds

s

)1/q
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and

K(f, t1−θ; (X0,X1 ∩Q)θ,q,X1) ≈
( t�

0

[s−θK(f, s;X0,X1 ∩Q)]q
ds

s

)1/q

.

Corollary 2.7. Let the cone Q have the WIP with respect to X :=
(X0,X1). Let Y := (Y0, Y1), where Yi := Xθi,qi , i = 0, 1, θ0 6= θ1. Then Q
has the WIP with respect to Y . Here qi ∈ [1,∞] and θi ∈ (0, 1), θ0 < θ1,
i = 0, 1.

Proof. Applying the WIP for X we get

(Y Q)θ,q := (Y0 ∩Q,Y1 ∩Q)θ,q = ((XQ)θ0,q0 , (X
Q)θ1,q1)θ,q.

But for XQ the reiteration theorem holds true. Therefore the right hand
side equals (XQ)η,q with η := (1 − θ)θ0 + θθ1. This cone, in turn, equals
(X)η,q ∩ Q by the WIP of X. Finally, (X)η,q = (Y )θ,q, by the classical
reiteration theorem. Putting all this together we get

(Y Q)θ,q = (Y )θ,q ∩Q.
The corollary is proved.

In a similar way using the IP and both the modified (Theorem 2.2 or
Theorem 2.3) and usual (Theorem 2.1, and also Corollary 3.6.2(b) of [3],
p. 53) Holmstedt formulas we obtain

Corollary 2.8. Let the cone Q have the IP with respect to X. Then Q
has the IP with respect to (Xθ0,q0 ,Xθ1,q1) and with respect to (X0,Xθ1,q1).
Here θ0 6= θ1, qi ∈ [1,∞] and θi ∈ (0, 1), θ0 < θ1, i = 0, 1.

3. Monotone functions and the couple (Lp,BMO)

Theorem 3.1. The cone M+ of non-negative non-increasing continuous
functions on R+ has the IP with respect to (Lp(R+),BMO(R+)) for 1 ≤ p
<∞.

Proof. We use the following inequality for the K-functional:

(3.17) t(f#
p )∗(tp) ≤ CK(f, t;Lp,BMO) (1 ≤ p <∞),

obtained by Bennett and Sharpley (see [2], Lemma 4.3, p. 215, and Re-
mark 6.3, p. 228, where the case of the real line was proved). The proof
is based on the weak (1, 1)-boundedness of the Hardy–Littlewood maximal
operator, which clearly also holds for the case of an arbitrary interval in R
(bounded or not).
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Here f#
p is the “sharp” maximal function defined by

f#
p (x)

:= sup
{(

1
|I|

�

I

|f − fI |p dx
)1/p ∣∣∣∣R+ ⊃ I = [a, b] 3 x, fI :=

1
|I|

�

I

f dx

}
.

For our proof we need two auxiliary lemmas.

Lemma 3.2. Let f ∈ M+. Then for every 0 ≤ t1 < t2 and every closed
interval I 3 t2 there is a closed interval J 3 t1 such that

(3.18)
1
|I|

�

I

|f − fI |p dx ≤
2p+2

|J |
�

J

|f − fJ |p dx.

Proof. Let f be a decreasing continuous function. In the trivial case
t1 ∈ I we simply set J := I. Let now t1 6∈ I =: [ξ1, ξ2]. Since t1 < t2 ∈ I, we
have t1 < ξ1.

Let eI be the best constant function approximation to f in Lp on the
interval I:

(3.19) E0(f, I)Lp := inf
c
‖f − c‖Lp(I) = ‖f − eI‖Lp(I).

In each interval Λ := [a, b] define xΛ := xΛ(f) ∈ Λ to be the infimum of
x ∈ Λ satisfying

(3.20)
x�

a

(f − f(x))p ds =
b�

x

(f(x)− f)p ds.

It is easily seen that the function on the left (resp. right) is continuous and
non-decreasing (resp. decreasing) and equals 0 at x = a (resp. at x = b).
Thus, the set of points satisfying (3.20) is not empty and its infimum xΛ
also satisfies (3.20). Then we set

(3.21) cΛ := cΛ(f) := f(xΛ).

Let us check that

(3.22) (E0(f, Λ)Lp ≤) ‖f − cΛ(f)‖Lp(Λ) ≤ 21/pE0(f, Λ)Lp .

In fact, if, for instance cΛ ≥ eΛ, then

‖f − cΛ‖pLp(Λ) = 2
xΛ�

a

(f − cΛ)p dx ≤ 2
xΛ�

a

(f − eΛ)p dx ≤ 2E0(f, Λ)Lp .

The case cΛ < eΛ can be considered similarly.
It is well known and easily checked that

(3.23) (E0(f, Λ)Lp ≤) ‖f − fΛ‖Lp(Λ) ≤ 2E0(f, Λ)Lp .

Together with the previous equivalence this allows us, roughly speaking,
to replace fI and fJ in (3.18) by cI and cJ , respectively. Bearing this in mind
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we continue with the proof of (3.18). So, we have t1 < ξ1 and I = [ξ1, ξ2] and
our goal is to determine an interval J satisfying (3.18). We set J = [t1, ξ3],
where ξ3 is determined by

(3.24) (ξ1 − t1)(f(ξ1)− cI)p = (ξ3 − ξ2)(cI − f(ξ2))p,

and check that in this way we do obtain the required interval.
We first consider the case

(3.25) xI − t1 ≥
ξ3 − t1

2
:=
|J |
2
.

Define

(3.26) k :=
xI�

ξ1

(f(x)− cI)p dx/((f(ξ1)− cI)p(xI − ξ1)) ≤ 1

by monotonicity of f .
From (3.20), (3.23), (3.26) and the monotonicity of f we now get

(3.27)
1
|I|‖f − fI‖

p
Lp(I) ≤

2p+1

|I|

xI�

ξ1

(f(x)− cI)p dx

≤ 2p+1k

|I| (f(ξ1)− cI)p(xI − ξ1) ≤ 2p+1k(f(ξ1)− cI)p

=
2p+1k

xI − t1
(f(ξ1)− cI)p(xI − t1)

=
2p+1k

xI − t1

( ξ1�

t1

(f(ξ1)− cI)p dx+
1
k

xI�

ξ1

(f(x)− cI)p dx
)
.

Applying (3.25) to estimate the right hand side we then have

1
|I|‖f − fI‖

p
Lp(I) ≤

2p+2

ξ3 − t1

(
k

ξ1�

t1

(f(ξ1)− cI)p dx+
xI�

ξ1

(f(x)− cI)p dx
)
.

It follows, using (3.20) and (3.24), that

1
|I|‖f − fI‖

p
Lp(I) ≤

2p+2

|J |
( ξ1�

t1

(f(ξ1)− cI)p dx+
xI�

ξ1

(f(x)− cI)p dx
)

(3.28)

=
2p+2

|J |
( ξ2�

xI

(cI − f(x))p dx+
ξ3�

ξ2

(cI − f(ξ2))p dx
)
.

Let us check that in the remaining case where

xI − t1 <
ξ3 − t1

2
=
|J |
2
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(or, equivalently, ξ3 − xI ≥ |J |/2) the same inequality (3.28) holds. To this
end it suffices to put

(3.29) k :=
ξ2�

xI

(cI − f(x))p dx/((cI − f(ξ2))p(ξ2 − xI)) ≤ 1

and use a variant of the previous arguments with this choice of k:

(3.30)
1
|I|‖f − fI‖

p
Lp(I) ≤

2p+1

|I|

ξ2�

xI

(cI − f(x))p dx

≤ 2p+1k

|I| (cI − f(ξ2))p(ξ2 − xI) ≤ 2p+1k(cI − f(ξ2))p

=
2p+1k

ξ3 − xI
(cI − f(ξ2))p(ξ3 − xI)

=
2p+1k

ξ3 − xI

(
1
k

ξ2�

xI

(cI − f(x))p dx+
ξ3�

ξ2

(cI − f(ξ2))p dx
)

≤ 2p+1

ξ3 − t1

( ξ2�

xI

(cI − f(x))p dx+ k

ξ3�

ξ2

(cI − f(ξ2))p dx
)

≤ 2p+2

|J |
( ξ2�

xI

(cI − f(x))p dx+
ξ3�

ξ2

(cI − f(ξ2))p dx
)

=
2p+2

|J |
( ξ1�

t1

(f(ξ1)− cI)p dx+
xI�

ξ1

(f(x)− cI)p dx
)
.

Having established (3.28) we now use it to obtain a different estimate
where cI and xI are replaced by cJ and xJ .

Suppose first that cJ ≤ cI . Then xJ ≥ xI by monotonicity of f . By the
same reason and by (3.22) and (3.20) we then have

(3.31)
2p+2

|J |
( ξ1�

t1

(f(ξ1)− cI)p dx+
xI�

ξ1

(f(x)− cI)p dx
)

≤ 2p+2

|J |

xJ�

t1

(f(x)− cJ)p dx =
2p+1

|J |
�

J

|f(x)− cJ |p dx

≤ 2p+2

|J |
�

J

|f(x)− eJ |p dx ≤
2p+2

|J |
�

J

|f(x)− fJ |p dx.

So in this case the proof is complete.
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In the remaining case cJ > cI (and, therefore, xJ ≤ xI) we get by similar
arguments

(3.32)
2p+2

|J |
( ξ2�

xI

(cI − f(x))p dx+
ξ3�

ξ2

(cI − f(ξ2))p dx
)

≤ 2p+2

|J |

ξ3�

xJ

(cJ − f(x))p dx =
2p+1

|J |
�

J

|cJ − f(x)|p dx.

Lemma 3.2 is proved.

Lemma 3.3. For each f ∈ M+ the “sharp” maximal function f#
p satis-

fies
f#
p (x) ≤ 21+2/p(f#

p )∗(x).

Proof. We first show that

(3.33) f#
p (x) ≥

f#
p (t)

21+2/p
for every x ≤ t.

In fact, Lemma 3.2 implies that for every interval I 3 t there exists an
interval J 3 x such that

(
1
|I|

�

I

|f − fI |p dx
)1/p

≤
(

2p+2

|J |
�

J

|f − fJ |p dx
)1/p

≤ 21+2/pf#
p (x).

Taking the supremum over all intervals I with I 3 x gives (3.33).
Now define the non-increasing function h : R+ → R+ by

h(t) := inf
x∈[0,t]

f#
p (x).

Since f#
p is lower semicontinuous, h is continuous from the right. To see this

let tn be a sequence tending to t from the right (tn ≥ t). Let ξn be a point
of minimum, that is,

h(t) ≥ h(tn) = inf
x∈[0,tn]

f#
p (x) = f#

p (ξn).

Its existence follows from the lower semicontinuity of f#
p . Without loss of

generality we can assume that ξn ∈ [t, tn]. Then

lim
n→∞

h(tn) = lim
n→∞

f#
p (ξn) = lim

ξn→t
f#
p (ξn) ≥ f#

p (t) ≥ h(t).

Since h is non-increasing and continuous from the right,

(3.34) h(t) = h∗(t).

Let now

(3.35) h(t) = f#
p (ξ)
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with ξ ∈ [0, t]. Then from (3.33)–(3.35) it follows that

(3.36) (f#
p )∗(t) ≥ h∗(t) = h(t) = f#

p (ξ) ≥ f#
p (t)

21+2/p
.

This is precisely the assertion of the lemma.

We now return to the proof of Theorem 3.1. Suppose that f ∈ (Lp +
BMO) ∩M+. Define the cut-off function gt by

(3.37) gt(x) =
{
c[0,tp](f) if 0 ≤ x ≤ xt,
f(x) if xt < x ≤ ∞,

where xt := inf{x | f(x) = c[0,tp](f)}. It is clear that 0 ≤ xt ≤ tp. In fact
xt = x[0,tp](f).

Since gt is monotone and bounded, it belongs to BMO∩M+. It is also
readily seen that f − gt ∈M+. Therefore

(3.38) K(f, t;Lp ∩M+,BMO∩M+) ≤ ‖f − gt‖Lp + t|gt|BMO.

Let us check that both terms on the right are controlled by t(f#
p )∗(tp).

Together with (3.17) this will complete the proof. According to the definition
of gt, (3.22) and Lemma 3.3 we get

‖f − gt‖Lp = ‖f − c[0,tp](f)‖Lp[0,tp] ≤ 21/p
( tp�

0

|f − f[0,tp]|p dx
)1/p

(3.39)

≤ 21/pt sup
I3tp

(
1
|I|

�

I

|f − fI |p dx
)1/p

= 21/ptf#
p (tp) ≤ 21+3/pt(f#

p )∗(tp).

To estimate |gt|BMO we first prove that

(3.40)
( �

I

|gt − (gt)I |p dx
)1/p

≤ 21+1/p
( �

I

|f − fI |p dx
)1/p

for every interval I ⊂ R+.
In fact, it is sufficient to consider the case where xt is an interior point

of I =: [a, b]. If xI(gt) < xt then since gt is constant on [a, xt), we have
xI(gt) = a and gt is constant a.e. on I, and there is nothing to prove. So we
assume that xI(gt) ≥ xt. Since gt ≤ f we will show that cI(gt) ≤ cI(f) and
xI(gt) ≥ xI(f).

In general, the following lemma holds true:

Lemma 3.4. If u, v ∈M+ and u ≤ v on I, then cI(u) ≤ cI(v).

Proof. For every λ ∈ R we have

u− λ ≤ v − λ, λ− v ≤ λ− u,
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therefore

(u− λ)+ ≤ (v − λ)+, (λ− v)+ ≤ (λ− u)+.

Thus

F (λ) :=
�

I

[(u− λ)p+ − (λ− u)p+] dx ≤
�

I

[(v − λ)p+ − (λ− v)p+] dx =: G(λ).

But F and G are both strictly decreasing functions of λ and it is easy to
check that

F (cI(u)) = 0, G(cI(v)) = 0.

Since G(cI(u)) ≥ 0 it follows that cI(v) ≥ cI(u) and the proof is complete.

In particular, cI(gt) ≤ cI(f).
Now let us see that xI(gt) ≥ xI(f). It follows from the definitions of

xI(f) and cI(f) that

xI(f) = inf{x ∈ I | f(x) = cI(f)}
and similarly

xI(gt) = inf{x ∈ I | gt(x) = cI(gt)}.
Now cI(gt) ≤ c[0,tp](f). If cI(gt) = c[0,tp](f) then gt is constant on I, and
therefore there is nothing to prove. So, assume cI(gt) < c[0,tp](f). Then

{x ∈ I | gt(x) ≤ cI(gt)} = {x ∈ I | f(x) ≤ cI(gt)} ⊂ {x ∈ I | f(x) ≤ cI(f)}
and therefore xI(gt) ≥ xI(f).

From this together with (3.23) and (3.22) we therefore have
( �

I

|gt − (gt)I |p dx
)1/p

≤ 2
( �

I

|gt − cI(gt)|p dx
)1/p

(3.41)

= 2
(

2
b�

xI(gt)

|cI(gt)− f(x)|p dx
)1/p

≤ 2
(

2
b�

xI(f)

|cI(f)− f(x)|p dx
)1/p

= 2
( �

I

|cI(f)− f(x)|p dx
)1/p

≤ 21+1/p
( �

I

|f − fI |p dx
)1/p

.

So, (3.40) is proved.
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To complete the proof of the theorem we need to show that for some
constant C depending only on p and for all intervals I ⊂ R+ we have

(3.42)
(

1
|I|

�

I

|gt − (gt)I | dx
)1/p

≤ C(f#
p )∗(tp).

Let us first observe that in view of Lemma 3.2 it suffices to obtain (3.42)
for intervals I of the form [0, b]. Now define

Ω := {x ∈ R+ | f#
p (x) > (f#

p )∗(tp)} and F := R+ \Ω.

Let I = [0, b] ⊂ R+. Consider the following three cases:

1. I ∩ F 6= ∅, that is, there exists an x∗ ∈ I ∩ F . By the definition of f#
p

and Ω the right hand side of (3.40) does not exceed

21+1/p|I|1/pf#
p (x∗) ≤ 21+1/p|I|1/p(f#

p )∗(tp).

So by (3.40) we get

(
1
|I|

�

I

|gt − (gt)I |p dx
)1/p

≤ 21+1/p(f#
p )∗(tp)

and this is the desired estimate (3.42).
2. I ⊂ Ω and I ⊂ [0, xt]. Then gt|I ≡ const and

1
|I|

�

I

|gt − (gt)I |p dx ≡ 0,

so that (3.42) is trivial.
3. In the remaining case we have I = [0, b] ⊂ Ω and xt ∈ (0, b). Thus,

as in our proof of (3.40) we again have xt ≤ xI(gt). Furthermore cI(gt) ≤
supI gt ≤ c[0,tp](f). From the definition of Ω it follows that its measure
satisfies |Ω| < tp. Thus also xI(gt) ≤ b ≤ tp.

We have

tp�

xI(gt)

(cI(gt)− f)p dx ≤
tp�

xt

(c[0,tp](f)− f)p dx(3.43)

=
xt�

0

(f − c[0,tp](f))p dx

≤
xI(gt)�

0

(f − cI(gt))p dx.
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Hence we can choose ξ ∈ [0, xI(gt)] such that

(3.44)
xI(gt)�

ξ

(f − cI(gt))p dx =
tp�

xI(gt)

(cI(gt)− f)p dx.

Now we consider the following two alternatives:

xI(gt)− ξ ≥
tp − ξ

2
or xI(gt)− ξ <

tp − ξ
2

.

In the first case we set

k :=
� xI(gt)
0 (gt(x)− cI(gt))p dx

� xI (gt)
0 (c[0,tp](f)− cI(gt))p dx

(≤ 1).

Then we have

1
|I|‖gt − cI(gt)‖

p
Lp(I) =

2
|I|

xI(gt)�

0

(gt(x)− cI(gt))p dx(3.45)

≤ 2k
xI(gt)

xI (gt)�

0

(c[0,tp](f)− cI(gt))p dx

= 2k(c[0,tp](f)− cI(gt))p.
The last term of (3.45) does not exceed

(3.46)
2k

xI(gt)− ξ
(c[0,tp](f)− cI(gt))p(xI(gt)− ξ)

=
2k

xI(gt)− ξ

xI(gt)�

ξ

(c[0,tp](f)− cI(gt))p dx

≤ 2k
xI(gt)− ξ

xI(gt)�

0

(c[0,tp](f)− cI(gt))p dx

=
2

xI(gt)− ξ

xI(gt)�

0

(gt(x)− cI(gt))p dx

≤ 4
tp − ξ

xI(gt)�

0

(gt(x)− cI(gt))p dx

=
4

tp − ξ

b�

xI(gt)

(cI(gt)− gt(x))p dx
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=
4

tp − ξ

b�

xI (gt)

(cI(gt)− f(x))p dx

≤ 4
tp − ξ

tp�

xI (gt)

(cI(gt)− f(x))p dx.

Since ξ was chosen to satisfy (3.44) the right hand side equals

4
tp − ξ

xI(gt)�

ξ

(f(x)− cI(gt))p dx.

Since xI(gt) ≥ xt and f = g on [xt,∞), condition (3.44) amounts to re-
quiring that c[ξ,tp](f) = cI(gt) and x[ξ,tp](f) = xI(gt). Consequently, the
preceding series of estimates gives

(3.47)
1
|I|‖gt − cI(gt)‖

p
Lp(I) ≤

2
tp − ξ

tp�

ξ

|f − c[ξ,tp](f)|p dx.

The term on the right of (3.47) is dominated by (Cf#
p (tp))p. So by Lem-

ma 3.3 and Hölder’s inequality we have

(3.48)
1
|I|

�

I

|gt − (gt)I | dx ≤ C(f#
p )∗(tp)

where the constant C depends only on p. We have thus established (3.42)
in this case.

Let us check that in the remaining case:

xI(gt)− ξ <
tp − ξ

2

(
or equivalently tp − xI(gt) ≥

tp − ξ
2

)

the same estimate (3.42) holds. To this end it suffices to put

k :=
� b
xI(gt)

(cI(gt)− gt(x))p dx

� b
xI(gt)

(cI(gt)− f(b))p dx
(≤ 1)

and to repeat the previous arguments with this choice of k:

(3.49)
1
|I|‖gt − cI(gt)‖

p
Lp(I) =

2
|I|

b�

xI(gt)

(cI(gt)− gt(x))p dx
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≤ 2k
b− xI(gt)

b�

xI (gt)

(cI(gt)− f(b))p dx = 2k(cI(gt)− f(b))p

≤ 2
tp − xI(gt)

( b�

xI(gt)

(cI(gt)− gt(x))p dx+ k

tp�

b

(cI(gt)− f(b))p dx
)

≤ 2
tp − xI(gt)

( b�

xI(gt)

(cI(gt)− f(x))p dx+
tp�

b

(cI(gt)− f(x))p dx
)

≤ 4
tp − ξ

tp�

xI (gt)

(cI(gt)− f(x))p dx.

By (3.44) this last expression equals 2(tp − ξ)−1 � tp
ξ
|f(x) − cI(gt)|p dx and

by the same arguments as before we again obtain (3.42).
Putting together cases 1–3 we obtain

|gt|BMO ≤ c(f#
p )∗(tp),

where the constant c depends only on p.
The proof of Theorem 3.1 is complete.

There is a striking difference between the cases of monotone functions
on a finite and infinite interval. In fact, the following result holds.

Recall that BMO(A), A = [0, 1), denotes the normed BMO-space, de-
fined by the norm

‖f‖BMO(A) := |f |BMO(A) +
1�

0

|f | dx.

Theorem 3.5. (i) The cone M1[0, 1) has the WIP with respect to
(Lp[0, 1),BMO[0, 1)), 1 ≤ p <∞.

(ii) M1[0, 1) does not have the IP with respect to (Lp[0, 1),BMO[0, 1))
for 1 ≤ p <∞.

Proof. (i) The first result we need is

(3.50) (L1(0, 1),BMO(0, 1))θ,q = (L1(0, 1), L∞(0, 1))θ,q

for all θ ∈ (0, 1) and q ∈ [1,∞]. One way of proving this is to deduce it
from a similar result of Riviere–Sagher [11], namely (L1(R),BMO(R))θ,q =
(L1(R), L∞(R))θ,q. This can be done with the help of a special linear ex-
tension operator which maps L1(0, 1) boundedly into L1(R) and also maps
BMO(0, 1) into BMO(R). This operator is essentially the same as that
constructed by Shvartsman ([14], formula (8), p. 31). Here we use the spe-
cial case where k = 1, P0 ≡ 0 and F = [0, 1]. The proof that this extension
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operator has the properties mentioned above is contained in [14] (Proposi-
tion 1.2.10 and Corollary 1.2.11, p. 36, and Proposition 1.2.14, p. 38). There
are also some similarities between this extension operator and another one
constructed by Peter Jones [9]. (Although Jones states that his results apply
to subsets of Rn for n ≥ 2 his methods in fact can also be applied when
n = 1.)

Alternatively (3.50) can be obtained by modifying another proof of the
result of Riviere–Sagher (and also its generalization to Rn due to Hanks [7]),
given by Bennett and Sharpley [2]. For the reader’s convenience we briefly
indicate how this can be done. We start by formulating the following slight
modification of Lemma 1.1 of [2], p. 202.

Suppose that n = 1 and that the open set Ω is contained in [0, 1]. Then
we can also assume that all dyadic intervals (cubes) in the sequence having
the properties specified in Lemma 1.1 are contained in [0, 1].

We show this simply by discarding from the sequence those intervals Qj
which are not contained in [0, 1], and therefore also do not overlap [0, 1].

The next step is to prove a modified version of Theorem 4.1 of [2], p. 213.
Here we assume that f is supported on (0, 1). Recall also that Mf and f#

are both redefined by taking the supremum only over intervals contained in
[0, 1], and are defined to be zero for x /∈ [0, 1]. Thus their rearrangements
also vanish off [0, 1].

Instead of the estimate (4.8) of Theorem 4.1 we obtain

(3.51) (Mf)∗(t) ≤
1�

t

(f#)∗(s)
ds

s
+ (Mf)∗(1− 0)

for all t = 2−N where N ∈ N.
The proof begins exactly as in [2], except that we define the set Ω for

some arbitrary t restricted to (0, 1/2) and apply our modified version of
Lemma 1.1. All steps are analogous until (4.14). Then letting t tend to
2−N from below gives (3.51) for t = 2−N with left continuous instead of
right continuous rearrangements. But the right continuous rearrangement is
smaller than the left continuous one so we obtain (3.51) for t = 2−N .

Now we need to show that

(3.52) f∗∗(t) ≤ 3(Mf)∗(t) for all t ∈ (0, 1).

We obtain this by adapting the proof of the first part of Theorem 1.3 of
[2], p. 203. Fix t ∈ (0, 1) and suppose that (Mf)∗(t) < ∞. The set Ω =
{x ∈ (0, 1) | (Mf)(x) > (Mf)∗(t)} is open and has measure not exceeding
t. We again apply our modified version of Lemma 1.1 and proceed with the
sequence of dyadic subintervals (“cubes”) of [0, 1] that it provides, exactly
analogously to the proof in [2].
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Next, as a trivial consequence of the Hardy–Littlewood lemma for the
maximal function, we find that (Mf)∗(1− 0) ≤ c‖f‖L1 = cf∗∗(1). Combin-
ing this with (3.52) and (3.51) gives

f∗∗(2−N ) ≤ c
( 1�

2−N

(f#)∗(s)
ds

s
+ ‖f‖L1

)
for N = 0, 1, 2, . . .

Now, for any t ∈ (0, 1] choose an integer N so that 2−N−1 < t ≤ 2−N . Then

f∗∗(t) ≤ f∗∗(2−N−1) ≤ 2f∗∗(2−N ) ≤ 2c
( 1�

2−N

(f#)∗(s)
ds

s
+ ‖f‖L1

)
(3.53)

≤ 2c
( 1�

t

(f#)∗(s)
ds

s
+ ‖f‖L1

)
.

We shall again use the estimate (3.17) in the case p = 1. As already
observed above, this estimate, i.e.

(3.54) t(f#)∗(t) ≤ cK(t, f ;L1,BMO),

proved in Lemma 4.3 of [2], p. 215, also holds, with almost identical proof,
for t ∈ (0, 1), when (0, 1) instead of R is the underlying measure space, and
f# is defined in the way we are using here, i.e. by taking the supremum only
over intervals contained in [0, 1].

Suppose that f ∈ (L1(0, 1),BMO(0, 1))θ,∞ for some θ ∈ (0, 1). Then

K(t, f ;L1(0, 1),BMO(0, 1)) ≤ K(t, f ;L1(0, 1),BMO(0, 1)) ≤ ctθ.
Consequently, from (3.54) and (3.53) we obtain (f#)∗(t) ≤ ctθ−1 and

f∗∗(t) ≤ c
( 1�

t

sθ−2 ds+ ‖f‖L1

)
≤ c(tθ−1 + ‖f‖L1) for all t ∈ (0, 1).

From the standard formula for K(t, f ;L1, L∞) this shows that f ∈ (L1[0, 1],
L∞[0, 1])θ,∞. Since obviously L∞(0, 1) ⊂ BMO(0, 1) we have proved (3.50)
for the case q =∞. The same formula for general q ∈ (0,∞] follows immedi-
ately via the reiteration theorem for the real method. A further application
of an “endpoint” version of the reiteration theorem shows that

(Lp(0, 1),BMO(0, 1))θ,q = (Lp(0, 1), L∞(0, 1))θ,q

for all p ∈ [1,∞).
Hence we obtain

(Lp(0, 1),BMO(0, 1))θ,q ∩M1 = (Lp(0, 1), L∞(0, 1))θ,q ∩M1(3.55)

= (Lp(0, 1) ∩M1, L∞(0, 1) ∩M1)θ,q,
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where the latter isomorphism follows from [6] (see Section 1.2.6). This gives
the desired embedding

(Lp(0, 1),BMO(0, 1))θ,q ∩M1 ⊂ (Lp(0, 1) ∩M1,BMO(0, 1) ∩M1)θ,q,

yielding the WIP of M1[0, 1) with respect to (Lp(0, 1),BMO(0, 1)), since
the reverse embedding is trivial.

(ii) To prove the second statement of Theorem 3.5 we have to present
an appropriate counterexample. We consider only the case p = 1 to omit
cumbersome details. For p > 1 we can take the same function fε, defined
below, as a counterexample.

Suppose, on the contrary, that M1 has the IP with respect to (L1,BMO),
that is,

(3.56) K(f, t;L1 ∩M1,BMO∩M1) ≤ CK(f, t;L1,BMO)

for some C > 0 and every t > 0 and f ∈M1. Put

(3.57) fε(x) :=
{

0 if 0 ≤ x ≤ ε,
1 if ε < x ≤ 1,

where ε = min{1/8, 1/(8C)}. By the definition of K-functional,

(3.58) K(fε, t;L1,BMO) ≤ ‖fε − g‖L1 = ε ≤ 1
8C

for g ≡ 1. On the other hand,

(3.59) K(fε, t;L1 ∩M1,BMO∩M1)

= inf
g∈BMO∩M1, fε−g∈L1∩M1

{‖fε − g‖L1 + t|g|BMO}.

Since g ∈M1 and fε − g ∈M1, the function g should be as follows:

(3.60) g(x) :=
{

0 if 0 ≤ x ≤ ε,
b if ε < x ≤ 1,

where 0 ≤ b ≤ 1. Hence

‖fε − g‖L1 + t|g|BMO = (1− b)(1− ε) + tb/2

and therefore

(3.61) K(fε, t;L1 ∩M1,BMO∩M1) = inf
0≤b≤1

{(1− b)(1− ε) + tb/2}.

Thus for t > 1/4 we get

K(fε, t;L1 ∩M1,BMO∩M1) > inf
0≤b≤1

{b/8 + (1− b)(7/8− ε)} ≥ 1/8.

Together with (3.58) this gives, for t > 1/4,

K(fε, t;L1 ∩M1,BMO∩M1) > CK(fε, t;L1,BMO),

contrary to (3.56).
The proof of Theorem 3.5 is complete.
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4. Convex functions and the couple (Lp,BMO)

Theorem 4.1. The cone M2[0, 1) has the IP with respect to (Lp[0, 1),
BMO[0, 1)) for all p ∈ [1,∞).

Proof. Let M2 = M2[0, 1) be the cone of differentiable non-decreasing
convex functions on [0, 1) and f ∈ M2. Given an interval I = [a, b] ⊂ [0, 1)
we set

x = x(f, I) := sup{x | f(x) = fI}.
Lemma 4.2. We have

b− x ≤ (b− a)/2.

Proof. Let l be the tangent line to the graph of f at the point (a+ b)/2.
Since f is convex, l ≤ f . Therefore

(a+b)/2�

a

(
f

(
a+ b

2

)
− f(x)

)
dx ≤

(a+b)/2�

a

(
f

(
a+ b

2

)
− l(x)

)
dx(4.62)

=
b�

(a+b)/2

(
l(x)− f

(
a+ b

2

))
dx

≤
b�

(a+b)/2

(
f(x)− f

(
a+ b

2

))
dx.

Now let x∗ be the supremum of y ∈ [a, b] satisfying

(4.63)
y�

a

(f(y)− f(x)) dx ≤
b�

y

(f(x)− f(y)) dx.

Then x∗ ≥ (a+ b)/2 by (4.62). Moreover, the left hand side of (4.63) equals
the right hand side if y = x∗ (by the continuity of f on [a, b]). On the other
hand,

x�

a

(fI − f(x)) dx =
b�

x

(f(x)− fI) dx

and fI = f(x) by the definition of x. Hence x ≥ x∗ and so x ≥ (a+ b)/2.

Definition 4.3. The space BLO(I) is defined by finiteness of the quan-
tity

(4.64) |f |BLO = sup
I

1
|I|

�

I

(f − ess inf
I

f) dx.

We can now state the following results for convex functions.
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Lemma 4.4. Let f ∈ Lp[0, 1) ∩ M2 and 1 ≤ p < ∞. Then for every
interval I = [a, b] ⊂ [0, 1),

‖f − inf
I
f‖Lp(I) ≈ ‖f − fI‖Lp(I)

with equivalence constants independent of f and I.

Proof. We begin with the inequality

(4.65)
�

I

(f − inf
I
f)p dx ≤ (2p + 22p−1)

�

I

|f − fI |p dx.

To establish this, note that infI f = f(a) and fI = f(x). So the left hand
side of (4.65) up to a multiplicative constant of 2p−1 does not exceed

x�

a

(f(x)− f(a))p dx+
b�

x

(f(x)− f(x))p dx+
b�

x

(f(x)− f(a))p dx =: J1 +J2 +J3.

Then J2 is clearly majorized by �
I
|f − fI |p dx. Moreover, by the convexity

of f ,

(4.66) J1 ≤
x�

a

(f(x)− f(x))p dx.

Finally, according to Lemma 4.2,

J3 ≤
x�

a

(f(x)− f(a))p dx(4.67)

≤ 2p−1
( x�

a

(f(x)− f(a))p dx+
x�

a

(f(x)− f(x))p dx
)

≤ 2p−1
(
J1 +

x�

a

(f(x)− f(x))p dx
)
.

From this and (4.66) we get

J3 ≤ 2p
x�

a

(f(x)− f(x))p dx ≤ 2p
�

I

|f − fI |p dx.

Putting together these estimates gives

J1 + J2 + J3 ≤ (2 + 2p)
�

I

|f − fI |p dx.

Now, for the reverse estimate we apply the inequality (see (3.23))
�

I

|f − fI |p dx ≤ 2pE0(f, I)pLp
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and then the evident inequality

E0(f, I)pLp ≤
�

I

(f − inf
I
f)p dx

to complete the proof the lemma.

Remark 4.5. The proof of the latter inequality is valid for an arbitrary
function f ∈ Lp(I). So we have in this case

�

I

|f − fI |p dx ≤ 2p
�

I

(f − inf
I
f)p dx.

On the other hand, analysing the proofs of Lemmas 4.4 and 4.2 one can
conclude that inequality (4.65) also holds for functions f in the cone M̂2 of
non-negative non-decreasing convex functions defined on [0, 1).

In particular, if we set p = 1, we obtain

Corollary 4.6. BLO∩M2 = BMO∩M2 with equivalence of “norms”.

Lemma 4.7. Let f ∈ Lp(I) ∩M2 and g ∈W 1
1 (I). Suppose that

(4.68) f ′(x) ≥ g′(x) ≥ 0 almost everywhere on I.

Then there is a constant C = C(p) such that
�

I

|g − gI |p ≤ C
�

I

|f − fI |p.

Proof. Without loss of generality we can assume that f(a) = g(a) = 0
(here I = [a, b]). By (4.68) we have (since g ∈ W 1

1 (I) is absolutely continu-
ous)

g(x) =
x�

a

g′(t) dt ≤
x�

a

f ′(t) dt = f(x) for x ∈ I.

This and Remark 4.5 give
�

I

|g − gI |p ≤ 2p
�

I

(g − g(a))p ≤ 2p
�

I

fp.

Since f is convex, the first inequality (4.65) of Lemma 4.4 implies
�

I

fp =
�

I

(f −min
I
f)p ≤ (2 + 2p)

�

I

|f − fI |p.

The last two inequalities prove the lemma.

Lemma 4.8. If f ∈ Lp ∩M2, then

f#
p (x) ≈ (f#

p )∗(1− x), 0 < x < 1,

with equivalence constants independent of f and x.
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Proof. Fix f ∈ M2[0, 1). The first step is to show that whenever 0 <
x1 < x2 < 1,

(4.69) f#
p (x1) ≤ Cf#

p (x2)

where C depends only on p.
Let I := [α1, β1] be an arbitrary interval such that x1 ∈ [α1, β1] ⊂ [0, 1).

Obviously there exists an interval J := [α2, β2] ⊂ [0, 1) such that |J | = |I|
and x2 ∈ J and α1 ≤ α2.

Since f ∈ M2[0, 1) we have f ′(α1 + x) ≤ f ′(α2 + x) for all x ∈ [0, |I|).
So, by Lemma 4.7, for some C depending only on p, we have

(
1
|I|

�

I

|f − fI |p
)1/p

≤ C
(

1
|J |

�

J

|f − fJ |p
)1/p

≤ C(f#
p )∗(x2).

Taking the supremum over all I containing x1 gives (4.69).
Now define the function g : (0, 1) → R by g(x) = f(1 − x). Clearly

g#
p (x) = f#

p (1 − x). So (g#
p )∗(x) = (f#

p )∗(x) for all x ∈ (0, 1). Define
h(x) = sup1>t≥x g

#
p (t). By (4.69) we have

g#
p (x) ≤ h(x) ≤ Cg#

p (x).

Since h is non-increasing and right continuous we have

h∗ = h ≈ (g#
p )∗ = (f#

p )∗

and the proof of Lemma 4.8 is complete.

We are now in a position to resume the proof of Theorem 4.1 and show
that M2 has the IP with respect to (Lp,BMO), 1 ≤ p <∞. To this end we
will once again use the inequality (3.17) of Bennett–Sharpley. As already
explained, it must also hold when the spaces are defined on [0, 1) or any
other interval [a, b) instead of R, and furthermore the constant C appearing
in (3.17) is independent of the choice of [a, b).

Thus the desired result will follow from the inequality

(4.70) K(f, t;Lp ∩M2,BMO∩M2) ≤ C(p)t(f#
p )∗(tp).

We shall assume that f is convex and non-increasing (by the substitution
x 7→ 1−x). In other words we take the cone M̃2 of non-negative differentiable
convex non-increasing functions in place of the cone M2.

Define the function gt : [0, 1)→ R+ by

(4.71) gt(x) =
{
f(tp)− f ′(tp)(tp − x) if 0 ≤ x ≤ tp,
f(x) if tp < x ≤ 1.

It is clear that gt ∈ M̃2 and f − gt ∈ M̃2. Thus

(4.72) K(f, t;Lp ∩ M̃2,BMO∩ M̃2) ≤ ‖f − gt‖Lp[0,tp] + t|gt|BMO.
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Lemma 4.4 gives

‖f − gt‖Lp[0,tp] ≤ ‖f − f(tp)‖Lp[0,tp] = ‖f − inf
[0,tp]

f‖Lp[0,tp](4.73)

≈ ‖f − f[0,tp]‖Lp[0,tp].

The right hand side is, clearly, less than or equal to tf#
p (tp).

Now we estimate the second term in (4.72). Because of the convexity of
gt, for each I = [a, b] ⊂ (0, 1) we have

g′t(s) ≤ g′t(a+ s) ≤ 0, 0 ≤ s ≤ |I|.
So, applying Lemma 4.7 to the function g(1− x) gives

|gt|BMO := sup
I

1
|I|

�

I

|gt − (gt)I | dx ≤ C sup
1>s>0

1
s

s�

0

|gt − (gt)[0,s]| dx.

To estimate the right hand side rewrite it in the form

max
{

sup
s≥tp

1
s

s�

0

|gt − (gt)[0,s]| dx, sup
s<tp

1
s

s�

0

|gt − (gt)[0,s]| dx
}
.

Since f ′ ≤ g′t ≤ 0, Lemma 4.7 applied to f(1− t) and g(1− t) gives

sup
s≥tp

1
s

s�

0

|gt − (gt)[0,s]| dx ≤ C sup
s≥tp

1
s

s�

0

|f − f[0,s]| dx

≤ C sup
I3tp

1
|I|

�

I

|f − fI | dx.

By Hölder’s inequality we have

1
|I|

�

I

|f − fI | dx ≤
(

1
|I|

�

I

|f − fI |p dx
)1/p

,

and therefore,

(4.74) sup
s≥tp

1
s

s�

0

|gt − (gt)[0,s]| dx ≤ Cf#
p (tp).

Now let s < tp. Taking into account that gt is linear on [0, s], we have

(4.75)
1
s

s�

0

|gt − (gt)[0,s]| dx =
1
s
· s

2
f ′(tp)

s

2
= f ′(tp)

s

4
≤ f ′(tp) t

p

4
.

Using (4.75) twice, we therefore get

(4.76) t sup
s<tp

1
s

s�

0

|gt − (gt)[0,s]| dx ≤ tf ′(tp)
tp

4
= t1−p

tp�

0

|gt − (gt)[0,tp]| dx
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≤ C(p)t1−p
tp�

0

|f − f[0,tp]| dx

≤ C(p)t1−p
( tp�

0

|f − f[0,tp]|p dx
)1/p

(tp)(p−1)/p

= C(p)
( tp�

0

|f − f[0,tp]|p dx
)1/p

≤ C(p)tf#
p (tp).

Putting together (4.72), (4.73), (4.74) and (4.76) gives

K(f, t;Lp ∩ M̃2,BMO∩ M̃2) ≤ Ctf#
p (tp).

But f ∈ M̃2 (and f(1 − x) ∈ M2). Therefore, we can apply Lemma 4.8 to
obtain (f#

p )∗(tp) ≈ f#
p (tp). So we finally get

K(f, t;Lp ∩M2,BMO∩M2) ≤ C(p)t(f#
p )∗(tp).

The proof of Theorem 4.1 is complete.

Remark. The proof shows that essentially the same result is true for
the cone M̃2.

Using this remark we prove a similar statement for the cone Conv of
differentiable non-negative convex functions, defined on (0, 1).

Corollary 4.9. The cone Conv has the IP with respect to (Lp,BMO).

Proof. Let f ∈ Conv and let c ∈ (0, 1) be such that f ′(x) ≤ 0 for x ≤ c,
while f ′(x) > 0 for x > c. Without loss of generality we can assume that
f(c) = 0.

Let us write f = f1 + f2, where

f1(x) :=
{
f(x) if 0 ≤ x ≤ c,
0 otherwise;

f2(x) := f(x)− f1(x).

Clearly, f1 ∈ M̃2(0, 1] and f2 ∈M2[0, 1). Since each of these cones has the IP
with respect to (Lp,BMO) there exist functions f ij , i, j = 1, 2, f i1 ∈ M̃2(0, 1],
f i2 ∈M2[0, 1), fj = f1

j + f2
j , i, j = 1, 2, such that

K(fj , t;Lp ∩Qj ,BMO∩Qj) ≤ ‖f1
j ‖Lp + t|f2

j |BMO(4.77)

≤ CK(fj , t;Lp,BMO),

where Q1 = M̃2(0, 1] and Q2 = M2[0, 1). Furthermore, from the proof of
Theorem 4.1 (cf. (4.71)) it is clear that f ij can be chosen so that f ij(x) = 0
for every x ≥ c (resp. x ≤ c) if j = 1 (resp. j = 2).

Then we define
gi := f i1 + f i2.
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Clearly, gi ∈ Conv and g1 + g2 = f1 + f2 = f . Thus, by (4.77),

(4.78) K(f, t;Lp ∩ Conv,BMO∩ Conv) ≤ ‖g1‖Lp + t‖g2‖BMO

≤ ‖f1
1 ‖Lp + ‖f1

2 ‖Lp + t(|f2
1 |BMO + |f2

2 |BMO).

From the proof of Theorem 4.1 we see that these last four terms are domi-
nated by

(4.79) Ct((f1)#
p )∗(tp) + Ct((f2)#

p )∗(tp).

All we need then is to show that

(4.80) (fj)#
p (tp) ≤ Cf#

p (tp)

for all x ∈ [0, 1] and j = 1, 2. This implies that each of the terms in (4.79)
is dominated by Ctf#

p (tp) and so we can apply (3.17) to finish the proof.
We prove (4.80) with the help of Lemma 4.4. Given any I ⊂ [0, 1] we

have to show that

(4.81)
�

I

|fj(x)− (fj)I |p dx ≤ C
�

I

|f(x)− fI |p dx.

Obviously this is true (even with C = 1) if c /∈ I. On the other hand, if
I = [a, b] and a ≤ c ≤ b we have (cf. Lemma 4.4)

�

I

|fj(x)− (fj)I |p dx ≤ C1

�

I

|fj(x)− inf
I
fj |p dx(4.82)

≤ C1

�

[a,c]

|f1(x)− f1(c)|p dx

+ C1

�

[c,b]

|f2(x)− f2(c)|p dx.

Now applying Lemma 4.4 once more to the last two integrals, and also using
(3.23) we see that the sum of the last two integrals is dominated by

(4.83) C2

(
inf
α∈R

c�

a

|f1 − α|p dx+ inf
β∈R

b�

c

|f2 − β|p dx
)

≤ C2 inf
γ∈R

( c�

a

|f1 − γ|p dx+
b�

c

|f2 − γ|p dx
)

= C2 inf
γ∈R

( b�

a

|f − γ|p dx
)

≤ C2

b�

a

|f − f[a,b]|p dx.

So we have proved (4.81) and completed the proof of the corollary.
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