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On James and Jordan–von Neumann constants and
the normal structure coefficient of Banach spaces

by
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Yasuji Takahashi (Soja)

Abstract. Some relations between the James (or non-square) constant J(X) and
the Jordan–von Neumann constant CNJ(X), and the normal structure coefficient N(X)
of Banach spaces X are investigated. Relations between J(X) and J(X∗) are given as
an answer to a problem of Gao and Lau [16]. Connections between CNJ(X) and J(X)
are also shown. The normal structure coefficient of a Banach space is estimated by the
CNJ(X)-constant, which implies that a Banach space with CNJ(X)-constant less than 5/4
has the fixed point property.

0. Introduction. Several results on the Jordan–von Neumann constant
(which is usually called the von Neumann–Jordan constant) of a Banach
space X, denoted by CNJ(X), have recently been obtained by the authors
[25], [26], [38] (we also refer to [23] and [8] for the classical results). In
particular, they determined or estimated CNJ(X) for various spaces X, and
showed that some properties of X such as uniform non-squareness, super-
reflexivity or type and cotype can be described in terms of the constant
CNJ(X).

The aim of this paper is to clarify some relations beween the CNJ(X)-
constant and some other geometrical constants, especially the non-square
constant J(X) of James and the normal structure coefficient N(X). In ad-
dition, we investigate the James constant J(X) more carefully. Everything
is supported by several examples of concrete Banach spaces with the calcu-
lation of these constants.

The paper is organized as follows: In Section 1 we collect necessary prop-
erties of the modulus of convexity and modulus of smoothness. In Section 2
the uniformly non-square spaces and the James constant J(X) are consid-
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ered. A relation between J(X) and J(X∗) (X∗ is the dual space of X) is
given in Theorem 1, which partly answers a question of Gao and Lau [16],
Question 7.3. Note that J(X) 6= J(X∗) in general (cf. our Example 2). As a
corollary we obtain the well known result that X is uniformly non-square if
and only ifX∗ is uniformly non-square. Section 3 contains information about
the CNJ(X)-constant and its connection with the J(X)-constant. The esti-
mates of the CNJ(X)-constant from below and above by the J(X)-constant
are the main result of this part (Theorem 3). We also calculate J(X) and
CNJ(X) for X being the two-dimensional Lorentz sequence space `p,2 with
p ≥ 2.

In Section 4 we consider the relation between the CNJ(X)-constant and
the normal structure coefficient of X in the context of the fixed point prop-
erty. Gao and Lau [16] showed that if J(X) < 3/2, then X has normal
structure. Prus [36] even estimated the normal structure coefficient N(X)
by J(X). We present an estimate of N(X) by the CNJ(X)-constant, which
yields that if CNJ(X) < 5/4, then the Banach space X as well as its dual X∗

have the fixed point property. Finally, in the last Section 5, we compare the
constants J(X), CNJ(X) and N(X) for X and for an isomorphic space Y by
using the Banach–Mazur distance d(X,Y ). These estimates give the possi-
bility to compute such constants for a Banach space with new but equivalent
norms. Of course, these constants are not stable with respect to an equiv-
alent renorming. We finish this part with the estimates of J(X), CNJ(X)
and N(X) for the interesting Day–James `p-`q spaces and the Bynum bp,q
spaces. Some open problems are also posed.

1. Preliminaries. Let X = (X, ‖ · ‖) be a real Banach space. The non-
trivial Banach space will mean later on that X is a real space and dimX ≥ 2
(but it can also be that X is a complex space and dimX ≥ 1). Geometrical
properties of a Banach space X are determined by its unit ball BX = {x ∈
X : ‖x‖ ≤ 1} or its unit sphere SX = {x ∈ X : ‖x‖ = 1}. The modulus
of convexity of X (cf. [30], [34], [13], [35]) is a function δX : [0, 2] → [0, 1]
defined by

(1.1) δX(ε) = inf{1− ‖x+ y‖/2 : x, y ∈ SX , ‖x− y‖ ≥ ε}.
The function δX is continuous on [0, 2), increasing on [0, 2], strictly in-
creasing on [ε0, 2], where ε0 = ε0(X) = sup{ε ∈ (0, 2] : δX(ε) = 0}
is the so-called coefficient of convexity of X, and δX(ε) ≤ ε/2 or even
δX(ε) ≤ δ`2(ε) = 1 −

√
1− ε2/4. Also limε→2− δX(ε) = 1 − ε0(X)/2. The

function δX(ε)/ε is increasing on (0, 2] but δX(ε) is not necessarily convex
(Liokumovich 1973; cf. also our easier Example 2). The space X is called
uniformly convex if δX(ε) > 0 for all 0 < ε < 2, i.e., ε0(X) = 0. Day [9] (see
also [30], [34]) proved the important result that if X is non-trivial, then
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δX(ε) = inf{1− ‖x+ y‖/2 : x, y ∈ BX , ‖x− y‖ ≥ ε}(1.2)

= inf{1− ‖x+ y‖/2 : x, y ∈ SX , ‖x− y‖ = ε}
= inf{1− ‖x+ y‖/2 : x, y ∈ BX , ‖x− y‖ = ε}.

The modulus of smoothness of X (cf. [9], [30], [34], [28]) is a function %X :
[0,∞)→ [0,∞) defined by

(1.3) %X(τ) = sup
{‖x+ τy‖+ ‖x− τy‖

2
− 1 : x, y ∈ SX

}
.

The function %X is increasing, continuous, convex on [0,∞), %X(0) = 0 and
%X(τ) ≤ τ . Moreover, if X is non-trivial, then %X(τ) ≥ %`2(τ) =

√
1 + τ2−1

and the supremum in (1.3) can be taken over all x, y ∈ BX . The space X
is called uniformly smooth if %′X(0) = limτ→0 %X(τ)/τ = 0. The following
remarkable duality relationship with the modulus of convexity is due to
Lindenstrauss [28] (see also [30], [34]): for τ > 0,

%X∗(τ) = sup{τε/2− δX(ε) : ε ∈ [0, 2]},(1.4)

%X(τ) = sup{τε/2− δX∗(ε) : ε ∈ [0, 2]},(1.5)

which yields the equality %X(τ) = %X∗∗(τ) and also the fact that X is
uniformly convex (resp. uniformly smooth) if and only if its dual X∗ is uni-
formly smooth (resp. uniformly convex). Moreover, if X is either uniformly
convex or uniformly smooth, then X is reflexive.

Remark 1. In the real one-dimensional case, i.e., when X = (R, |·|), the
modulus of convexity δX(ε) from (1.1) is δX(ε) = 1 for 0 < ε ≤ 2, and the
first one from (1.2) is δX(ε) = ε/2 for 0 ≤ ε ≤ 2; the modulus of smoothness
%X(τ) from (1.3) is in this case %X(τ) = max{0, τ − 1} for τ ≥ 0.

2. Uniformly non-square spaces and James constant. A Banach
space X is called uniformly non-square (James, 1964) if there exists a δ ∈
(0, 1) such that for any x, y ∈ SX either ‖x+y‖/2 ≤ 1−δ or ‖x−y‖/2 ≤ 1−δ.
The constant

J(X) = sup{min(‖x+ y‖, ‖x− y‖) : x, y ∈ SX}
is called the non-square or James constant of X.

Proposition 1. Let X be a non-trivial Banach space. The following
conditions are equivalent.

(i) X is uniformly non-square.
(ii) δX(ε) > 0 for some 0 < ε < 2.
(iii) ε0(X) < 2.
(iv) J(X) < 2.
(v) %X(τ0) < τ0 for some τ0 > 0.
(vi) %X(τ) < τ for all τ > 0.
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(vii) %′X(0) = limτ→0 %X(τ)/τ < 1.
(viii) ε0(X∗) < 2.

(ix) %′X∗(0) = limτ→0 %X∗(τ)/τ < 1.

Proof. We have the equivalences:

X is uniformly non-square

⇔ ∃δ ∈ (0, 1) s.t. x, y ∈ SX , ‖x− y‖/2 > 1− δ ⇒ ‖x+ y‖/2 ≤ 1− δ
⇔ ∃δ ∈ (0, 1) s.t. x, y ∈ SX , ‖x− y‖ > 2− 2δ ⇒ 1− ‖x+ y‖/2 ≥ δ
⇔ ∃δ ∈ (0, 1) s.t. δX(2− 2δ) ≥ δ.

(i)⇒(ii). If X is uniformly non-square, then by taking ε = 2−2δ ∈ (0, 2)
in the above equivalences, we obtain δX(ε) ≥ 1− ε/2 > 0.

(ii)⇒(i). Assume that there exists ε0 ∈ (0, 2) such that δX(ε0) > 0, i.e.
δX(ε0) ≥ η0 > 0 for some η0 ∈ (0, 1). If we set 2 − 2δ = ε ∈ [ε0, 2), then
δ ∈ (0, 1− ε0/2] and

δX(2− 2δ) = δX(ε) ≥ δX(ε0) ≥ η0 > 0,

which means that, for any x, y ∈ SX , if ‖x−y‖ ≥ 2−2δ, then 1−‖x+y‖/2 ≥
η0. Let δ′ = min{δ, η0}. Of course, δ′ ∈ (0, 1). We want to show that either

‖x− y‖/2 ≤ 1− δ′ or ‖x+ y‖/2 ≤ 1− δ′.
If ‖x−y‖/2 ≤ 1−δ′, then we are done. Assume then that ‖x−y‖/2 > 1−δ.
This gives ‖x− y‖ > 2(1− δ′) ≥ 2(1− δ) and by the above assumption we
get 1− ‖x+ y‖/2 ≥ η0 or ‖x+ y‖/2 ≤ 1− η0 ≤ 1− δ′. This shows that X
is uniformly non-square.

(ii)⇔(iii) follows from the definition of ε0(X), and (i)⇔(iv) is again only
the definition.

(v)⇔(vi) is a consequence of Lemma 1 below, and (v)⇔(vii) follows from
the fact that %X(τ)/τ is increasing.

(vii)⇔(viii) and (ix)⇔(iii) follow directly from the formulas

(2.1) ε0(X∗) = 2%X(0) = 2 lim
τ→0

%X(τ)
τ

, ε0(X) = 2%′X∗(0) = 2 lim
τ→0

%X∗(τ)
τ

,

which are consequences of (1.4), (1.5), and this was observed by Turett [40]
and Khamsi [27] (cf. also [1], Corollary 3.12).

Lemma 1. The modulus of smoothness of any Banach space X satisfies
either the equality %X(τ) = τ for all τ > 0 or the strict inequality %X(τ) < τ
for all τ > 0.

Proof. It is enough to show that if %X(τ0) = τ0 for a certain τ0 > 0,
then %X(τ) = τ for all τ > 0. Since %X(τ)/τ is increasing and %X(τ) ≤ τ ,
it follows that for τ ≥ τ0 we have 1 = %X(τ0)/τ0 ≤ %X(τ)/τ ≤ 1, i.e.,
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%X(τ) = τ for τ ≥ τ0. Let 0 < τ < τ0 and assume that %X(τ) < τ . Then, by
the convexity of %X , we have, for τ1 > τ0,

τ0 = %X(τ0) = %X

(
τ0 − τ
τ1 − τ

τ1 +
τ1 − τ0
τ1 − τ

τ

)

≤ τ0 − τ
τ1 − τ

%X(τ1) +
τ1 − τ0
τ1 − τ

%X(τ)

<
τ0 − τ
τ1 − τ

τ1 +
τ1 − τ0
τ1 − τ

τ = τ0,

a contradiction. Therefore %X(τ) = τ .

Remark 2. A uniformly non-square Banach space is super-reflexive
(James [20], cf. also [3]), i.e., there exists an equivalent norm ||| · ||| on X
in which (X, ||| · |||) is uniformly convex. The converse implication is not
true in the sense that there exists an equivalent norm | · | on X for which
δ(X,|·|)(ε) = 0 for all 0 < ε < 2.

Example 1. Let 1 < p <∞ and consider the new norms in `p:

|||x||| = max
{
|x1|+ |x2|,

( ∞∑

k=3

|xk|p
)1/p}

,

|||x|||′ = max
{
|x1|, |x2|,

( ∞∑

k=3

|xk|p
)1/p}

.

Then ‖x‖p ≤ 21/p|||x||| ≤ 21/p+1|||x|||′ ≤ 21/p+1|||x||| ≤ 4‖x‖p, and since `p is
uniformly convex it follows that the spaces X = (`p, ||| · |||) and X = (`p, ||| · |||′)
are super-reflexive but not uniformly non-square since δX(ε) = 0 for all
0 < ε < 2. To show the last equality it is enough to take x = (1, 0, 0, . . .)
and y = (0, 1, 0, . . .). This example shows that there exists a super-reflexive
Banach space such that δX(ε) = 0 for all 0 < ε < 2. More generally, if
X = (X, ‖ · ‖) is a non-trivial Banach space and X1 is a two-dimensional
subspace of X, then X = X1 ⊕ X2 and on X1 we can take any equivalent
norm ‖x‖1 (for example, ‖x‖1 = |x1| + |x2|) such that δ(X,‖·‖1)(ε) = 0 for
all 0 < ε < 2. Let ‖ · ‖2 be the norm ‖ · ‖ restricted to X2. Then, clearly,
|||x||| = max{‖x‖1, ‖x‖2} is equivalent to ‖ · ‖ and δ(X,|||·|||)(ε) = 0 for all
0 < ε < 2. Therefore we can formulate a corollary:

Corollary 1. For any non-trivial Banach space X there is an equiva-
lent norm ||| · ||| on X such that (X, ||| · |||) is not uniformly non-square.

Let us collect properties of the James constant J(X) for non-trivial Ba-
nach spaces (see Casini [6], Gao–Lau [15] and [16]):

(i)
√

2 ≤ J(X) ≤ 2.
(ii) J(X) =

√
2 if X is a Hilbert space; the converse is not true.



280 M. Kato et al.

(iii) If 1≤ p≤∞ and dimLp(µ)≥ 2, then J(Lp(µ)) = max{21/p, 21−1/p}.
Casini [6, Prop. 2.2] and also Gao–Lau [15, Th. 3.3] and [16, Th. 5.4] proved
that

(2.2) J(X) = sup{ε ∈ (0, 2) : δX(ε) ≤ 1− ε/2}.
(iv) J(X) = sup{min(‖x+ y‖, ‖x− y‖) : x, y ∈ BX}.
Remark 3. In the one-dimensional real case, i.e., when X = (R, | · |), we

have J(X) = 0 and J1(X) = sup{min(‖x+ y‖, ‖x− y‖) : x, y ∈ BX} = 1.

We give an example of a two-dimensional Banach space X for which
J(X∗) 6= J(X).

Example 2. Let X = R2 with the `2-`1 norm defined by

‖x‖ =
{
‖x‖2 if x1x2 ≥ 0,
‖x‖1 if x1x2 ≤ 0,

where ‖x‖p = (|x1|p + |x2|p)1/p for p = 1, 2. Then δX(ε) = 0 if 0 ≤ ε ≤√
2, δX(ε) = 1−

√
2− ε2/2 if

√
2 ≤ ε ≤

√
8/3, and δX(ε) = 1−

√
1− ε2/8

if
√

8/3 ≤ ε ≤ 2 (see Goebel–Kirk [17], Ex. 5.8). Therefore, by (2.2), J(X) =√
8/3. The dual space X∗ of X has the `2-`∞ norm

‖x‖∗ =
{
‖x‖2 if x1x2 ≥ 0,
‖x‖∞ if x1x2 ≤ 0.

For the vectors x = (−1, 1) and y = (1/
√

2, 1/
√

2) from the unit sphere SX∗
we have ‖x+ y‖∗ = ‖x− y‖∗ = 1 + 1/

√
2, and so

J(X∗) ≥ 1 + 1/
√

2 >
√

8/3 = J(X).

We now show the relation between the James constants for a space and
for its dual, which answers a question of Gao and Lau [16], Question 7.3.

Theorem 1. For any Banach space X we have

(2.3) 2J(X)− 2 ≤ J(X∗) ≤ J(X)/2 + 1.

Proof. First observe that if a, b ∈ SX , then

(∗) ‖a+ b‖+ ‖a− b‖ ≤ min{‖a+ b‖, ‖a− b‖}+ 2.

From the definition of J(X) for any ε > 0 we can find x, y ∈ SX such that

min{‖x+ y‖, ‖x− y‖} ≥ J(X)− ε.
Moreover, by using the Hahn–Banach theorem we can find u∗, v∗ ∈ SX∗
such that

u∗(x+ y) = ‖x+ y‖ and v∗(x− y) = ‖x− y‖.
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Then
J(X∗) ≥ min{‖u∗ + v∗‖, ‖u∗ − v∗‖}

≥ ‖u∗ + v∗‖+ ‖u∗ − v∗‖ − 2 ≥ (u∗ + v∗)(x) + (u∗ − v∗)(y)− 2

= u∗(x+ y) + v∗(x− y)− 2 = ‖x+ y‖+ ‖x− y‖ − 2

≥ 2 min{‖x+ y‖, ‖x− y‖} − 2 ≥ 2{J(X)− ε} − 2.

Since ε > 0 was arbitrary we obtain

J(X∗) ≥ 2J(X)− 2,

and the first inequality of (2.3) is proved. To obtain the other inequality, let
u∗, v∗ ∈ SX∗ and suppose ε > 0. Then there exist x, y ∈ SX such that

(u∗ + v∗)(x) > ‖u∗ + v∗‖ − ε and (u∗ − v∗)(y) > ‖u∗ − v∗‖ − ε.
Thus

min{‖u∗ + v∗‖, ‖u∗ − v∗‖} ≤ (‖u∗ + v∗‖+ ‖u∗ − v∗‖)/2
< [(u∗ + v∗)(x) + (u∗ − v∗)(y) + 2ε]/2 = [u∗(x+ y) + v∗(x− y) + 2ε]/2

≤ [‖u∗‖ · ‖x+ y‖+ ‖v∗‖ · ‖x− y‖+ 2ε]/2 = [‖x+ y‖+ ‖x− y‖+ 2ε]/2

≤ [min{‖x+ y‖, ‖x− y‖}+ 2 + 2ε]/2 ≤ [J(X) + 2 + 2ε]/2.

From this the second inequality readily follows.

Remark 4. If X is not uniformly non-square (for example X = `1, `∞
or c0), then J(X) = 2 and we have equalities in (2.3):

2J(X)− 2 = J(X∗) = J(X)/2 + 1 = 2.

As an immediate consequence of Proposition 1 and Theorem 1 we have
a result proved by several authors (implicitly James [21] and explicitly e.g.
Fitzpatrick–Reznick [14] and Takahashi–Kato [38]; cf. also our Proposition 1,
the equivalence of (i) with (iii) and (viii)).

Corollary 2. A Banach space X is uniformly non-square if and only
if its dual X∗ is uniformly non-square.

Let us mention that Schäffer (1970) introduced another definition of
uniform non-squareness. X is called uniformly non-square (in the sense of
Schäffer) if there exists λ > 1 such that for every x, y ∈ SX we have either
‖x+ y‖ > λ or ‖x− y‖ > λ. The constant

S(X) = inf{max(‖x+ y‖, ‖x− y‖) : x, y ∈ SX}
is called the Schäffer constant of the space X. James’s and Schäffer’s defini-
tions are equivalent in the sense that J(X) < 2 if and only if S(X) > 1. This
follows from the equality below (the method of proof is taken from Casini
[6], Proposition 2.1):

Theorem 2. If X is a non-trivial Banach space, then J(X)S(X) = 2.
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Proof. For any x, y ∈ SX , x 6= ±y, let

u =
x+ y

‖x+ y‖ , v =
x− y
‖x− y‖ .

Then u, v ∈ SX , and

u± v =
(

1
‖x+ y‖ ±

1
‖x− y‖

)
x+

(
1

‖x+ y‖ ∓
1

‖x− y‖

)
y.

Therefore

‖u± v‖ ≥
∣∣∣∣‖x‖

∣∣∣∣
1

‖x+ y‖ ±
1

‖x− y‖

∣∣∣∣− ‖y‖
∣∣∣∣

1
‖x+ y‖ ∓

1
‖x− y‖

∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣

1
‖x+ y‖ ±

1
‖x− y‖

∣∣∣∣−
∣∣∣∣

1
‖x+ y‖ ∓

1
‖x− y‖

∣∣∣∣
∣∣∣∣

= 2 min
(

1
‖x+ y‖ ,

1
‖x− y‖

)
=

2
max(‖x+ y‖, ‖x− y‖) ,

and so

J(X) ≥ min(‖u+ v‖, ‖u− v‖) ≥ 2
max(‖x+ y‖, ‖x− y‖)

for all x, y ∈ SX , x 6= ±y, i.e., J(X) ≥ 2/S(X). Also

‖u± v‖ ≤ ‖x‖
∣∣∣∣

1
‖x+ y‖ ±

1
‖x− y‖

∣∣∣∣+ ‖y‖
∣∣∣∣

1
‖x+ y‖ ∓

1
‖x− y‖

∣∣∣∣

=
∣∣∣∣

1
‖x+ y‖ ±

1
‖x− y‖

∣∣∣∣+
∣∣∣∣

1
‖x+ y‖ ∓

1
‖x− y‖

∣∣∣∣

= 2 max
(

1
‖x+ y‖ ,

1
‖x− y‖

)
=

2
min(‖x+ y‖, ‖x− y‖) ,

and so

S(X) ≤ max(‖u+ v‖, ‖u− v‖) ≤ 2
min(‖x+ y‖, ‖x− y‖)

for all x, y ∈ SX , x 6= ±y, i.e., S(X) ≤ 2/J(X). Combining the above
inequalities, we obtain J(X)S(X) = 2.

Remark 5. If X = (R, | · |), then J(X) = 0 and S(X) = 2.

3. Jordan–von Neumann constant and James constant. The
Jordan–von Neumann constant CNJ(X) of a Banach space X is defined by

CNJ(X) = sup
{‖x+ y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
: x, y ∈ X, not both zero

}
.

Since usually this constant is called the von Neumann–Jordan constant we
will keep the notation CNJ(X). Let us collect its properties (see Jordan–von
Neumann [23], Clarkson [8], Kato–Takahashi [25], [26] and [38]):
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(i) 1 ≤ CNJ(X) ≤ 2.
(ii) X is a Hilbert space if and only if CNJ(X) = 1.
(iii) X is uniformly non-square if and only if CNJ(X) < 2.
(iv) CNJ(X) = CNJ(X∗).
(v) If 1 ≤ p ≤ ∞ and dimLp(µ) ≥ 2, then CNJ(Lp(µ)) = 22/r−1 with

r = min{p, p′}.
Theorem 3. For any non-trivial Banach space X,

(3.1)
1
2
J(X)2 ≤ CNJ(X) ≤ J(X)2

(J(X)− 1)2 + 1
.

Proof. For any x, y ∈ SX , we have

min{‖x+ y‖2, ‖x− y‖2} ≤ ‖x+ y‖2 + ‖x− y‖2
2

= 2
‖x+ y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
≤ 2CNJ(X),

which implies the left inequality of (3.1). To prove the right inequality we
first observe that

(3.2) CNJ(X) = sup
{‖x+ y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
: x, y ∈ X, ‖x‖ = 1, ‖y‖ ≤ 1

}
.

In fact, if 0 6= ‖x‖ ≥ ‖y‖ (for ‖x‖ ≤ ‖y‖ 6= 0 the proof is similar), then

‖x± y‖ = ‖x‖
∥∥∥∥
x

‖x‖ ±
y

‖x‖

∥∥∥∥

and so

‖x+ y‖2 + ‖x− y‖2
2(‖x‖2 + ‖y‖2)

=

∥∥∥∥
x

‖x‖ +
y

‖x‖

∥∥∥∥
2

+
∥∥∥∥
x

‖x‖ −
y

‖x‖

∥∥∥∥
2

2
(

1 +
∥∥∥∥
y

‖x‖

∥∥∥∥
2) ,

which shows that the supremum in the definition of CNJ(X) can be taken
just over x, y ∈ X such that ‖x‖ = 1 and ‖y‖ ≤ 1.

To obtain the right estimate in (3.1) we consider two cases (of course for
‖x‖ = 1 and ‖y‖ ≤ 1):

Case 1: ‖y‖ = t ≥ J(X)− 1. Then

A :=
‖x+ y‖2 + ‖x− y‖2

2(‖x‖2 + ‖y‖2)
≤ (‖x‖+ ‖y‖)2 + (min{‖x+ y‖, ‖x− y‖})2

2(‖x‖2 + ‖y‖2)

≤ (1 + t)2 + J(X)2

2(1 + t2)
=: f(t).
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Since f ′(t) = (1 − tJ(X)2 − t2)/(1 + t2)2 it follows that f is increasing on
(0, t0) and decreasing on (t0, 1), where t0 = (−J(X)2 +

√
J(X)4 + 4)/2.

Now J(X)− 1 ≥ t0 and so

A ≤ f(t) ≤ f(J(X)− 1) =
J(X)2

(J(X)− 1)2 + 1
.

Case 2: ‖y‖ = t ≤ J(X)− 1. Then

A ≤ 2(‖x‖+ ‖y‖)2

2(‖x‖2 + ‖y‖2)
=

(1 + t)2

1 + t2
=: g(t).

Since g′(t) = 2(1−t2)/(1+t2)2 it follows that g is increasing on (0, 1] and so

A ≤ g(t) ≤ g(J(X)− 1) =
J(X)2

(J(X)− 1)2 + 1
.

Thus, in both cases,

A ≤ J(X)2

(J(X)− 1)2 + 1
.

This completes the proof.

Remark 6. (a) Immediately from Proposition 1 and Theorem 3 we ob-
tain the result of (iii) above: a non-trivial Banach space X is uniformly
non-square if and only if CNJ(X) < 2.

(b) Concerning equalities and strict inequalities in (3.1), we have:

(i) If X is not uniformly non-square, then J(X) =CNJ(X) = 2 and we
have both equalities in (3.1): J(X)2/2=CNJ(X)=J(X)2/[(J(X)− 1)2 + 1]
= 2.

(ii) For a Hilbert space H, we have J(H)2/2 = CNJ(H) = 1 and so
J(H)2/[(J(H)− 1)2 + 1] ≈ 1.7.

(iii) If 1 ≤ p ≤ ∞ and dimLp(µ) ≥ 2, then J(Lp(µ)) = 21/r and
CNJ(Lp(µ)) = 22/r−1, with r=min{p, p′}, from which we obtain J(Lp(µ))2/2
= CNJ(Lp(µ)). Also for the space X = Lp[Lq] (the Lq-valued Lp-space) we
have the same equalities with r = min{p, p′, q, q′}.

(iv) There are Lorentz sequence spaces X = `p,2 for which we have the
equality J(X)2/2 = CNJ(X).

Example 3. Let `p,2 (2 ≤ p < ∞) be a two-dimensional Lorentz se-
quence space with the norm

‖x‖p,2 = (x∗21 + 22/p−1x∗22 )1/2,

where (x∗1, x
∗
2) is the rearrangement of (|x1|, |x2|) such that x∗1 ≥ x∗2 (cf.

[29]). We have

(3.3) J(`p,2) =
2

(1 + 22/p−1)1/2
and CNJ(`p,2) =

2
1 + 22/p−1

.
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Let us show (3.3). First, observe that ‖x‖2 ≤ [2/(1+22/p−1)]1/2‖x‖p,2. Then

‖x+ y‖2p,2 + ‖x− y‖2p,2 ≤ (‖x+ y‖22 + ‖x− y‖22) = 2(‖x‖22 + ‖y‖22)

≤ 2
1 + 22/p−1

2(‖x‖2p,2 + ‖y‖2p,2)

or
CNJ(`p,2) ≤ 2/(1 + 22/p−1).

On the other hand, for x0 = (α, α) and y0 = (α,−α) with α = 1/(1 +
22/p−1)1/2, we have

CNJ(`p,2) ≥
‖x0 + y0‖2p,2 + ‖x0 − y0‖2p,2

2(‖x0‖2p,2 + ‖y0‖2p,2)
= 2α2 =

2
1 + 22/p−1

.

Also J(`p,2) ≥ 2α = 2/(1 + 22/p−1)1/2, and by the first estimate in (3.1) we
obtain

J(X) ≤
√

2CNJ(X) = 2α = 2/(1 + 22/p−1)1/2,

and the proof of (3.3) is complete.

Remark 7. There exists a two-dimensional Banach space X for which
J(X)2/2 < CNJ(X).

Example 4 (`∞-`1 norm). Let X = R2 with the norm defined by

‖x‖ =
{
‖x‖∞ if x1x2 ≥ 0,
‖x‖1 if x1x2 ≤ 0.

Then δX(ε) = max{0, (ε−1)/2} and %X(τ) = max{τ/2, τ−1/2}. Therefore,
by (2.2),

J(X) = 3/2.

If we take x = (1, 1) and y = (0, 1), then CNJ(X) ≥ 5/4 and so

J(X)2/2 = 9/8 < 5/4 ≤ CNJ(X).

Note that the dual space X∗ of X is given by the `1-`∞ norm and is isometric
to X.

Remark 8. If dimX = 2, then CNJ(X) = 2 if and only if X is isometric
to `2∞. If dimX < ∞, then CNJ(X) = 2 if and only if X contains a two-
dimensional subspace isometric to `2∞.

4. Jordan–von Neumann constant and the normal structure
coefficient. A Banach space X is said to have normal structure if r(K) <
diam(K) for every non-singleton closed bounded convex subset K of X,
where diam(K) := sup{‖x − y‖ : x, y ∈ K} is the diameter of K and
r(K) := inf{sup{‖x− y‖ : y ∈ K} : x ∈ K} is the Chebyshev radius of K.
The normal structure coefficient (Bynum, 1980) of X is the number

N(X) = inf{diam(K)/r(K) : K ⊂ X bounded and convex, diam(K) > 0}.
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Obviously, 1 ≤ N(X) ≤ 2. The space X is said to have uniform normal
structure if N(X) > 1. A Banach space X is said to have the fixed point
property (FPP) (for non-expansive mappings) provided for any non-empty
bounded convex subset K of X, every non-expansive mapping T : K → K
has a fixed point. The following results are well known (see Goebel–Kirk
[17], Th. 4.1 and 4.4):

(a) If X is a reflexive space and has normal structure, then X has FPP
(Kirk, 1965).

(b) If X has uniform normal structure, then X is reflexive and hence X
has FPP.

We now collect some properties of the normal structure coefficient (see
Bynum [5], Maluta [32], Domı́nguez Benavides [11]; cf. also [17], [1] and [18]):

(i) N(X) ≥ 1/(1− δX(1)); in particular, if X is uniformly convex, then
N(X) > 1 and X has FPP.

(ii) If X is non-reflexive, then N(X) = 1.
(iii) If dimX =∞, then N(X) ≤

√
2.

(iv) If 1 ≤ p ≤ ∞ and a σ-finite measure space (Ω,Σ, µ) is such that
dimLp(µ) =∞, then N(Lp(µ)) = min{21/p, 21−1/p}.

Gao and Lau [16] showed that if J(X) < 3/2 (or equivalently δX(3/2) >
1/4), then X has uniform normal structure. Prus [36] gave an estimate of
N(X) by J(X) which contains Gao–Lau’s and Bynum’s results: For any
non-trivial Banach space X,

(4.1) N(X) ≥ J(X) + 1− {(J(X) + 1)2 − 4}1/2.
We present here the following estimate of N(X) by the CNJ(X)-constant:

Theorem 4. For any non-trivial Banach space X,

(4.2) N(X) ≥ (CNJ(X)− 1/4)−1/2.

Proof. Let K be an arbitrary bounded convex subset of X with d :=
diam(K) > 0. Then for any ε > 0 there exist u and v in K such that

‖u− v‖ > d(1− ε).
Put z = (u + v)/2 ∈ K. For any x ∈ K consider ξ = x − u and η = x − v.
Then since

‖ξ + η‖2 + ‖ξ − η‖2
2(‖ξ‖2 + ‖η‖2)

≤ CNJ(X),

it follows that

‖2x− u− v‖2 + ‖−u+ v‖2
2(‖x− u‖2 + ‖x− v‖2)

≤ CNJ(X)



James and Jordan–von Neumann constants 287

and hence,

‖x− z‖2 ≤ 1
2CNJ(X)(‖x− u‖2 + ‖x− v‖2)− 1

4‖−u+ v‖2

≤ d2CNJ(X)− 1
4d

2(1− ε)2.

Thus

r(K) ≤ sup{‖x− z‖ : x ∈ K} ≤ d
{
CNJ(X)− 1

4 (1− ε)2
}1/2

.

Letting ε→ 0, we obtain (4.2).

Theorem 4 and the fact that CNJ(X) = CNJ(X∗) yield in a straightfor-
ward way the corollary below. We should also mention here that the normal
and uniform normal structures are not inherited by the dual spaces in gen-
eral (cf. [4], [37]).

Corollary 3. If CNJ(X) < 5/4, then X as well as its dual X∗ have
uniform normal structure, and hence X and X∗ have the fixed point prop-
erty.

Remark 9. The assumption CNJ(X) < 5/4 implies, by the first inequal-
ity in (3.1), that J(X) ≤

√
2CNJ(X) <

√
10/2 and this is a little weaker

than Gao–Lau’s condition J(X) < 3/2. Gao and Lau asked in [16], Ques-
tion 7.1, whether the estimate J(X) < 3/2 is sharp for X to have uniform
normal structure. Note that in the class of X for which J(X)2/2 = CNJ(X)
the constant 3/2 is not sharp since, by Theorem 4, J(X) <

√
10/2 implies

that X has uniform normal structure.

Remark 10. Our estimate (4.2), like any other known estimates, is still
not very sharp in certain Banach spaces. For instance, N(`2) =

√
2 and the

estimate (4.2) gives N(`2) ≥ (1 − 1/4)−1/2 = 2/
√

3. On the other hand,
the bound (4.2) gives information about the uniform normal structure of X
when CNJ(X) < 5/4 but not when CNJ(X) is close to 2.

The following example shows that there exists a Banach space with uni-
form normal structure whose CNJ-constant is arbitrarily near to 2. This
space is even not strictly convex and it is also an example of a uniformly
convex (Hilbert) space which has an equivalent norm without normal struc-
ture.

Example 5. For λ ≥ 1 let Xλ be the space `2 (cf. [2], Th. 2; [3], p. 213,
and [1], pp. 145–146) with the norm

|x|λ = max{‖x‖2, λ‖x‖∞}.
Then, since ‖x‖2 ≤ |x|λ ≤ λ‖x‖2 it follows that Xλ is reflexive. Moreover,

CNJ(Xλ) = min{2, λ2}, J(Xλ) = min{2, λ
√

2}
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(cf. Kato–Takahashi [25], Proposition 1) and by [5] together with the con-
siderations in [1], p. 146,

N(Xλ) = max{1,
√

2/λ}.
Thus Xλ has uniform normal structure if and only if λ <

√
2. The space

Xλ has normal structure if and only if λ <
√

2 (cf. [2], Th. 2), and it has
FPP for all λ ≥ 1 (cf. Goebel–Kirk [17], Ex. 6.3, Bynum [5], Th. 6, and [18],
p. 772). We mention here that one of the first who considered the space X√2
as an example of a reflexive Banach space with FPP but without normal
structure was Karlovitz in 1976 (cf. [2] and [18]). Note that Xλ is not strictly
convex for λ > 1 and CNJ(Xλ) = λ2 → 2 as λ →

√
2. Moreover, Xλ is the

Orlicz sequence space `ϕλ generated by the convex function ϕλ(u) = u2 for
0 ≤ u ≤ 1/λ and ϕλ(u) =∞ for u > 1/λ (cf. [31]).

5. Banach–Mazur distance and stability under norm perturba-
tions. For isomorphic Banach spaces X and Y , the Banach–Mazur distance
between X and Y , denoted by d(X,Y ), is defined to be the infimum of
‖T‖ · ‖T−1‖ taken over all bicontinuous linear operators T from X onto Y
(cf. [39]). Bynum [5] proved that if X and Y are isomorphic Banach spaces,
then

(5.1)
N(X)
d(X,Y )

≤ N(Y ) ≤ N(X)d(X,Y ).

Theorem 5. If X and Y are isomorphic Banach spaces, then

(5.2)
J(X)
d(X,Y )

≤ J(Y ) ≤ J(X)d(X,Y )

and

(5.3)
CNJ(X)
d(X,Y )2 ≤ CNJ(Y ) ≤ CNJ(X)d(X,Y )2.

In particular , if X and Y are isometric, then J(X) = J(Y ) and CNJ(X) =
CNJ(Y ).

Proof. Let x, y ∈ SX . For each ε > 0 there exists an isomorphism T
from X onto Y such that ‖T‖ · ‖T−1‖ ≤ (1 + ε)d(X,Y ). Put

x′ =
Tx

‖T‖ , y′ =
Ty

‖T‖ .

Then x′, y′ ∈ BY since

‖x′‖ =
‖Tx‖
‖T‖ ≤ ‖x‖ = 1, ‖y′‖ =

‖Ty‖
‖T‖ ≤ ‖y‖ = 1.

By property (iv) we obtain
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min{‖x+ y‖, ‖x− y‖} = ‖T‖min{‖T−1(x′ + y′)‖, ‖T−1(x′ − y′)‖}
≤ (1 + ε)d(X,Y ) min{‖x′ + y′‖, ‖x′ − y′‖} ≤ (1 + ε)d(X,Y )J(Y ),

and since x, y ∈ SX were arbitrary, J(X) ≤ (1+ε)d(X,Y )J(Y ), which gives
the first estimate in (5.2). The second estimate follows by just interchanging
X and Y . The estimates in (5.3) can be proved similarly.

Corollary 4. Let X = (X, ‖ · ‖) be a non-trivial Banach space and let
X1 = (X, ‖ · ‖1), where ‖ · ‖1 is an equivalent norm on X satisfying , for
α, β > 0 and x ∈ X,

α‖x‖ ≤ ‖x‖1 ≤ β‖x‖.
Then α

βN(X) ≤ N(X1) ≤ β
αN(X) and

α

β
J(X) ≤ J(X1) ≤ β

α
J(X),

(5.4)
α2

β2CNJ(X) ≤ CNJ(X1) ≤ β2

α2CNJ(X).

Proof. This follows immediately from Theorem 5 and the fact that
d(X,X1) ≤ β/α.

We say that a Banach space X is finitely representable in a Banach
space Y (James [21]; cf. Beauzamy [3], p. 217) if, for any ε > 0 and for
every finite-dimensional subspace X0 of X, there exists a finite-dimensional
subspace Y0 of Y with dimY0 = dimX0 such that d(X0, Y0) ≤ 1 + ε.

Corollary 5. (i) Let X be a Banach space which is finitely repre-
sentable in Y . Then J(X) ≤ J(Y ), CNJ(X) ≤ CNJ(Y ) and N(X) ≤ N(Y ).

(ii) J(X∗∗) = J(X), N(X∗∗) = N(X).

Proof. (i) It is almost the same as the proof of Theorem 5 and (5.1) so
we leave out the details.

(ii) By (i) and the principle of local reflexivity which asserts that X∗∗ is
finitely representable in X (cf. [41]) it follows that J(X∗∗) ≤ J(X). On the
other hand, X is isometric to a subspace Y of X∗∗ and, therefore, J(X) =
J(Y ) ≤ J(X∗∗). The proof of the second equality in (ii) is similar.

Remark 11. Let X be an infinite-dimensional Banach space and let

pX = sup{p ∈ [1, 2] : X is of type p},
qX = inf{q ∈ [2,∞] : X is of cotype q}

(see [30] for details). By a theorem of Maurey–Pisier [33], `pX and `qX are
both finitely representable in X. Thus, by using Corollary 5(i) and the values
of the James and Jordan–von Neumann constants for `p-spaces, we obtain
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the following estimates:

J(X) ≥ max{21/pX , 21−1/qX},
CNJ(X) ≥ 22/min{pX ,q′X}−1,

N(X) ≥ min{21/pX , 21−1/qX}.
In particular, if J(X) =

√
2, then pX = qX = 2.

Corollary 6. If dimX = 2, then
√

2/d(X, `22) ≤ N(X) ≤
√

2 d(X, `22),
√

2/d(X, `22) ≤ J(X) ≤
√

2 d(X, `22)

and
1/d(X, `22)2 ≤ CNJ(X) ≤ d(X, `22)2.

Remark 12. By using Corollary 6 we can also prove Remark 8. In fact,
if CNJ(X) = 2, then since d(X, `22) ≤

√
2, it follows from Corollary 6 that

2 = CNJ(X) ≤ d(X, `22)2 ≤ 2

and so d(X, `22) =
√

2. Therefore a two-dimensional space X is isometric to
`2∞ (cf. [39], Proposition 37.4) and we have in fact proved the crucial part
of Remark 8.

We illustrate the above remarks and results by the following examples.
They will show that evidently the James constant, the Jordan–von Neumann
constant and the normal structure coefficient are not stable with respect to
equivalent renorming. On the other hand, the examples will also show that
Theorem 5 and Corollaries 4–6 can give both precise estimates of these
constants and only rough results.

Example 6. (a) For 2 ≤ p <∞ and λ ≥ 1 let Xλ,p be the space `p with
the norm

‖x‖λ,p = max{‖x‖p, λ‖x‖∞}
(cf. [25] and our Example 5, with p = 2). Then

‖x‖p ≤ ‖x‖λ,p ≤ λ‖x‖p for all x ∈ `p,
and, according to Corollary 4,

J(Xλ,p) ≤ min{2, λJ(`p)} = min{2, λ21−1/p},
CNJ(Xλ,p) ≤ min{2, λ2CNJ(`p)} = min{2, λ221−2/p},
N(Xλ,p) ≤ max{1, N(`p)/λ} = max{1, 21/p/λ}.

Taking x = (a/λ, a/λ, 0, 0, . . .) and y = (a/λ,−a/λ, 0, 0, . . .) with a =
min(1, λ2−1/p) we even obtain equalities for the first two constants:

J(Xλ,p) = min{2, λ21−1/p}, CNJ(Xλ,p) = min{2, λ221−2/p}.
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If we take, as in [1, p. 146] where the case of p = 2 was considered, the set
A as the closure of conv({en : n ∈ N}), then diam(A) = max{21/p, λ} and
r(A) = λ and so

N(Xλ,p) = max{1, 21/p/λ}.
(b) For 1 ≤ p ≤ 2 and λ ≥ 1 let Yλ,p be the space Lp[0, 1] with the norm

‖x‖λ,p = max{‖x‖p, λ‖x‖1}.
As in (a) we obtain

J(Yλ,p) = min{2, λ21/p}, CNJ(Yλ,p) = min{2, λ222/p−1}
(equalities are realized for x = aχ[0,1/2) and y = aχ[1/2,1] with a =
min{21/p, 2/λ}) and

N(Yλ,p) ≥ max{1, 21−1/p/λ}.
Taking as K the set formed by the Rademacher functions r1, . . . , rm we have
‖rk‖λ,p = 1 and ‖rk − rj‖λ,p = max{21−1/p, λ} for all k 6= j and also (cf. [1,
p. 129]) r(K) ≥ (1− 1/m)λ, which gives

diam(K)/r(K) ≤ max{21−1/p, λ}
(1− 1/m)λ

→ max{1, 21−1/p/λ} as m→∞.

Therefore N(Yλ,p) = max{1, 21−1/p/λ}.
Example 7. For λ > 0 let Zλ be R2 with the norm

|x|λ = (‖x‖22 + λ‖x‖2∞)1/2.

Then
‖x‖2 ≤ |x|λ ≤ (1 + λ)1/2‖x‖2 for all x ∈ R2,

and the estimates we get by using Corollary 4: J(Zλ) ≤ min{2, (2+2λ)1/2},
CNJ(Zλ) ≤ min{2, 1+λ}, N(Zλ) ≥ max{1, [(2/(1+λ)]1/2}, are rather poor,
because calculations show that

J(Zλ) = 2[(λ+ 1)/(λ+ 2)]1/2 and CNJ(Zλ) = 2(λ+ 1)/(λ+ 2).

Example 8 (Day–James `p-`q spaces and Bynum bp,q-spaces). For 1 ≤
p, q ≤ ∞ denote by `p-`q the Day–James space, i.e., R2 with the norm
defined by

|x|p,q =
{
‖x‖p if x1x2 ≥ 0,
‖x‖q if x1x2 ≤ 0.

James [19, p. 561] considered the `p-`p′ space as an example of a Banach
space which is isometric to its dual but which is not given by a Hilbert
norm when p 6= 2. Day [10] considered even more general spaces, namely, if
(X, ‖ · ‖) is a two-dimensional Banach space and (X∗, ‖ · ‖∗) its dual, then
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the X-X∗ space is the space X with the norm defined by

|x|X,X∗ =
{
‖x‖ if x1x2 ≥ 0,
‖x‖∗ if x1x2 ≤ 0.

The infinite-dimensional version of the Day–James `p-`q space is the space
bp,q which was investigated by Bynum [4] (usually this space is denoted
by `p,q, but this notation suggests the standard Lorentz sequence spaces,
therefore we use the notation bp,q instead). For 1 ≤ p, q ≤ ∞ denote by bp,q
the `p space with the norm

|x|p,q =
{

(‖x+‖qp + ‖x−‖qp)1/q when 1 ≤ q <∞,
max{‖x+‖p, ‖x−‖p} when q =∞,

where x+ and x− are positive and negative parts of x ∈ `p, i.e., (x+)n =
max{xn, 0} and (x−)n = max{−xn, 0}. Note that if p ≥ q ≥ 1, then, by the
convexity of the function f(u) = up/q, we have

‖x‖p ≤ |x|p,q ≤ 21/q−1/p‖x‖p.
In view of Corollary 4, this yields that if either X = `p-`q or X = bp,q,
then J(X) ≤ min{2, 21/q−1/pJ(`p)}, CNJ(X) ≤ min{2, 22/q−2/pCNJ(`p)}
and N(X) ≥ max{1, 21/p−1/qN(`p)}. From these rough estimates we cannot
get the following information (cf. our Examples 2 and 4):

J(`2-`1) =
√

8/3, CNJ(`2-`1) ≥ 3/2

and
J(`∞-`1) = 3/2, CNJ(`∞-`1) ≥ 5/4.

Problem 1 (cf. [12]). Let 1 < p <∞, 1 ≤ q <∞. Compute N(bp,q).

Problem 2. Compute J(X) and CNJ(X) for X = `p-`q or X = bp,q.
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