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Pointwise limit theorem for a class of

unbounded operators in L
r-spaces

by

Ryszard Jajte (Łódź)

Abstract. We distinguish a class of unbounded operators in L
r, r ≥ 1, related to

the self-adjoint operators in L
2. For these operators we prove a kind of individual ergodic

theorem, replacing the classical Cesàro averages by Borel summability. The result is equiv-
alent to a version of Gaposhkin’s criterion for the a.e. convergence of operators. In the
proof, the theory of martingales and interpolation in L

r-spaces are applied.

1. Introduction. The paper is an attempt of extension of the pointwise
ergodic theory in L

r(µ)-spaces [10] to the case of some unbounded operators.
Some questions are maybe touched here for the first time and perhaps new
techniques will have to be developed. We start by trying to follow some ideas
and methods known in the case of L2(µ). That is why we confine ourselves
to a class of linear maps in L

r related to unbounded self-adjoint operators
in L

2. To discuss the asymptotic properties of unbounded operators we pass
from Cesàro averages to Borel summability. Let us recall the definition.

We say that a sequence x = {ξk} of numbers (or vectors in a Banach
soace) is summable to ξ by the Borel method if

lim
m→∞

e−m
∞∑

k=0

mk

k!
ξk = ξ.

Then we write B-lim ξk = ξ. The sequence

B(m,x) = e−m
∞∑

k=0

mk

k!
ξk, m = 1, 2, . . . ,

is called the Borel transform of x.
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In what follows, for ζ = {λk}, we shall often write, for convenience,
B(m,λ) instead of B(m, ζ).
Let (Ft, t ∈ R) be a filtration in a probability space (Ω,F , µ). For r ≥ 1,

in L
r(Ω,F , µ) one can consider (unbounded) operators of the form

(0) A =
\
R

t dEt,

where Et = E(· | Ft) is the conditional expectation operator.
The class of such operators is a natural and important counterpart of

self-adjoint operators in L
2(µ).

For bounded operators in L
r (1 < r < ∞) of the form (0), several

individual ergodic theorems can be proved [12]. On the other hand, in the
case of L

2(µ) some pointwise limit theorems can be proved for unbounded
(normal) operators [11], [13].
Our aim is to prove a theorem concerning operators of the form (0) in

L
r(µ), 1 < r <∞.
Let us begin with some notation. We fix a probability space (Ω,F , µ)

and a filtration (Ft),−∞ < t ≤ 1, in (Ω,F) satisfying the conditions:

(i)
⋂
s>tFs = Ft for −∞ < t < 1,

(ii) σ(
⋃
t<1Ft) = F1 = F ,

(iii) F−∞ = {∅,F}.

Let us write formally

(1) A =

1\
−∞

t dEt,

where Et is the conditional expectation

(2) Et = E(· | Ft), −∞ < t ≤ 1.

In L̂
2 = L

2 ⊖ [const], (Et) is a resolution of the identity, and (1) defines a

self-adjoint operator in L̂
2.

Since the operators Et are defined in L
r-spaces, r ≥ 1, the operator A

can also be considered in these spaces as an unbounded operator.
We set

L̂
r =
{
ξ ∈ L

r :
\
Ω

ξ dµ = 0
}
for r ≥ 1.

The family of operators (2) is a uniformly bounded (spectral) family of

projections on L̂
r, satisfying the conditions

(a) EsEt = EtEs = Emin(s,t), −∞ < s, t ≤ 1,
(b) E−∞ = 0, E1 = I,
(c) Et is right continuous in the strong operator topology for t ∈ (−∞, 1)
and has a strong left limit E(t−) at each point −∞ < t ≤ 1.
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In the following we shall write E{a < t < b} = Eb− − Ea.

The operator (1) can be defined on L̂
r as follows. We first define a

bounded operator
Tb
a
f(t) dEt, for −∞ < a < b < ∞, where (Et) is the

spectral family determined by the filtration (Ft), i.e. Et = E(· | Ft). We
assume that f is a function of bounded variation on [a, b].
Given a partition

π = (a = t0 < t1 < . . . < tn = b)

of the interval [a, b], we put

π(f) =
n∑

i=1

f(ti)(Eti −Eti−1).

The Riemann–Stieltjes sums π(f) converge in the strong operator topology
as π runs through the set of partitions of [a, b] directed by refinement (cf.

[6], [3]). This strong limit of π(f) is denoted by
Tb
a
f(t) dEt.

Having defined
Tb
a
t dEt as a bounded linear operator on L̂

r, for the op-
erator A in (1) we set

D(A) =
{
ξ ∈ L̂

r : s- lim
d→−∞

1\
d

t dEtξ exists
}

and

Aξ = lim
d→−∞

1\
d

t dEtξ for ξ ∈ D(A).

We shall need one more definition. Let A be an unbounded operator acting
in a Banach space X. A vector x ∈ X is said to be analytic for A if x ∈⋂
n≥1D(A

n) and the function

z 7→
∑

n≥0

‖Anx‖

n!
zn

is entire (cf. [4], [16]).

2. Main result. Now we are in a position to formulate our result.

Theorem. Let (Ω,F , µ) be a probability space and let (Ft,−∞ < t ≤ 1)
be a filtration in (Ω,F). Fix an arbitrary 1 < r <∞. Let

A =

1\
−∞

t dEt

be the “spectral representation” of an operator in L̂
r(Ω,F , µ), where Et =

E(· | Ft) is the conditional expectation. If a vector ξ ∈ L̂
r(µ) is analytic
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for A, then

(3) B- lim
n→∞

Anξ = E{1}ξ µ-a.e.

Let us note that for r = 2 the theorem is an immediate consequence of
[11, Corollary 3.2], by the martingale convergence theorem.

It is a matter of taste to consider the operator A in L
r or in L̂

r. Passing
from L

r to L̂
r and conversely is always trivial. In L̂

r any filtration leads to
the “spectral” family of projections and then the connections with normal
operators in L

2 are clearer.

3. Proof of the theorem. The proof is rather long but its general idea
can be described as follows. Roughly speaking, we replace orthogonality ar-
guments employed in L

2(µ) for, say, self-adjoint operators by estimates of
square functions of suitable martingale transforms. To improve these esti-
mates to be strong enough for our purpose, we use interpolation techniques
(cf. [2]).
The proof will be reduced to a version of Gaposhkin’s criterion for al-

most sure convergence [8], [9], [2], which in our context says that (3) is
equivalent to

(4) E{1− 2−n < t < 1}ξ → 0 µ-a.e. as n→∞.

Having the above equivalence we readily get (3) because (4) follows from
the martingale convergence theorem.
Clearly, to prove the equivalence of (3) and (4) it suffices to show that,

for ζ = (λn) and x = (Anξ),

αn =
\

{1−2−n≤λ<1}

(B(2n, ζ)− 1) dEλξ → 0 a.e.,(5)

βn =
\

{−∞<λ<1−2−n}

B(2n, ζ) dEλξ → 0 a.e.,(6)

γn = max
1≤k<2n

|B(2n + k, x)−B(2n, x)| → 0 a.e.(7)

It should be stressed here that ξ being an analytic vector forA guarantees
the existence of all Borel transforms appearing above and in the following.
In particular, a fairly standard argument leads to the formula

B(m,x) =

1\
−∞

B(m, ζ) dEλξ,

that is,
∑

k≥0

mk

k!
Akξ =

1\
−∞

∑

k≥0

mk

k!
λk dEλξ.

This will be frequently used without any reference.
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We set

(8) I(f) =

1\
0

f(λ) dEλξ.

Then, in particular,

αn = I(fn), where fn(λ) = (B(2
n, λ)− 1)χ[1−2−n,1)(λ).

Take a sequence

πN = (0 = t
(N)
1 < · · · < t

(N)
k(N) = 1), N = 1, 2, . . . ,

of partitions of [0, 1] such that, putting

(9) πN (f) =

k(N)∑

i=1

f(t
(N)
i )(Et(N)i

− E
t
(N)
i−1
)ξ,

we have, for some D,

(10)
∥∥∥
{ N∑

n=1

(πN (fn)− αn)
2
}1/2∥∥∥

r
≤ D <∞ for N = 1, 2, . . . .

Then, for 1 < r <∞,

∥∥∥
{ N∑

n=1

α2n

}1/2∥∥∥
r
≤
∥∥∥
{ N∑

n=1

(αn − πN (fn))
2
}1/2∥∥∥

r
+
∥∥∥
{ N∑

n=1

(πN (fn))
2
}1/2∥∥∥

r

≤ D +
∥∥∥
{ N∑

n=1

(πN (fn))
2
}1/2∥∥∥

r
, n = 1, 2, . . .

Thus, to prove (5) it is enough to show that

(11) ∆N =
∥∥∥
{ N∑

n=1

(πN (fn))
2
}1/2∥∥∥

r
≤ Cr‖ξ‖r for N = 1, 2, . . .

(here and below, Cβ denotes a constant depending only on the parameter
β, which may be different in different places).

To this end we write

[1− 2−n, 1) =
∞⋃

k=0

[1− 2−n−k, 1− 2−n−k−1) =
∞⋃

k=0

In,k.

Then

∆N ≤
∞∑

k=0

∥∥∥
{ N∑

n=1

( ∑

t
(N)
i ∈In,k

fn(t
(N)
i )
)2}1/2∥∥∥

r
.
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For fixed k, set

(12) A(k)ν =
ν∑

i=1

N∑

n=1

∑

t
(N)
i ∈In,k

fn(t
(N)
i )(Et(N)i

−E
t
(N)
i−1
)ξ.

Then (A
(k)
ν , ν = 1, . . . , k(N)) is a martingale transform and, by the Burk-

holder inequality [5],
sup
ν
‖A(k)ν ‖r ≤ Cr‖ξ‖r.

For fixed k, we let m
(k)
n be such that

t(N)s ∈ In,k if and only if m(k)n < s ≤ m
(k)
n+1.

Then B
(k)
n = A

(k)
mn(k)

(n = 1, 2, . . .) is a martingale and its square function

equals

(13) Qk =
{ N∑

n=1

( ∑

T
(N)
i ∈In,k

fn(t
(N)
i )(Et(N)i

− E
t
(N)
i−1
)ξ
)2}1/2

.

By the Burkholder inequality,

(14) ‖Qk‖r ≤ Cr‖ξ‖r, 1 < r <∞.

To obtain (11), we have to improve the estimate (14), to get a good enough
order of decrease of ‖Qk‖r as k → ∞. To this end we interpolate some
operators related to Qk.
Notice that, for r = 2, using the estimate |1−B(m,λ)| ≤ Cm(1−λ) for

0 ≤ λ ≤ 1, we readily obtain

(15) ‖Qk‖2 ≤ C22
−k‖ξ‖2.

Fix 1 < p <∞ such that r lies between p and 2, and define (for fixed k) an
operator

W
(p)
k : L

p(Ω,µ)→ L
p((Ω,µ), ℓ2N)

by putting

(16) W
(p)
k : ξ 7→

{ ∑

t
(N)
s ∈In,k

fn(t
(N)
i )(Et(N)i

− E
t
(N)
i−1
)ξ
}N
n=1

.

Then

(17) ‖W
(p)
k ‖p ≤ Cp.

By (13), (14), (15), (17) and interpolation theorems ([1, Chapter 5]), we
obtain, for some 0 < θr ≤ 1, the estimate

(18) ‖Qk‖r ≤ Cr2
−θrk‖ξ‖r, 1 < r <∞.

Summing over k, we get (11), which together with (10) implies (5).
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To prove (6) we estimate the integral

I(gn) =

1\
0

gn(λ) dEλξ,

where gn(λ) = B(2n, λ)χ[0,1−2−n)(λ). We do it in a way similar to that in
the proof of (5). We first approximate I(gn) by suitable Riemann–Stieltjes
sums, say, like those in (9) and such that

∥∥∥
{ N∑

n=1

(πN (gn)− I(gn))
2
}1/2∥∥∥

r
≤ D <∞ for N = 1, 2, . . . .

For λ < 0, |B(m,λ)| ≤ e−m, so

∞∑

n=1

∥∥∥
0\
−∞

B(2n, λ) dEλξ
∥∥∥
r

r
≤ 2r‖ξ‖rr

∞∑

n=1

e−2
nr,

which implies
0\
−∞

B(2n, λ) dEλξ → 0 a.e.

Thus, to prove (6) it is enough to show that, for 1 < r <∞,

(19) δN =
∥∥∥
{ N∑

n=1

(πn(gn))
2
}1/2∥∥∥

r
≤ Cr‖ξ‖r, N = 1, 2, . . . .

Write

[0, 1− 2−n) =
n⋃

k=1

[1− 2−n+k, 1− 2−n+k−1) =
N⋃

k=1

Jn,k.

Then

δN ≤
n∑

k=1

∥∥∥
{ N∑

n=1

( ∑

t
(N)
i ∈Jn,k

gn(t
(N)
i )(Et(N)i

− E
t
(N)
i−1
)ξ
)2}1/2∥∥∥

r
.

Now to get (19) we can imitate the previous argument in the proof of (11)
for ∆N , using the estimate

|B(n, λ)| ≤ Cn−1(1− λ)−1 for 0 ≤ λ ≤ 1.

We omit the details.

Before passing to the proof of (7) let us fix some notation. For ζ = (λk)
and x = (Akξ), we shall write briefly

(20) Cn = B(n, ζ), Dn = B(n, x), σn,m = D2n+m −D2n .
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Writing m in the form

(21) m =
n∑

k=1

ǫk2
n−k,

with ǫk equal to 0 or 1, by the standard dyadic expansion we get

σn,m =
n∑

k=1

ǫkH
(jk)
n,k ,

with suitable jk’s, where

(22) H
(j)
n,k =

\
(−∞,1)

[C2n+j2n−k(λ)− C2n+(j−1)2n−k(λ)] dEλξ

for k = 1, . . . , n and j = 1, . . . , 2k. Putting

(23) Rn,k,j = C2n+j2n−k − C2n+(j−1)2n−k ,

we can write

(24) H
(j)
n,k =

\
(−∞,1)

Rn,k,j(λ) dEλξ.

To prove (7) we shall show that

(25)
∥∥∥
{ N∑

n=1

γ2n

}1/2∥∥∥
r
≤ const <∞ for N = 1, 2, . . . .

We can write

(26) |γn| ≤ max
(j1,...,jn)

n∑

k=1

|H
(jk)
n,k |,

where the maximum is taken over all vectors (j1, . . . , jn) with different en-
tries in the set {1, . . . , 2k}. Consequently,

γ2n ≤ max
(j1,...,jn)

( n∑

k=1

H
(jk)
n,k ·

k

k

)2
≤ max
(j1,...,jn)

n∑

k=1

(H
(jk)
n,k )

2k2
n∑

k=1

k−2(27)

≤ 2
n∑

k=1

k2
2k∑

j=1

(H
(j)
n,k)

2.

Put, for ν = 1, 2, 3, 4,

(28) A(N)ν =
{ N∑

n=1

n∑

k=1

k2
2k∑

j=1

( \
Γν

Rn,k,j(λ) dEλξ
)2}1/2

,
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where

(29)
Γ1 = [1− 2

−n, 1), Γ2 = [1− 2
−n+k, 1− 2−n),

Γ3 = [0, 1− 2
−n−k), Γ4 = (−∞, 0).

Clearly, to prove (25) it is enough to show that

(30) ‖A(N)ν ‖r ≤ Cr‖ξ‖r +D <∞, N = 1, 2, . . . , for ν = 1, 2, 3, 4.

In the general case, the argument will be similar to the above. Namely, we
first approximate the integrals

T
Γν
RdEλξ by Riemann–Stieltjes sums. Then

we apply inequalities for suitable martingales and their square functions.
Finally, using the estimates for B(n, x) and interpolating some operators in
L
p-spaces we get (30) for ν = 1, . . . , 4.
We proceed to the proof of (30).
For a partition π = (0 = t0 < · · · < tn = 1) of [0, 1] and a function

defined on [0, 1], we set, as before,

π(f) =
∑

f(ts)(Ets − Ets−1)ξ and I(f) =

1\
0

f(λ) dEλξ.

Fix a sequence πN = (0 = t
(N)
1 < · · · < t

(N)
k(N) = 1) of partitions such that

3∑

ν=1

∥∥∥
{ N∑

n=1

n∑

k=1

k2
2k∑

j=1

[πN (Rn,k,jχΓν )− I(Rn,k,jχΓν )]
2
}1/2∥∥∥

r
≤ D <∞

for N = 1, 2, . . . . Then for A
(N)
ν defined in (28) we have the estimate

(31) ‖A(N)ν ‖r

≤
∥∥∥
{ N∑

n=1

n∑

k=1

k2
2k∑

j=1

( ∑

t
(N)
s ∈Γν

Rn,k,j(t
(N)
s )(Et(N)s

− E
t
(N)
s−1
)ξ
)2}1/2∥∥∥

r
+D

for ν = 1, 2, 3 and N = 1, 2, . . . . We write briefly ∆s = (Et(N)s
− E

t
(N)
s−1
)ξ.

Consequently, to prove (30), for ν = 1, 2, 3, it is enough to show that

(32) Gν =
∥∥∥
{ N∑

n=1

n∑

k=1

k2
2k∑

j=1

( ∑

t
(N)
s ∈Γν

Rn,k,j(t
(N)
s )∆s

)2}1/2∥∥∥
r
≤ Cr‖ξ‖r

for N = 1, 2, . . . and ν = 1, 2, 3.
We proceed to the proof of (32).

Case ν = 1. Writing

[1− 2−n, 1) =
∞⋃

α=0

[1− 2−n−α, 1− 2−n−α−1) =
∞⋃

α=0

In,α,
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by the triangle inequality we get

G1 ≤
∞∑

α=0

N∑

k=1

k
∥∥∥
{ N∑

n=k

2k∑

j=1

( ∑

t
(N)
s ∈In,α

Rn,k,j(t
(N)
s )∆s

)2}1/2∥∥∥
r
.

Fixing α, k, j, we consider the martingale

(33) Y (α,k,j)̺ =
∑̺

s=1

ψα,k,j(s)∆s,

where ψα,k,j(s) =
∑N
n=k

∑
tNs ∈In,α

Rn,k,j(t
(N)
s ). Using the estimate

|Cn(λ)− Cm(λ)| ≤ C(1− λ)|n−m|,

we get

(34) sup
̺
‖Y α,k,j̺ ‖r ≤ C2

−k−α‖ξ‖r, 1 < r <∞.

Let {m
(α)
n } be a sequence of positive integers such that t

(N)
s ∈ In,α is

equivalent to m
(α)
n < s ≤ m

(α)
n+1. Putting B

(α,k,j)
n = Y

(α,k,j)

m
(α)
n

, and taking for

the martingale (B
(α,k,j)
n )Nn=k its square function

Q(α,k,j) =
{ N∑

n=k

( ∑

tNs ∈In,α

Rn,k,j(t
(N)
s )∆s

)2}1/2
,

we infer, by the Burkholder inequality and (34), that

(35) ‖Q(α,k,j)‖r ≤ Cr2
−α−k‖ξ‖r.

For r = 2,

(36)
∥∥∥
{ N∑

n=k

2k∑

j=1

( ∑

tNs ∈In,α

Rn,k,j(t
(N)
s )∆s

)2}1/2∥∥∥
2
≤ C2−k/22−α.

To interpolate between (35) and (36) we define (for p such that r lies between
2 and p) the operator

W
(p)
α,k : L

p(Ω,µ)→ L
p((Ω,µ), ℓ2(k≤n≤N

1≤j≤2k

)),

by putting

W
(p)
α,k : ξ 7→

{ ∑

tNs ∈In,α

Rn,k,j(t
(N)
s )∆sξ

}
k≤n≤N
1≤j≤2k

.

Then

‖W
(p)
α,k‖r ≤ C2

−α, ‖W
(2)
α,k‖2 ≤ C2

−α−k/2.
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Interpolation gives

(37) ‖W
(r)
α,k‖r ≤ Cr2

−α2−α−k/2θp , 0 < θp ≤ 1.

Summing up over k and α we finally get (32) for ν = 1.
The argument for ν = 2 and ν = 3 is similar, so we only sketch it.

Case ν = 2. We write

[1− 2−n+k, 1− 2−n) =
k⋃

α=1

[1− 2−n+α, 1− 2−n+α−1) =
k⋃

α=1

Jn,α.

Then

G2 ≤
N∑

k=1

k∑

α=1

k
∥∥∥
{ 2k∑

j=1

N∑

n=k

( ∑

tNs ∈In,α

Rn,k,j(t
(N)
s )∆s

)2}1/2∥∥∥
r
.

We set

ψα,k,j(s) =
N∑

n=k

∑

tNs ∈Jn,α

Rn,k,j(t
(N)
s )

and define the martingale Y
(α,k,j)
̺ as in (33).

Using the estimate

|Cn − Cm| ≤ Cm
−1(n−m) for n > m,

martingale inequalities and interpolation we can imitate the previous argu-
ment used for G1, to obtain (32) for ν = 2.

Case ν = 3. We write

[0, 1− 2−n+k) =
n−k−1⋃

α=0

[1− 2−n+k+α+1, 1− 2−n+k+α) =
n−k−1⋃

α=0

In,α,k.

Then

G3 ≤
∥∥∥
{ N∑

k=1

N∑

n=k

k2
2k∑

j=1

( n−k−1∑

α=0

∑

tNs ∈In,α,k

Rn,k,j(t
(N)
s )∆s

)2}1/2∥∥∥
r
.

It is convenient to take 0 ≤ α <∞ and write the estimate

G3 ≤
∞∑

α=0

N∑

k=1

k
∥∥∥
{ N∑

n=k

2k∑

j=1

( ∑

t
(N)
s ∈In,α,k

Rn,k,j(t
(N)
s )∆s

)2}1/2∥∥∥
r
.

Putting

ψα,k,j(s) =
N∑

n=k

∑

t
(N)
s ∈In,α,k

Rn,k,j(t
(N)
s )
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and taking a suitable martingale transform we can follow the previous ar-
gument, using the estimate |Cn| ≤ Cn

−1(1− λ)−1.

In this way we get (32) for ν = 3.

It remains to prove (30) in the case ν = 4. The argument here is much
easier, because, for λ > 0, |B(m,λ)| ≤ e−m. This implies the estimate

∥∥∥
{ N∑

n=1

n∑

k=1

k2
2k∑

j=1

( 0\
−∞

Rn,k,j(λ) dEλξ
)2}1/2∥∥∥

r

≤ C
∞∑

n=1

n∑

k=1

k22ke−2
n

‖ξ‖r ≤ C‖ξ‖r, N = 1, 2, . . . .

The proof of the theorem is complete.

References
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