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Bounded evaluation operators from H? into /¢
by

MARTIN SMITH (York)

Abstract. Given 0 < p,q < oo and any sequence z = {z,} in the unit disc D, we
define an operator from functions on D to sequences by Ty, (f) = {(1 — |za|?)Y?f(2n)}.
Necessary and sufficient conditions on {z,} are given such that 7, , maps the Hardy space
H? boundedly into the sequence space £¢. A corresponding result for Bergman spaces is
also stated.

1. Introduction. For 0 < p < oo let P denote the classical sequence
space and HP denote the classical Hardy space of the unit disc, D. It is well
known that, for all f € HP and z € D,

(1) @< F (L= 2717
(see e.g. [4, p. 36]), and that this gives a sharp rate of growth for H? func-
tions. Given any sequence z = {z,} in D we define the operator T, by

(2) Tup(f) = {(1 = |2a|H)YPf(2,)}  for f a function on D.

The operator plays a key role in interpolation theory, indeed, z is said to
be an interpolating sequence for HP if T, , maps HP onto ¢’. Note that
(1) trivially implies that [T, ,(f)|lee < ||f||lge for all f € HP. It is also
straightforward to show that for an infinite sequence z, T}, maps H? into
cp, the space of sequences which tend to zero, if and only if |z,|] — 1 as
n — oo.

The aim of this paper is as follows: given 0 < p,q < oo, describe all
sequences z such that there exists a constant C such that

(3) [Tap(F)lles < Cllfllgp  for all f e HP.
Given z,w €D, let ¢, denote the corresponding Moébius transform and

d(z,w) the pseudohyperbolic distance, i.e.

Pu(z) = T and d(z,w) = |6u(2)]
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A sequence of points {z,} in D is said to be uniformly discrete if

i7ré1f d(zn, 2m) > 6 >0  for some 6,

and uniformly separated if

inf H d(zn,2m) > 6 >0  for some 0.
n
m#n
Perhaps surprisingly, the characterisation of sequences z such that (3)
holds forms a trichotomy depending only upon whether p is less than, equal
to or greater than ¢:

THEOREM 1. Given 0 < p,q < oo and a sequence {z,} in D, the follow-
g are equivalent:

(1) There exists a constant C' such that
D=l PUf @) < Cllfly for all f € HP.

n
(2) (a) p < qand{z,} is a finite union of uniformly discrete sequences;
(b) p = q and {z,} is a finite union of uniformly separated se-
quences;
(¢) p>q and {z,} is a finite sequence.

The conclusion of Theorem 1 when p = ¢ is well known; see [5], [8] and
[9]. It is closely related to the fact that T}, , maps H? onto ¢? if and only if the
infinite sequence {z,} is uniformly separated; this was proved by Carleson
[2] when p = co, Shapiro and Shields [12] when 1 < p < oo and Kabaila [7]
when 0 < p < 1; see e.g. [4, Chapter 9].

We shall therefore concentrate on the cases when p # ¢, where the char-
acterisations given do not appear to be stated in the literature.

2. The case p < ¢. Our main tool is the following generalisation of
Carleson’s measure theorem due to Duren [3]. Given 6y € [0,27) and 0 <
h <1, let

S(0g,h) ={re? :1—h<r<1,60)<60<6y+h}
be the corresponding Carleson square.

THEOREM 2. Given a finite positive Borel measure ;p onD and 0 < p < ¢
< 00, there exists a constant C such that

VIf ()9 du(z) < ClfllYyy  for all fe HP
D

if and only if there exists a constant C such that (S (0o, h)) < Ch¥/P for all
Carleson squares S(0o, h).

We can now prove Theorem 1 in the case that p < q.



Bounded evaluation operators 3

THEOREM 3. Given a sequence {z,} in D, the following are equivalent:
(1) For all0 < p < q < oo, there exists a constant C' such that

> (= [zl f ()| < ClIfIe  for all f € HP.

n

(2) {zn} is a finite union of uniformly discrete sequences.

(3) For some r > 1,
sup » (1 — |z, (
zeD Z | -

(4) For all T > 1,

supz 1 - |¢Zn

zeD
Proof. (1)=(4). Given any O <p< o0, let ¢g=rp. For all z€ D, let
1—|z»)/p
Folw) = (1—1z[%)

(1 —zw)2/r’
so ||f:||m» = 1. Consequently,

1— 121 = |25\
supZ( 1= za <C.
The result now follows from the identity
1— 123 — |zl
1— 2 _ .
|2, (2)] 11— Z2, 2
(4)=-(3) is trivial so we show that (3)=-(2), following a method from [5]
and [9]. For any point z € D, let N(z) denote the number of points of {z,}

contained in A(z,1/2) := {w € D : d(w, z) < 1/2}. Then there exist K > 0
such that, for all z € D,

K> (1-]¢, ) = D (1—16:,(2)) = (3/4)N(2),
n z2n€A(2,1/2)
so N(z) < K(4/3)". Since there exists an integer N such that N(z) < N
for all z € D, it follows that {z,} can be split into the union of at most N
uniformly discrete sequences (see e.g. [6, p. 69]).
(2)=(1). We may as well suppose that {z,} is uniformly discrete. Then,
letting

QB0,h) = {re® :1—h<r<1—h/2,00<60<6)+h}

be the top half of the Carleson square S(6y, h), it is easily shown that there
exists an integer M such that every set Q(fy, h) contains at most M points
of the sequence {z,}. So, letting u be the discrete measure

p=y (1=l
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we have for any S(6g, h),

oo 2F—1
S(00,h) = > w(Q(0g +27%jh,27Fh))
k=0 j=0
oo 2F—1
<D M- (1-2 )
k=0 j=0
< MZQk(Q—kh)Q/P — th/pZQk(l—q/p) = Chi/?,
k=0 k=0

for some C' as ¢ > p. Now (1) follows from Theorem 2. =

The surprising arithmetic fact that (3) implies (4) in Theorem 3 gener-
alises [9, Theorem 4].

3. The case p > ¢. Using (1), it is easily shown that (3) holds when
{zn} is a finite sequence.

PROPOSITION 4. Let 0 < ¢ < p < oo and {z,} be a sequence in D.
Suppose that there exists a constant C' such that

(4) > (1= [zl f ()l < CllfYyy  for all f e HP.

n

Then {zn} is a finite sequence.

Proof. Suppose that (4) holds for an infinite sequence {z, }. Then, for all
feHr,

S =Pl < (D0 - \znP)q/prf(zn)rq)p/ Lol pIn.
n n

So, by Theorem 1, {z,} is a finite union of uniformly separated sequences.
By removing superfluous terms if necessary, we may suppose that {z,} is
an infinite uniformly separated sequence. Then the map T, : HP — (?
as defined in (2) is onto (see the comments after Theorem 1). By Banach’s
open mapping theorem there exists a constant N such that for all {«,,} € 7,
there exists f € HP with T, ,f = {an} and ||f]lar < N|[{an}|ler (see e.g.
4, p. 149]). So, in view of (4), |[{an }|lee < CV||f|lzre < CYVIN|[{an}| e for
all {ay, } € ¢P, which gives a contradiction. =

4. Remarks and acknowledgements. The inequality (3) has a dual
formulation. For 1 < p,q < oo, let p’ =p/(p —1) and ¢ = q/(q¢ — 1). Then
we may identify the dual space of ¢¢ with ¢7 and the dual space of HP
with H?' (under the pairing induced by the inner product in H?; see e.g.
[4, p. 113]). Given z € D, let k, denote the corresponding Cauchy kernel, so
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k.(w) =1 / (1 — Zw). The following reproducing property holds: for f € HP,
f(z) = (f, k). By considering the adjoint of T, ,, it is easily shown that for
P, q as above, (3) holds if and only if there exists a constant C' such that

[ ant ~lealh ||

Using this equivalent formulation, an application for Theorem 1 in the clas-
sification of Schatten class Hankel operators has been found in [10].

We can also consider an analogous problem for Bergman spaces. For
0 < p < oo let AP denote the classical Bergman space of the unit disc. It is
well known that |f(2)| < || f|lar(1 — |2|2)~%/? for all f € A? and z € D (see
e.g. [6, p. 36]. Given any sequence z = {z,} in D we define the operator R,

by Rap(f) = {(1 — |2af*)*/7f (2n)}.

THEOREM 5. Given 0 < p,q < 0o and a sequence {z,} in D, the follow-
ing are equivalent:

(1) There exists a constant C' such that
D=1zl P @)l < ClIfl%,  for all f e AP,

n

;< Clanlw  forall {an} € 7,

(2) (a) p<qand{z,} is a finite union of uniformly discrete sequences;
(b) p>q and {z,} is a finite sequence.

The conclusion when p = ¢ may be found in [13]; see also [6, p. 70]. It is
closely related to Amar’s result that, if {z,} is uniformly discrete, then {z,}

is the finite union of sequences {zg)} such that each Rz(i)’p maps AP onto
P (see [1, Theorem 2.1.1], also [11]). The proofs when p # ¢ are similar to
the Hardy space cases but simpler, and so are omitted.

The author acknowledges financial support provided through EPSRC
grant GR/R97610/01 and would like to thank Jonathan Partington and
Sandra Pott for useful discussions.
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