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Positive ()-matrices of graphs
by

NOBUAKI OBATA (Sendai)

Abstract. The @Q-matrix of a connected graph G = (V,E) is Q = (qa(z’y))z,yev,
where 9(z,y) is the graph distance. Let ¢(G) be the range of ¢ € (—1,1) for which the

Q-matrix is strictly positive. We obtain a sufficient condition for the equality ¢(G) = ¢(G)
where G is an extension of a finite graph G by joining a square. Some concrete examples

are discussed.

1. Introduction. Associated with a graph, various matrices have been
introduced and studied extensively, e.g., adjacency matrix, distance matrix,
graph Laplacian, transition matrix and so forth. Applications of these mat-
rices spread widely from discrete mathematics to analysis and geometry; see,
e.g., Biggs [1], Cvetkovié-Doob—Sachs [6], Simon [14] and references cited
therein. Our concern in this paper is positivity of the QQ-matrix of a graph,
which is an important question in harmonic analysis.

Let G = (V,E) be a connected graph and d(x,y) the graph distance.
The Q-matriz of G is defined by

(1.1) Q=0Q,=(°“)pyev, qeC.

Let q(G) denote the set of ¢ € C for which @, is positive. It is known
that ¢(G) C [—1,1] unless G is trivial, i.e., consists of a single vertex. Let
q(G) C q(G) denote the set of ¢ € C for which @ is strictly positive. It
is an important problem in harmonic analysis to determine ¢(G) and ¢(G).
For example, the Q-matrix of a tree defines the so-called Haagerup state
[9] and plays an essential role in harmonic analysis on free groups and re-
lated structures; see, e.g., Bozejko [2], Bozejko—Januszkiewicz—Spatzier [4],
Bozejko—Szwarc [5], Figa-Talamanca—Picardello [8]. More recently, asymp-
totic spectral analysis of growing graphs have been intensively studied,
where interesting states are defined by positive Q-matrices (see Hora—Obata
11, 12)).

However, it is difficult to determine ¢(G) and ¢(G) in general. So far
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two approaches have been proposed by Bozejko. The first one is known as
the quadratic embedding test. Verifying a particular embedding of a graph
into a Hilbert space (called a quadratic embedding), one concludes that @,
is positive for all 0 < ¢ < 1. For example, Hamming graphs and Johnson
graphs have this property (see, e.g., Hora [10]). The property of admitting
a quadratic embedding seems to be rather strong, in fact, there are many
small graphs which do not have this property or for which [0, 1] C ¢(G) does
not hold. Moreover, the quadratic embedding test brings no information
about negative ¢ < 0.

The second approach is more general and elegant. Bozejko [3] introduced
a particular join of two positive definite matrices, called Markov sum, which
is irrelevant to graph structure and covers many problems in harmonic anal-
ysis. Specializing his general result to the Q-matrices of graphs, one obtains
immediately the following

THEOREM 11 (Star product). If G is a star product of two graphs G
and Gy, then ¢(G) = q(G) N q(G1). If moreover q(G1) = (—1,1), we have
a(9) = q(9).

Here the star product is obtained by gluing two graphs at one common
vertex. Since ¢(C?) = (—1,1), where C? is a graph with two vertices and one
edge, we see that the Q-matrix of a tree is strictly positive for all —1 < ¢ < 1.
Thus the famous Haagerup theorem [9] is recovered. For the star product,
see also Obata [13].

The aim of this paper is to obtain another extension of graphs which
preserves the positivity of the ()-matrix. The essence of the star product is
to join two graphs at a single common vertex. If two or more vertices are
taken to join two graphs, the situation becomes fairly complicated. It seems,
therefore, reasonable to start from extending a graph G = (V| E) by joining
a square C*. We consider three cases shown in Figure 1:

CASE 1: One-vertex detour extension making a square. Taking a,b €V

(1) ) @,

o a o

A a b

Fig. 1. Joining a square
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with d(a,b) = 2 and a new vertex o, we define a graph G = (V, E) by
V=vVu{o}, E=EU{{oa} {ob}}.

In this case, q(G) = ¢(G) does not hold in general, so that we need an
additional condition for the equality. We call § an admaissible one-vertex
detour extension making a square if it satisfies the condition (H) described
in Section 5.1.

CASE 2: Square-concatenation. Taking b, c € V with 9(b, ¢) = 1 and new
vertices o, a, we define a graph G = (V, F) by

V=VU{oa}, E=EU{{o,a},{o,b} {a c}}

CAsE 3: Star product_with_a square. Taking ¢ € V and new vertices
0,a,b, we define a graph G = (V| E) by

V=vVu{oab}, E=EU{{oal},{o,b} {a,c} {bc}}.

MAIN THEOREM. Let Q be a graph obtained from a finite graph G by
joining a square. Then q(G) = q(G) if G is (i) an admissible one-vertex
detour extension making a square; or (i) a square-concatenation; or (iii) a
star product with a square.

In the above assertion, the first two cases are essentially new, while
case (iii) is a direct consequence of Theorem 1.1 combined with ¢(C?) =
(_17 1) .

This paper is organized as follows: Section 2 assembles some preliminary
notions and facts. In Section 3 we define the ()-matrix and list some ele-
mentary properties. In Section 4 we introduce the notion of a detour join
of two graphs and derive a general criterion for positivity of the Q-matrix.
In Section 5, our main result is proved (Theorems 5.4 and 5.5). Section 6
contains some concrete examples.

2. Preliminaries. In order to avoid unnecessary confusion we assemble
some basic notions and notations used throughout this paper. The facts
mentioned here are standard.

Let V be a finite or infinite, non-empty set. Let Cp(V') be the space of
C-valued functions defined on V' with finite supports. When V is a finite
set, we often write C'(V') for Cy(V'). Define an inner product on Cy(V') by

(f,9) =Y F@)g(x), fgeCo(V).
zeV

By convention the notation (f, g) is used whenever the right hand side con-
verges absolutely. Let T be a matrix with index set V, that is, T" is a C-valued
function defined on V' x V. We often write T' = (T'(x,y) )z yecv. We say that
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a matrix T' = (T'(z,y)) is positive if
(L, TH= > f) )f(y) >0 forall feCo(V).

zyeV
PROPOSITION 2.1. A positive matriz T = (T(xz,y)) is hermitian sym-
metric, i.e., T =T%, or equivalently, T'(z,y) =T (y,x) for all z,y € V.
REMARK 2.2. We shall be concerned mostly with real symmetric matri-

ces. It is easy to see that a real symmetric matrix T = (T'(z,y)) is positive
if and only if

(T = > fl )f(y) >0 for all real f € Co(V).

z,yeV

Let T be a matrix with index set V. For a non-empty subset U C V the
restriction of T to U x U is called a principal submatriz of T', and is denoted
by T'TU. By definition, T is positive if and only if so is T'[U for every finite
subset U C V.

PROPOSITION 2.3. T is positive if and only if for any finite subset U CV,
every eigenvalue of T'[U is non-negative.

For a finite subset U C V, the determinant of T'[U is defined, which is
called a principal minor of T.

PROPOSITION 2.4. T is positive if and only if every principal minor is
non-negative, that is, det TTU > 0 for every finite subset U C V.

We say that T is strictly positive if
(f,Tfy>0 forall feCy(V)with f #0.

When T is real and symmetric, the above condition can be replaced with
“for all real f € Co(V') with f # 0.” Propositions 2.3 and 2.4 remain valid
for strict positivity.

PRrROPOSITION 2.5. T is strictly positive if and only if for any finite sub-
set U C V, every eigenvalue of T[U 1is positive; moreover, if and only if
det T'[U > 0 for every finite subset U C V.

When V is finite, we have the following stronger assertion.

PROPOSITION 2.6. Let T be a matrix with a finite index set V, say
|V | = n. If there exists an increasing sequence of subsets Uy C -+ C U, =V
such that |Us| = s and det T'1Us > 0 for all s = 1,...,n, then T is strictly
positive.

As is well known, Proposition 2.6 does not remain valid for positivity,
i.e., T is not necessarily positive even if det T'[Us > 0 for all s =1,...,n.
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3. The Q-matrix. A graph isapair G = (V, E), where V is a non-empty
(finite or infinite) set and E a subset of {{z,y}; z,y € V, = # y}. Elements
of V and E are called vertices and edges, respectively. If {z,y} € E, we say
that = and y are adjacent and write © ~ y for simplicity. A finite sequence
of vertices xg,x1, ..., T, is called a walk of length n if xg ~ x4 ~ -+ ~ xy,.
If g, z1,..., 2, are mutually distinct, the walk is called a path of length n.
A graph is called connected if any pair of vertices are connected by a walk.
Throughout the paper a graph is always assumed to be connected.

For z,y € V with x # y let O(x, y) denote the length of the shortest path
connecting = and y. By definition we set d(z,z) = 0. Then 9(x,y) becomes
a metric on V, which we call the graph distance.

DEFINITION 3.1. Let G = (V,E) be a graph (always assumed to be
connected) with graph distance d(z,y). The Q-matriz of G is defined by

Q = Qq = (qa(z,y))%yevj qc C.

The derivatives @ and Q) are the adjacency matrix and the distance
matrix, respectively. Our main interest is to determine the range of ¢ such
that the @Q-matrix is positive or strictly positive. Let ¢(G) be the set of ¢ € C
for which @ = @ is strictly positive, and ¢(G) the set of ¢ € C for which
Q = Qg is positive. Since ¢(G) is a closed set, we have

q(G) C q(9) C q(9),

where ¢(G) # ¢(G) may happen. Note also that 0 € ¢(G) and 1 € ¢(G) for
any graph G. The next assertions are straightforward.

PROPOSITION 3.2. Let G = (V, E) be a graph with |V| > 2. Then ¢(G) C
[_17 1] and Q(g) - (_17 1)

PROPOSITION 3.3. If G is a finite graph, then q(G) is an open subset of

(—=1,1) and g(G) \ q(G) consists of at most finitely many points.

4. Detour join of two graphs. For i = 1,2 let G; = (V;, E;) be a
graph with graph distance 0;. We assume that V; N Vy = (. Let us consider
a new graph G = (V| E) of the form

V=WVUV,, E=FEUEUEp FE3C{{z,y};:zecW,ycW).

In this case G; is an induced subgraph of G. Let d be the graph distance
of G. We say that G = (V, E) is a detour join of G; and Gy if

8(:E7 y) = 874(337 y)’ ':L'?y E ‘/:57

in other words, G being regarded as an extension of G;, no properly shorter
path is produced connecting z,y € V; through vertices outside V;.
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Let QN (V E) be a detour join of gl and Go as above. Let @Q; be the
@Q-matrix of G;. Then the Q-matrix of Q denoted by Q, is of the form

~ [(@Q]'S
. (2l

where S is given by
S(y.z) =W, yeVy ze i

Being interested in positivity of @, in view of Proposition 3.2 we assume that

€ [—1,1], and hence @ is a real symmetric matrix. From the expression
(4.1) and the direct sum decomposition Cy(V') = Cy(V1) @ Cy(V2), we may
easily deduce the following

LEMMA 4.1. é 1s positive if and only if

(f1,Q1f1) + 2(f2, Sf1) + (f2,Q2f2) > 0

for all real f1 € Cy(V1) and fo € Co(Va). Moreover, é is strictly positive if
and only if

(f1,Quf1) + 2(f2, Sf1) + (f2,Q2f2) >0
for all real fi € Co(V1) and fo € Co(Va) with (fi1, f2) # (0,0).
Then by an elementary argument using discriminants we obtain

PROPOSITION 4.2. é 1s positive if and only if both Q1 and Q2 are positive
and

(fa, SF1)? < (f1, Q1.f1){f2, Q2 f2)

for all real f1 € Co(V1) and fo € Cy(Va). Moreover, Q is strictly positive if
and only if both Q1 and Q2 are strictly positive and

(f2, Sf1)% < (f1, Q1f1){f2, Q2 f2)
for all real fi € Co(V1) and fo € Co(Va) with f1 # 0, fa # 0.

COROLLARY 4.3. §(Q) C (Q1) Nd(Q2) and q(Q) C ¢(Q1) N q(Q2).

Although Proposition 4.2 covers a general detour join, checking the in-
equalities therein seems to be practically difficult. _ o

We now focus on a special case. Given a graph G = (V, E), let G = (V| E)
be a new graph defined by

V=vu{ol, E=EUE, E,c{{oz};zeV}.
As is easily verified, G is a detour join of G with the trivial graph ({o},0)
if and only if d(z,y) < 2 for all z,y € V such that {o,z},{0,y} € E,,

where 0 is the graph distance of G. In this case, G is called a one-vertex
detour extension of G. Then the matrix S in (4.1) becomes a column vector
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with index set V' whose xth element is qg(”"’o). As a direct consequence of
Proposition 4.2 we obtain
THEOREM 4.4. Let G be a one-vertez detour extension of G = (V, E).

Let Q and @ denote the Q-matrices of G and G, respectively. Then Q 18
positive if and only if Q) is positive and

(f.9)* < (f.Qf)

for all real f € Co(V). Similarly, Q is strictly positive if and only if Q is
strictly positive and

(f,8)* < (f,Qf)
for all real f € Co(V') with f # 0.

COROLLARY 4.5. Let Ej be a one-verter detour extension 0f~g. Let @
and @ denote the Q-matrices of G and G, respectively. Then q(Q) C q(Q)
and q(Q) C ¢(Q)-

REMARK 4.6. Assume that V is finite. Let Pg be the projection onto
the one-dimensional subspace of C'(V') spanned by S. Since

<f’S>2:<Svs><f7PSf>’ fEC(V)’
the inequalities mentioned in Theorem 4.4 can be rephrased in terms of
positivity of @ — (S, S) Ps.

We consider a further special case. Given a gzaph = (V, E), taking
a € V and a new vertex o we define a new graph G = (V, E) by

V=vu{ol, E=EU{{oa}}

Obviously, G becomes a one-vertex detour extension of G. This special case
is referred to as segment-concatenation.

THEOREM 4.7. If G is a segment-concatenation of G, we have c?(é) =
q(9) and q(G) = q(9).

Since G is a star product of G and a segment C?, the assertion is just
a special case of Theorem 1.1. Alternatively, the conditions in Theorem 4.4
can be verified directly. The latter observation, in fact, leads to the main
theorem of this paper.

5. Joining a square. We now consider extending a graph G = (V, E)
by joining a square. We consider three cases, as stated in the introduction
(see also Figure 1 therein).

CASE 1: One-vertex detour extension making a square. Taking a,b €V
with d(a,b) = 2 and a new vertex o, we define a graph G = (V, E) by

(5.1) V=vVu{o}, E=EU{{oa} {ob}}.
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CASE 2: Square-concatenation. Taking b,c € V with 9(b, ¢) = 1 and new
vertices o, a, we define a graph G = (V| E) by

V:VU{O,a}, E:Eu{{o,a},{o,b},{a,c}}-

Case 3: Star product with_a square. Taking ¢ € V and new vertices
0,a,b, we define a graph G = (V, E) by

V=VU{oab}, E=EU{{oa}{ob} {a,c} {bc}}.

_These are all particular cases of detour join of two graphs. In Case 1,
q(G) = q(G) does not hold in general. In Section 5.1 we shall prove the

equality under a certain condition. The equality ¢(G) = ¢(G) holds in Cases
2 and 3. Case 2 will be discussed in Section 5.2. Case 3 reduces to Theorem
1.1, as explained in the introduction. Thus the main theorem stated in the
introduction follows.

5.1. One-vertex detour extension making a square. We maintain the no-
tations and assumptions stated in Case 1. Set

Vo={2z€V;9(x,a) <I(z,b)},
Ww={xeV,;d(zx,b) <I(z,a)},
V'={z€V,;dx,a)=0(z,b)}.
Then V = V, UV, UV’ is a partition. Note also that a € V, and b € V},.
LEMMA 5.1. Let x € V. Then every shortest path in QNfrom x to o is of

the form x ~ --- ~ a ~ o, that is, it passes through the vertex a just before
reaching o. A parallel statement for y € Vy is also valid.

LEMMA 5.2. Let x € V'. There exists a shortest path in G connecting x
and o of the formx ~ --- ~ a ~ 0 as well as one of the formx ~ --- ~ b~ o.
LEMMA 5.3. Forx € V we have
d(z,a) + 1, x €V,
d(z,0) =< d(x,b)+ 1, x €V,
d(r,a)+1=0(x,b)+1, xeV.

The proofs of the lemmata above are straightforward. We now consider
the essential condition on the choice of vertices a,b of G:

(H) There exists ¢ € V such that

(i) d(c,a) = 0(c,b) = 1;
(ii) for any = € V with 9(x,b) < 9(x,a), there exists a shortest
path from z to a passing through ¢, in other words,

oz,a) =0(x,c)+1, =xeV,UuV
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(iii) for any y € V with d(y,a) < 9(y,b), there exists a shortest
path from y to b passing through ¢, in other words,
Ay,b) =0(y,c)+1, yeV,uV"

If G is obtained by a one-vertex detour extension making a square and
satisfying condition (H), we call it admissible.

THEOREM 5.4. If G is obtained from a finite graph G by an admissible
one-vertex detour extension making a square, then q(G) = q(G).

Proof. The @-matrices of G and G are denoted by @ and @, respectively.
By Corollary 4.5, it is sufficient to show that ¢(G) D ¢(G), or equivalently
that @ is strictly positive for ¢ € ¢(G). Keeping in mind the partition

V=VUu{o}=V,UVUV'U{ol,
we fix a decreasing sequence
V=U,2Uy1D--DUs DU DUy DU

satisfying

Us\Us—1] =1, s=2,...,n,
and

Uy ={a,b,c,0}, Us={a,b,c}, Us={a,c}, U ={a}.

We set
(5.2) Ay =detQlU,, s=1,...,n.

Then, by Proposition 2.6, to prove that é is strictly positive it is sufficient
to show that

(5.3) Ay>0, s=1,....n,

whenever @ is strictly positive, i.e., ¢ € ¢(Q).
Let us compute A; in (5.2) explicitly. The first four are easily obtained:

(5.4) A =1,

1
(5.5) Ay = det ( q) =1-¢°,
qg 1
1 ¢ ¢
(5.6) Az=det [¢> 1 ¢q|=01-¢>
qg q 1
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2

1 q¢ q ¢
1 2
(5.7) Ag=det | T T T o)
q ¢ 1 ¢
? q q 1

Let 5 < s < n. Note that {0, a,b,c} C Us. Consider a matrix R obtained
from Q[Us by subtracting g times the bth column from the oth column.
Then the elements of R are given by

R(x,0) = Q(x,0) — aQ(x,b) = ¢"" — q¢”™", w e U,
R(z,y) = Q(z,y) = "V, 2 €Uy, y € Uy \ {o}.
In particular,
(5.8) R(0,0)=1-¢% R(a,0)=q—¢,
and, using Lemma 5.3,
(59)  R(z,0) = ") — gg”@
= @O ?@D) =0, 2z e (V,UuV)NUs.

Next let R’ denote the matrix obtained from R by subtracting ¢ times the
ath row from the oth row. Then

R'(0,y) = R(o,y) — qR(a,y), y €U,

R'(z,y) = R(z,y), x€Us\{o},yeUs.
In particular,
(5.10) (0, 0) = R(0,0) — qR(a,0) = (1 - ¢*)%,
(5.11) (0,9) = "V — q® ™),y e U\ {o}.
Moreover, since R’(x, o) = R(x, 0) for x € Us \ {o}, we see from (5.9) that
(5.12) R(z,0) = ze VUV )NUs.
Let o/, denote the (z,0)-cofactor of R'. Then

As=detR=det R = Z R'(z,0)0

$€Us
In view of (5.10) and (5.12) we obtain
(5.13) Ay =(1—¢»% + Z R'(z,0)0,.
zeVaNUs

Let R/, denote the submatrix obtained from R’ by deleting the xzth row and
the oth column. Then by construction we have

(5.14) o) = det R, = det Q|Us \ {o} = det QU \ {o}.
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We shall show that
(5.15) 0, =0, z€V,NUs.

Since ¢!, coincides with det R/, up to sign, it is sufficient to show that
det R, = 0 for x € V, NU,. This will be proved by showing that the rows of
R/, are not linearly independent. We prove that

(oth row) = ¢((bth row) — g(cth row)),
in other words,

(5.16) Ry (0,y) = q(Ry(b,y) — qR(c,y)), vy € Us\{o}.
In fact, the left hand side becomes
R, (0.y) = R/(0,y) = " — qg”*.
If y € V4, using 9(y,a) = 9(y, ¢) + 1 in condition (H), we have
R (0,y) = qé(o,b)w(b,y) — gL = g(20W) _ ggdew))
= (R (b,y) — qR(c,y)),

which proves (5.16) for y € V;. Let y € V, UV”. Since 8(0,y) = d(a,y) + 1
by Lemma 5.3, we have

(5.17) R.(0,y) = @?©¥ — q¢?@¥) =
On the other hand, since d(y,b) = d(y,c¢) + 1 by condition (H), we have
(5.18) Ry (b,y) — aRi(c,y) = ¢""Y — q¢” ¥ = 0.

We see from (5.17) and (5.18) that (5.16) holds for y € V, UV’ too, which
completes the proof of (5.16).
Consequently, by combining (5.13)—(5.15), we come to

(5.19) Ay=(1-¢*>2det QU \ {0}, s=5,...,n.

In view of the explicit forms of Ay in (5.4)-(5.7) and (5.19) together with
the assumption g € ¢(G) C (—1,1), we obtain our goal (5.3). m

5.2. Square-concatenation. We maintain the notations and assumptions
stated in Case 2. The graph G therein is called a square-concatenation of G.

_THEOREM 5.5. Ifg i$ a square-concatenation of a finite graph G, then
a(9) = q(9).

Proof. The square-concatenation is divided into two steps (see Figure
1(2)). We define an intermediate graph H = (W, F’) by

W =VuU{a}, F=FEU{{ac}}

That is, H is a segment-concatenation of G. By Theorem 4.7 we know that
q(H) = q(G). Next we note that G is a one-vertex detour extension of H
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considered in Case 1. Provided condition (H) is satisfied, it follows from
Theorem 5.4 that ¢(G) = ¢(H), and our assertion follows.
We now prove that the vertex ¢ of H = (W, F) satisfies the condition

n (H). The graph distance of H is denoted by 9. Set

Wo ={zeW; d(z,a) < d(z,b)},

Wy ={x e W; 9d(zx,a) > 0(x,b)},

W'={xeW; d(z,a) = 9(x,b)}.
By construction of the graph H, every path from an arbitrary z € W, U W’
to a passes through ¢, so that condition (H-ii) is obvious. Let y € W, U W’,
that is,
(5.20) A(y,a) < d(y,b).

Take a shortest path from y to a, which is of the form y ~ --- ~ ¢ ~ a. Then
Yy ~ -+ ~ ¢ ~ b becomes a path connecting y and b with length 9(y,a).
Due to the inequality (5.20) this is a shortest path, which certainly passes
through c¢. Thus condition (H-iii) is proved. m

6. Concrete examples

6.1. Integer lattice 7.2

THEOREM 6.1. ¢(Z?%) = (—1,1) and q(Z?) = [-1,1].

Proof. Let @ denote the Q-matrix of Z?. For N = 1,2, ... set

Vi = {(m,n) € Z%; |m| < N, |n| < N}

and let Gy be the induced subgraph of Z2 whose vertex set is Vy, i.e., Gn
is a finite lattice of size 2N x 2N. Obviously, the Q-matrix of Gy coincides
with @Q[VN. On the other hand, it is easy to see that Gy is obtained from a

square C* by repeated application of admissible one-vertex detour extension
and square-concatenation. Hence

(6.1) 9(QIVN) = q(C*) = (-1,1).
Let ¢ € (—1,1) and take f € Co(Z?), f # 0. Choosing N > 1 sufficiently
large, we have
(£,QN) = Y f@)d"Y fy) = (fIVi,(QIVN)(fIVN)) >0
7yEVN
by (6.1). Hence @ is strictly positive. Consequently, ¢(Z?) = (—1,1). The

second assertion is then immediate. m

Many subgraphs G C Z? with ¢(G) = (—1,1) can be constructed by
repeated application of the three extensions mentioned in the main theorem.
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6.2. Cyclic graph C*?". For n =2,3,... let C*" denote the cyclic graph
with 2n vertices. By convention C? denotes a graph with two vertices and
one edge.

THEOREM 6.2. Forn=1,2,3,... we have
(CP) = (-1,1),  GC*) = [~1,1].
Proof. We only consider the case of n > 2. We set C?" = (V, E), where
V=1{0,1,2,...,2n— 1}, E=1{{0,1},{1,2},...,{2n — 1,0}}.

Let W be a permutation matrix actingon Vas0 —1—--- —2n—1— 0.
Then

n—1
(6.2) Q=1+ ¢JWI +W)+q"W

j=1
Using the eigenvalues and eigenvectors of W explicitly, we obtain the full
description of the eigenvalues of @) as follows:

(1-¢")(1+q) (14 (=1)"*g")(1 —q)

N = — L TH
0 1 _ q ) n 1+ q
are the eigenvalues of multiplicity one, and
1 -1 k+1 n 1— 2
/\k:(+( )" g")( q)’ l<k<n-_1,
11— quk[?
are the ones of multiplicity two, where w = exp (%) is the primitive 2n-root

of one. All the eigenvalues are positive, equivalently @ is strictly positive if
and only if —1 < ¢ < 1. By continuity @ is positive for —1 < ¢ <1. n
6.3. Cyclic graph C?"*1. The situation for a cyclic graph with an odd
number of vertices is slightly more complicated. To state the result we need
to define a sequence {r,,; n =1,2,...}. For any odd integer n = 1,3,5,...
the algebraic equation
fa(r)=1+r—2r"t1 =0

has a unique negative root (in fact this root lies in (—1,0)), which we denote

by r,. For any even integer n = 2,4, ... the algebraic equation
fu(r) =147+ 2r"* cos —277:_ 1= 0

has a unique real root (in fact the root is found in (—1,0)), which we also
denote by r,. It is an elementary observation that

—-1/2=r1>ro>---— —L
THEOREM 6.3. Letn=1,2,... and r, as above. We have
Q(C2n+1) = (Tny 1)7 6(02n+1) = [Tm 1]'
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Proof. Employing similar notations to those in the proof of Theorem
6.2, we have

n
Q=1+> JW +Ww),

j=1
where W is the permutation matrix acting on V' = {0,1,2,...,2n} as 0 —
1 — .-+ — 2n — 0. Then the eigenvalues of ) are easily obtained:
2kn
+1
1)-

1
AL = -4 (1+q—2q"+1cos

0<k<2
|1 — quk|? > ==

2n,
where w = exp (23;:1) is the primitive (2n +

Aont1—k- If 0 < ¢ < 1, we have
(6.3) Ao <A1 <o < A

If -1 < ¢ < 0 and n is odd, (6.3) remains valid. If =1 < ¢ < 0 and n is
even, we have

(6.4) Ao > AL > > A

Consequently, all the eigenvalues of () are positive if and only if Ag > 0 or
An > 0 according as n is odd or even. =

root of one. Note that A\, =

COROLLARY 6.4. If a graph G contains a triangle, then
q(G) C (=1/2,1), q(G) C [-1/2,1].

6.4. Complete graph K,. A graph is called complete if every pair of
vertices is connected by an edge. A complete graph with n vertices is denoted
by K

THEOREM 6.5. For n > 2 we have
1 1
K,)=-——,1 JqK,) =|—-——,1]|.
() = (—tpn)s ) = | -]
Proof. The eigenvalues of the ()-matrix of K, are easily computed:
(1—-¢)+gn (multiplicity 1), 1—g¢ (multiplicity n — 1),
from which the assertion is immediate. m

REMARK 6.6. Let @, denote the Q-matrix of K,,. The principal subma-
trices of @, are Q1,...,Q, and their determinants are easily computed:

det Qs = (1= ¢)* (1 + (s — 1)q).
Thus ¢(K,) and ¢(K,,) can also be obtained from
¢(Kn)={q€ (-1,1); 1—q)* "1+ (s—1)g) >0 forall s = 1,...,m},
K ={qe[-1,1]; 1 —¢)* 1+ (s—1)g) >0forall s =1,...,m}.
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6.5. Complete bipartite graph K,,,. Let m > 1, n > 1 be a pair of
integers. A graph G = (V, E) is called completely bipartite, and is denoted
by K p, if V admits a partition

V =U,UU,,
where U, and U,, respectively consist of m and n vertices, and
E= {{l‘?y}; r€e€Up,y€ Un}

Without loss of generality we may assume that 1 < m < n. If m = 1, the
complete bipartite graph K7 ,, is called a star graph.
The @-matrix of K,y is denoted by @, in this subsection. Its explicit

form is
Rm Sm,n
Qm,n = 5
Sn,m Rn

where the m x m matrix R,, and the m x n matrix S, ,, are defined by

1 ¢ ¢
2 2
g 1 ... ¢
Rm: . . . . ) S’H’L,TL:
@ ¢# .01 q q ... @

Positivity or strict positivity of (), ,, may be determined from its principal
minors.
For s =1,...,m+n let Ay be the sth principal minor of @, , i.e.,
Ay =detRy, ..., A,=detR,,
A1+n = det le, ey Am—i—n = det Qm,n-
By elementary linear algebra, Q, , is strictly positive if and only if Ay > 0
for all 1 < s < m + n. The relevant determinants are easily calculated:

1 ¢ ... ¢

q2 1 ... q2 5 s ]
(6.5) detRs=det [ [=Q0+(—-1)¢)1—-¢)",

¢ ¢ 1

11q ¢ q

q| 1 ¢ g
(6.6) detQi,=det| q|q* 1 | =01-¢),

q|¢ ¢ 1
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(6.7)
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det Qman=(1—(m—1)(n— 1)q2)(1 - q2)m+”_1, m > 2.

Thus, strict positivity of @, is seen from (6.5)—(6.7). On the other hand,
Qm,n is positive if and only if all principal minors are non-negative. Since
any principal minor is of the form det Ry or det s, the verification also
reduces to (6.5)—(6.7). Thus we come to the following

THEOREM 6.7. For the star graph Ki,, n > 1, we have

Q(Kl,n) = (_17 1)7 q(Kl,n) = [_17 1]'

THEOREM 6.8. Let 2 <m <n. Then

[11]

[12]
[13]

1 1
4(Eomn) = (_ Vi =1)n-1)" /(m—-1)(n— 1))’
B N 1 1 _
Q(Km’”)_[ \/(m—l)(n—1)7\/(m—l)(n—l)]u{ b
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