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Mean ergodicity for compact operators
by

HEYDAR RADJAvVI (Halifax), PING-KwAN TAM (Hong Kong)
and KOK-KEONG TAN (Halifax)

Abstract. A mean ergodic theorem is proved for a compact operator on a Banach
space without assuming mean-boundedness. Some related results are also presented.

1. Introduction. In the literature, mean ergodic theorems for linear
operators usually deal with operators which are power bounded (see, e.g.,
[YK] and [Z]). However, already in 1945, Hille [H] gave an example of an
operator T on X = L]0, 1] which is mean ergodic (i.e., the sequence of aver-
ages (n~! Z?:l T7z)° ; converges strongly for every x € X) but not power-
bounded. By the Banach—Steinhaus theorem, a necessary condition for mean
ergodicity is mean-boundedness, i.e., sup, n~!|| > i1 T7|| < oo (which is
C-mean-boundedness in [E]). Also the strong (resp. weak) convergence of
(n1 > i1 T7x)°°, clearly implies that (n=1T"x)%%, — 0 strongly (resp.
weakly). In the treatment of mean ergodic theory in the book of Dunford
and Schwartz [DS], the operator T is assumed to be mean-bounded (Theo-
rem VIIL5.1, p. 661), or the sequence (n~17T™)%; is assumed to converge
to zero weakly (Theorem VIII.8.3, p. 711). In 1985, Emilion [E] gave an ex-
ample of a positive operator on L, (1 < p < 0o) which is mean ergodic and
not power-bounded; he also showed by an example (due to I. Assani) that
mean-boundedness of a compact operator T does not imply (n=!||T™|),
— 0. More recently, Derriennic [D] constructed a mean ergodic operator T
on a Hilbert space such that ||T™|| > n for every positive integer n; more-
over, T* is weakly mean ergodic (i.e., the averages converge weakly for ev-
ery point of the Hilbert space) but not mean ergodic. Moreover, Yoshimoto
[Y1, Y2] obtained, under the assumption that (n="|7"|)$2; — 0 (resp.
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(n™*T™)>°; — 0 in the strong operator topology), the equivalence between

the convergence of 07(105) [T] in the uniform operator norm (resp., in the strong
operator topology) and that of the so-called Dirichlet methods (which gener-
alize the Abel method), where w = min(1, ), and C’,(ll)[T] =n! Z;.:é T7.

In this paper, under a fairly weak condition (cf. Proposition 2.1(4) be-
low), we shall first obtain a general mean ergodic theorem for operators 7'
which are not necessarily mean-bounded nor satisfy (n=17")%; — 0 on X
uniformly, operator strongly, or operator weakly (cf. also Proposition 2.2).
We next obtain a mean ergodic theorem for compact operators on a Banach
space, which need not be mean-bounded nor satisfy (n_lT”)%O:1 —0on X
uniformly, operator strongly or operator weakly (cf. Theorem 2.3 and its
corollaries below). Finally, in Theorem 2.10, we present a relation between
our condition and power-boundedness.

2. Ergodic theorems. If (X, ||-||) is a normed space, we denote by B(X)
the space of all bounded linear operators on X. If A € B(X), then z € X is
called a fized point of A if Ax = x, and 0(A) denotes the spectrum of A.

We begin with the following result:

PROPOSITION 2.1. Let (X, || - ||) be a (real or complex) normed space,
A€ B(X) andx € X. Denote by I the identity operator on X, and (I — A)X
the norm closure of (I — A)X in X.

(1) If for some subsequence (ng);, of (n)3 1, ny* >k Alx — 0 weakly
as k — oo, thenx € (I — A)X.

(2) If n=tA"x — 0 weakly as n — oo and n,;l Z?il Alxy — T weakly
as k — oo for some subsequence (ny)p>, of (n);,, then AT = T, and

n=1»

r—ze(l-A)X.
(3) If v = (I — A)y with n=' A"y — 0 weakly (resp. strongly) as n — oo,
then n~! Z?:l Alx — 0 weakly (resp. strongly) as n — oc.
4) Suppose n"*A"x — 0 weakly as n — oo and for some subsequence
(4) Supp eakly q
nk)e, of (n)°%,, n S Alx — T weakly as k — oo. I,
k=1 n=1 k j=1
(%) r—T=(—Ay with n A" — 0 as n — oo,
then |n~! > i1 Az —ZF|| — 0 as n — oo.
Proof. (1) Note that

-1 -2 1
(I—A)<I+nk Atk A2+...+—A”k‘1>x
i i ny,

1
= [I—n—(A+A2+...—|—A"’“)]x—>x weakly as k — oo.
k

The desired conclusion follows.
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(2) By our assumption, setting z,, = n~! anl Alx, we have

ne+1

Axy, = i Z AFg = n_k[(ZAk ) + Aty Am]

1 1
= Zn, + e (Ametlg) — - Ar — T weakly as k — oo.

Since A is also weakly continuous, Ax,, — AT weakly as k — oo; thus we
conclude that AT = T. Therefore

—ZAJZE—QS‘ ZAJZL'—:E—>0 weakly as k — oo.
ng nk

By (1),z—7€(I-A)X
(3) Since

%zn:ij——ZAJI A)y ZAJy— ZAJ“
j=1

= —Ay A"Jrl

the desired conclusions hold.
(4) By (2), Az = 7. Thus by (3), we have

1~ 1
— Ale —T=— Al(x—T) — 0 strongly asn — co. n
DICEEEEDIRIE

PROPOSITION 2.2. Let (X, | - ||) be a (real or complex) Banach space,
A€ B(X) and x € X. Suppose I — A is one-to-one and has closed range,
|A"z||/n — 0 as n — oo and n, ' >k Az — T weakly as k — oo for
a subsequence (ng)pe, of (n)p,. Then there exists y € X satisfying the
condition (x) of Proposition 2.1 above, and ||n~! > i Az — 7| — 0 as
n — oo.

Proof. By Proposition 2.1(2), AT = T and 2 — T € (I —A)X. As
|A"z|/n — 0 as n — oo, we have ||[A"(x —Z)|/n — 0 as n — oo. Since
I — A has closed range and is one-to-one, there is a (unique) y € X such that
(I —A)y = x —7. Since (I — A)X is (closed in X, hence) a Banach space,
by the open mapping theorem (I — A)~!: (I — A)X — X is bounded. Thus

A"yl _ (1 = A~ A™ (@ — 7))
no n

< ||(I—A)*1HM—>O as n — oo.
n

By Proposition 2.1(4), [n~' Y7 Az — T — 0 as n — co.
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We now present our main result:

THEOREM 2.3. Let (X,| -||) be a (real or complex) Banach space, A €
B(X) be a compact operator and x € X be such that |A"z|/n — 0 as
n — oo. If the sequence (n~! Z?Zl Alz)> | is bounded, then it converges
strongly to a fized point of A.

Proof. As A is compact and the sequence (nflzyzl AJz)° , is bounded,

every subsequence of the sequence (n~! Z;L:Ql AJz)% | has a convergent sub-
sequence. Because ||A"z|/n — 0 and

n+1

% ; ZA]:U+ Ay,

every subsequence of the sequence (n Z;‘:l AJz)% | also has a convergent
subsequence.

CASE 1: A has no non-zero fized point. Let (ng)3, be any subsequence
of (n)?°, and T € X such that n; ! >k Az — T as k: — 00. By Proposition
2.1(2), AT = 7. Since A has no non-zero fixed point, we must have T = 0.
It follows that n~! > i1 Az — 0 as n — oo.

CASE 2: A has non-zero fixed points.

SUBCASE 1. Suppose X is a complex Banach space. Let o3 = 0(A)\ {1}.
Then there is a Riesz decomposition of X = X @ Xo, where X7 and X5 are
closed A-invariant subspaces of X, X is finite-dimensional, o(A4;) = {1}
and 0(Ag) = 02, where A; = Alx, for j = 1,2. Clearly each A; is compact
on Xj, and the projection E; on X, corresponding to the decomposition
satisfies E;A = AE; = AjE;. Let x = x1 + 22, where x; € X; for j = 1,2.
Then

IIA”xII

< 1Bkl ——

IIA”kaII _ AREx| _ ||ER A 0
n )

n

i=1 j=1

By Case 1, we have n~! > i1 Alzy — 0 as n — oo,

We shall now show that A;z; = 1, hence n~! Z?:l A’fxl = 1 for all
n > 1. This will show that (n~* > i1 AJz)% | converges to 1+0 € X1+ Xo,
which is a fixed point of A, thus completing the proof.

Indeed, it suffices to show that for any m x m cell K (where m > 2) in
the Jordan form of Ay,
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and any y = [y1,¥2,...,Ym]t € C™ with ||[K"y||/n — 0, we have yo =
ys = ... = Ym = 0, hence Ky = y. To this end, for each p > m, let
KpPy = [kgp),kép),...,k%)]t. Then for each j =1,...,m,

K9 =i+ (P )y + .. L P
] yy+<1 Yjr1+ ...+ m— Y

Since
1w 1 1/p
“EY =y + - 0 )

» m—1 pym 1‘|‘p<1>ym—> asp— 0
we must have y,, =0. If y,, = ... =y; = 0 for j > 3, then since
1w 1 1/(p 1 P
p j‘Q_pyHer(l e i 2)

1 1/(p
=—yj—2+—|, )y-1—0 asp— oo,
p p\1
we must have y;_1 = 0. Thus by induction, y2 = y3 = ... = y,, = 0, and we

are done in Subcase 1.

SUBCASE 2. Suppose (X, || - ||) is a real Banach space. Let X¢ be the
complexification of X and let Ac be the complexification of A (see e.g.
[PS] or [ERT, pp. 118-119]). Then n~!||A%(z,0)[] = n !|A"z| — 0 as
n — oo and the sequence (n~! > i1 AL(2,0))22, = (n~! > i1 Alz,0)%2,
is bounded. By Subcase 1, the sequence (n~! P A(jc(a:, 0))o°, converges
to a fixed point (7,0) of Ac. It follows that (n~! > i1 Alz)%° | converges
to T which is a fixed point of A. m

It is clear that the conditions in Proposition 2.1(4) are satisfied if z, X, A
are as given in Theorem 2.3. We note also that as briefly mentioned pre-
viously, in [E] there is given an example of a real 2 x 2 matrix A which,
regarded as an operator on X = R?, satisfies sup, n~! PR A7) < oo,
but for some z € X, the sequence (n~!||A"z||)%_; does not tend to 0. The
following theorem is an easy but interesting consequence of Theorem 2.3;
for some related results, the reader is referred to [BGM].

THEOREM 2.4. Let (X, || -||) be a (real or complex) Banach space and
A € B(X) be a compact operator. Let x € X be such that a subsequence of
(A"z)%2 ; is bounded. Then (n~! > Ax)p2y converges to a fived point
of A.
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Proof. By Theorem 4 in [ERT, pp. 117-118], the whole sequence
(A"x)2°, is bounded. The desired conclusion then follows readily from our
Theorem 2.3. »

In particular, we have the following result which is Theorem 2.1 of [TT]:

COROLLARY 2.5. Let A be an m x m complex (respectively, real) matriz
and x be an m x 1 complex (respectively, real) vector. If (A"z)S% | has a
bounded subsequence, then (n~! Z?:l Alx)oe | converges to a fized vector

of A.

We emphasize that the compact operator A in Theorem 2.3 (respectively,
in Theorem 2.4, and the m x m matrix A in Corollary 2.5) is not assumed to
be mean-bounded. Indeed, we shall provide in the following a simple example
of a compact operator A satisfying the conditions in Theorem 2.3, Theorem
2.4 and Corollary 2.5 respectively, but which is not mean-bounded.

EXAMPLE 2.6. Let X = R3 or C3 and

b 0 0
A=1[0 ¢ O
0 0 d

where [b] < 1, |¢| =1, |d| > 1. Then A is a compact operator on X which
is not power-bounded and not mean-bounded so that Theorem 1 in [YK] is
not applicable. Let = [r, s, u|’. Then the sequence ||A"z||/n — 0 as n — oo
if and only if u = 0, if and only if (A"z)5%; has a bounded subsequence;
moreover, in that case, the sequence (n~! > i1 AJz)%, (is bounded and)
converges to T, where

_ { [0,5,0° ifc=1,
0 if c#£1,

and T is a fixed point of A. Note that in the present example, the con-
dition v = 0 is even necessary for the boundedness of the sequence
(n~t > i Aoy

We now consider the conditions (a) A is power-bounded (i.e., sup,,~ || A" ||
< 00), and (b) [|A®||/n — 0 as n — oo. In general, (b) is strictly weaker
than (a) (see, e.g., [S]). However, in [MZ, Theorem 3], it is shown that for
a Riesz operator A on a complex Banach space, (a) and (b) are equivalent.
In Theorem 2.10 below we present a slightly more general result for a not
necessarily Riesz operator. It also generalizes the result of Sz.-Nagy [N] from
a compact operator on a complex Hilbert space to an operator more general
than a Riesz operator on a real or complex Hilbert space. For related results
for more restrictive classes of operators, we refer the reader to [Ze].

We will need (parts of) three lemmas which are of some independent
interest. In the first lemma, we consider a real Banach space (X, ]| - |),
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and A € B(X). Let (X¢,| - ||c), and Ac be its complexification. If || - || is
induced by an inner product (-,-) i.e., if X is a real Hilbert space, then we
let (Xc, (-,-)c) be the (Hilbert space) complexification of X; and || - ||c is
induced by (-, )¢ (see, e.g., [PS] or [ERT, pp. 118-119)).

LEMMA 2.7. We use the above notations.

(1) Let (X,|| - ||) be a real Banach space, and let A € B(X). Then A
is power-bounded if and only if its complezification Ac is power-bounded.
Moreover, ||A™||/n — 0 as n — oo if and only if ||AZ||/n — 0 as n — oo.

(2) Let X be a real Hilbert space, and A € B(X). Then A is similar
to a contraction on X if and only if its complexification Ac is similar to a
contraction on Xc.

Proof. (1) Since there is a positive constant d such that for every positive
integer n, ||A"|| < ||AZ|| < d||A"||, the assertions are obviously true.

(2) Suppose A is similar to a contraction on the real Hilbert space X,
and let S be an invertible operator in B(X) such that ||[SAS™!|| < 1. Let
T=98xS8. Then Tt =871 x S~ in B(Y), and ||[TAcT Y| <1, so Ac is
similar to a contraction.

Conversely, suppose Ac is similar to a contraction on X¢. We shall show
that A is similar to a contraction on X. Indeed, let W be an invertible
operator in B(X¢) such that ||[WAcW 1| < 1. By the Riesz representation
theorem and spectral theorem, there exists a positive operator P € B(X)
such that (Py, Pz) = Re(W(y,0), W(x,0))c; here, Re z denotes the real part
of the complex number z. Then P is bijective, hence invertible in B(X). Now
for each x € X,

|PAP 'z|| = |W (AP 12,0)||c = |[WAW W (P 1z,0)|c
< WP '2,0)|lc = [|P(P 2)|| = ||z|;

thus ||[PAP~!|| <1 and A is similar to a contraction on X. m

LEMMA 2.8. Let (X, | - ||) be a (real or complex) Banach space, let A €
B(X), and let X, j = 1,2, be A-invariant closed subspaces of X such that
X = Xy + Xa. Let A; denote the restriction of A to X;, j = 1,2. Then A
is power-bounded if and only if Aj, j = 1,2, are power-bounded. Moreover,
limy—oo A" /n = 0 if and only if limy, . | A7 ||/n =0 for j =1,2.

Proof. Since A7 is the restriction of A" to Xj,[|A}|| < [|A"[| and the
necessity of both assertions are obviously true. For the sufficiency, suppose
first X is a complex Banach space. Note that by [R, Theorem 5.20, p. 130],
there exists a positive constant r such that for each x € X, there are z; € X,
Jj = 1,2, satisfying x = x1 + x2 and ||z1]| + ||z2|| < r|z||. Hence for each
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positive integer n,
[A" ]| < [[AT21[| + [AZ22ll < (AT + [[AZ D (2] + [lz2]])
< (AT + 1Az [Dr{ll,

and the sufficiency of both assertions in the complex Banach space case
follows readily.

Suppose now that X is a real Banach space and each A; is power-
bounded. For notational simplicity, let Y = X¢ and B = Ac¢ be their com-
plexifications. Define Y; = X; x X for j = 1,2. Then each Y} is a closed
B-invariant subspace of Y, and Y = X¢ = Y1 +Y5. Let B; be the restriction
of B toYj, j =12 Then B; = A; x A; = (4j)c. By Lemma 2.7, each
Bj is power-bounded. By the preceding paragraph, B is power-bounded. By
Lemma 2.7 again, A is power-bounded. Similarly the sufficiency of the other
assertion is proved. m

LEMMA 2.9. Let (X,|| - ||) be a (real or complex) Hilbert space, A €
B(X), and X;, j = 1,2, be A-invariant closed subspaces of X such that
X = X1 + Xa. Let A; denote the restriction of A to X;, j = 1,2. Then
A is similar to a contraction on X if and only if each Aj; is similar to a
contraction on X;, j =1,2.

Proof. (1) Suppose X is a complex Hilbert space. By Paulsen’s result
[P, Corollary 3.5], the lemma is equivalent to the assertion that A is com-
pletely polynomially bounded if and only if each A;, j = 1,2, is completely
polynomially bounded. To show the latter assertion, note that for every
square matrix [py;] of (complex) polynomials (of one variable), [p;(A4;)] is
a restriction of [p;;(A)], so the necessity is clear. For the sufficiency, let c¢;,
j = 1,2, be constants such that for every square matrix [p;x] of polynomials,
[ (AN < ¢jll[Pee] lloos 5 =1, 2. N

Consider [pi;(A)]1<1,k<n as an operator on the direct sum X = >~} &X
of n copies of X, and let & = [(®)] € X be arbitrary. As in Lemma 2.8
above, there is a positive constant r (independent of n and x) and for each
k=1,...,n, there are a;g-k) € Xj, j = 1,2, satistying z®) = Jfgk) + a:gk) and

HCng)” + IIwék)H < r)|lz®||. Hence
k k m o 1/2 N 1/2
5+ 1 < (2 1eP12) 7 + (3 1e1?)
k=1 k=1

n 1/2
22 [ S (eI + 12|

k=1

" 1/2 ~
<2232 < e,
k=1

IN
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where ¢ = 21/2r. Now we have

I pu(A)]3| = [Zm ®[ =] [iim@“ﬂém] |

k=1 k=1 j=1
2 n
= | [ mmana]|
j=1 k=1
< NSt [ et
k=1 k=1

= |llpw(AD)] 271+ | pi(A2)] [287]]
< o (AT T+ 1o (A2 T30

< max(er, e2)|[pue] oo (121 + 111257111
< cmax(er, )| [pu o171,

so that ||[pi(A)]|| < ¢ max(eq, c2)||[pik]]|co- Thus A is completely polynomi-
ally bounded. So the lemma is proved in the complex Hilbert space case.

(2) Suppose X is a real Hilbert space. Then as in Lemma 2.8, we consider
the complexifications. With the notation therein and by Lemma 2.7, A (re-
spectively A;) is similar to a contraction if and only if so is B (respectively
Bj). By (1) above, the desired conclusion follows readily. m

THEOREM 2.10. Let (X, | - ||) be a (real or complex) Banach space and
let A € B(X). Let X1, X2 be closed A-invariant subspaces of X such that
X1 is finite-dimensional, X = X1 + Xo, and the spectral radius ro(As) =
limy, o0 || AZ||Y/™ is less than 1, where A; denotes the restriction of A to Xj.
Suppose ||A"||/n — 0 asn — oo. Then A is power-bounded. If X is a Hilbert
space, then A is similar to a contraction on X.

Proof. (1) Suppose X is a complex Banach space. By Lemma 2.8,
limy, o0 [| A7 || /n = 0 for j = 1,2. Since A; is compact, A; is power-bounded
by [MZ, Theorem 3]. Since r,(A2) < 1 and [|[A}| — 0 as n — oo, Ay is
power-bounded. By Lemma 2.8, A is power-bounded.

(2) Let X be a real Banach space. As in Lemma 2.8, we consider the
complexifications. Using the notations therein and by Lemma 2.7, each Y}
is a B-invariant closed subspace of Y, Y7 is finite-dimensional, ¥ = Y7 + Y5,
lim,, oo [|B"||/n = 0, and 74(Ba) = lim, .o | BY||" = lim, . ||AZ]"/"
< 1. By (1) above, B is power-bounded. By Lemma 2.7, A is power-bounded.

(3) Let X be a complex Hilbert space. Since r,(A2) < 1, by Rota’s result
[RO], As is similar to a (proper) contraction on Xs. On the other hand, since
|AT]|/n — 0 as n — oo, 75(A1) < 1. If 7,(A1) < 1, then again by Rota’s
result [ROJ, A; is similar to a (proper) contraction on Xj. If r5(A4;) = 1,
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then the condition lim,,_,« ||A}||/n = 0 together with Jordan canonical form
(since X is finite-dimensional) implies that A; is diagonalizable, and A; is
similar to a contraction on X;. Therefore each A; is similar to a contraction
on X; for j = 1,2. By Lemma 2.9, A is similar to a contraction on X.

(4) Finally, let X be a real Hilbert space. As in (2) above, we have
Y = X¢c = Y; + Ys (all complex Hilbert spaces) with Y finite-dimensional,
B = Ac = B; + By, 75(B2) < 1. Thus by (3) above, Ac¢ is similar to a
contraction on X¢. By Lemma 2.9, A is similar to a contraction on X. m

We note that in Lemma 2.8, Lemma 2.9, and Theorem 2.10, the sum
X = X1 4+ X5 need not be a direct sum; in particular, when X is a Hilbert
space, the sum X = X; + X2 need not be an orthogonal (or direct) sum.

Theorem 2.10 implies readily the following result in which the case of
a compact operator on a complex Hilbert space was proved by Sz.-Nagy
in [N]:

COROLLARY 2.11. Let A be a power-bounded compact operator (respec-
tively, a Riesz operator) on a real or complex (respectively, complex) Hilbert
space H. Then A is similar to a contraction on H.
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