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Mean ergodicity for compact operators

by

Heydar Radjavi (Halifax), Ping-Kwan Tam (Hong Kong)
and Kok-Keong Tan (Halifax)

Abstract. A mean ergodic theorem is proved for a compact operator on a Banach
space without assuming mean-boundedness. Some related results are also presented.

1. Introduction. In the literature, mean ergodic theorems for linear
operators usually deal with operators which are power bounded (see, e.g.,
[YK] and [Z]). However, already in 1945, Hille [H] gave an example of an
operator T on X = L1[0, 1] which is mean ergodic (i.e., the sequence of aver-
ages (n−1∑n

j=1 T
jx)∞n=1 converges strongly for every x ∈ X) but not power-

bounded. By the Banach–Steinhaus theorem, a necessary condition for mean
ergodicity is mean-boundedness, i.e., supn n

−1‖∑n
j=1 T

j‖ < ∞ (which is
C-mean-boundedness in [E]). Also the strong (resp. weak) convergence of
(n−1∑n

j=1 T
jx)∞n=1 clearly implies that (n−1Tnx)∞n=1 → 0 strongly (resp.

weakly). In the treatment of mean ergodic theory in the book of Dunford
and Schwartz [DS], the operator T is assumed to be mean-bounded (Theo-
rem VIII.5.1, p. 661), or the sequence (n−1Tn)∞n=1 is assumed to converge
to zero weakly (Theorem VIII.8.3, p. 711). In 1985, Émilion [E] gave an ex-
ample of a positive operator on Lp (1 < p <∞) which is mean ergodic and
not power-bounded; he also showed by an example (due to I. Assani) that
mean-boundedness of a compact operator T does not imply (n−1‖Tn‖)∞n=1
→ 0. More recently, Derriennic [D] constructed a mean ergodic operator T
on a Hilbert space such that ‖T n‖ ≥ n for every positive integer n; more-
over, T ∗ is weakly mean ergodic (i.e., the averages converge weakly for ev-
ery point of the Hilbert space) but not mean ergodic. Moreover, Yoshimoto
[Y1, Y2] obtained, under the assumption that (n−w‖Tn‖)∞n=1 → 0 (resp.
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(n−wTn)∞n=1 → 0 in the strong operator topology), the equivalence between
the convergence of C(α)

n [T ] in the uniform operator norm (resp., in the strong
operator topology) and that of the so-called Dirichlet methods (which gener-
alize the Abel method), where w = min(1, α), and C

(1)
n [T ] = n−1∑n−1

j=0 T
j .

In this paper, under a fairly weak condition (cf. Proposition 2.1(4) be-
low), we shall first obtain a general mean ergodic theorem for operators T
which are not necessarily mean-bounded nor satisfy (n−1Tn)∞n=1 → 0 on X
uniformly, operator strongly, or operator weakly (cf. also Proposition 2.2).
We next obtain a mean ergodic theorem for compact operators on a Banach
space, which need not be mean-bounded nor satisfy (n−1Tn)∞n=1 → 0 on X
uniformly, operator strongly or operator weakly (cf. Theorem 2.3 and its
corollaries below). Finally, in Theorem 2.10, we present a relation between
our condition and power-boundedness.

2. Ergodic theorems. If (X, ‖·‖) is a normed space, we denote by B(X)
the space of all bounded linear operators on X. If A ∈ B(X), then x ∈ X is
called a fixed point of A if Ax = x, and σ(A) denotes the spectrum of A.

We begin with the following result:

Proposition 2.1. Let (X, ‖ · ‖) be a (real or complex ) normed space,
A ∈ B(X) and x ∈ X. Denote by I the identity operator on X, and (I − A)X
the norm closure of (I −A)X in X.

(1) If for some subsequence (nk)∞k=1 of (n)∞n=1, n−1
k

∑nk
j=1A

jx→ 0 weakly

as k →∞, then x ∈ (I −A)X.
(2) If n−1Anx → 0 weakly as n → ∞ and n−1

k

∑nk
j=1 A

jx → x weakly
as k → ∞ for some subsequence (nk)∞k=1 of (n)∞n=1, then Ax = x, and
x− x ∈ (I −A)X.

(3) If x = (I −A)y with n−1Any → 0 weakly (resp. strongly) as n→∞,
then n−1∑n

j=1A
jx→ 0 weakly (resp. strongly) as n→∞.

(4) Suppose n−1Anx → 0 weakly as n → ∞ and for some subsequence
(nk)∞k=1 of (n)∞n=1, n−1

k

∑nk
j=1A

jx→ x weakly as k →∞. If

(∗) x− x = (I − A)y with n−1‖Any‖ → 0 as n→∞,
then ‖n−1∑n

j=1A
jx− x‖ → 0 as n→∞.

Proof. (1) Note that

(I − A)
(
I +

nk − 1
nk

A+
nk − 2
nk

A2 + . . .+
1
nk

Ank−1
)
x

=
[
I − 1

nk
(A+A2 + . . .+ Ank)

]
x→ x weakly as k →∞.

The desired conclusion follows.
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(2) By our assumption, setting xn = n−1∑n
j=1A

jx, we have

Axnk =
1
nk

nk+1∑

j=2

Akx =
1
nk

[( nk∑

j=1

Akx
)

+ Ank+1x− Ax
]

= xnk +
1
nk

(Ank+1x)− 1
nk

Ax→ x weakly as k →∞.

Since A is also weakly continuous, Axnk → Ax weakly as k → ∞; thus we
conclude that Ax = x. Therefore

1
nk

nk∑

j=1

Aj(x− x) =
1
nk

nk∑

j=1

Ajx− x→ 0 weakly as k →∞.

By (1), x− x ∈ (I − A)X.
(3) Since

1
n

n∑

j=1

Ajx =
1
n

n∑

j=1

Aj(I − A)y =
1
n

n∑

j=1

Ajy − 1
n

n∑

j=1

Aj+1y

=
1
n
Ay − 1

n
An+1y,

the desired conclusions hold.
(4) By (2), Ax = x. Thus by (3), we have

1
n

n∑

j=1

Ajx− x =
1
n

n∑

j=1

Aj(x− x)→ 0 strongly as n→∞.

Proposition 2.2. Let (X, ‖ · ‖) be a (real or complex ) Banach space,
A ∈ B(X) and x ∈ X. Suppose I − A is one-to-one and has closed range,
‖Anx‖/n → 0 as n → ∞ and n−1

k

∑nk
j=1A

jx → x weakly as k → ∞ for
a subsequence (nk)∞k=1 of (n)∞n=1. Then there exists y ∈ X satisfying the
condition (∗) of Proposition 2.1 above, and ‖n−1∑n

j=1A
jx − x‖ → 0 as

n→∞.

Proof. By Proposition 2.1(2), Ax = x and x − x ∈ (I − A)X. As
‖Anx‖/n → 0 as n → ∞, we have ‖An(x− x)‖/n → 0 as n → ∞. Since
I−A has closed range and is one-to-one, there is a (unique) y ∈ X such that
(I − A)y = x − x. Since (I − A)X is (closed in X, hence) a Banach space,
by the open mapping theorem (I −A)−1 : (I −A)X → X is bounded. Thus

‖Any‖
n

=
‖(I − A)−1An(x− x)‖

n

≤ ‖(I − A)−1‖ ‖A
n(x− x)‖
n

→ 0 as n→∞.

By Proposition 2.1(4), ‖n−1∑n
j=1A

jx− x‖ → 0 as n→∞.
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We now present our main result:

Theorem 2.3. Let (X, ‖ · ‖) be a (real or complex ) Banach space, A ∈
B(X) be a compact operator and x ∈ X be such that ‖Anx‖/n → 0 as
n → ∞. If the sequence (n−1∑n

j=1A
jx)∞n=1 is bounded , then it converges

strongly to a fixed point of A.

Proof. As A is compact and the sequence (n−1∑n
j=1A

jx)∞n=1 is bounded,

every subsequence of the sequence (n−1∑n+1
j=2 A

jx)∞n=1 has a convergent sub-
sequence. Because ‖Anx‖/n→ 0 and

1
n

n∑

j=1

Ajx =
1
n

n+1∑

j=2

Ajx+
1
n

(Ax−An+1x),

every subsequence of the sequence (n−1∑n
j=1A

jx)∞n=1 also has a convergent
subsequence.

Case 1: A has no non-zero fixed point. Let (nk)∞k=1 be any subsequence
of (n)∞n=1 and x ∈ X such that n−1

k

∑nk
j=1A

jx→ x as k →∞. By Proposition
2.1(2), Ax = x. Since A has no non-zero fixed point, we must have x = 0.
It follows that n−1∑n

j=1A
jx→ 0 as n→∞.

Case 2: A has non-zero fixed points.

Subcase 1. Suppose X is a complex Banach space. Let σ2 = σ(A)\{1}.
Then there is a Riesz decomposition of X = X1⊕X2, where X1 and X2 are
closed A-invariant subspaces of X, X1 is finite-dimensional, σ(A1) = {1}
and σ(A2) = σ2, where Aj = A|Xj for j = 1, 2. Clearly each Aj is compact
on Xj , and the projection Ej on Xj corresponding to the decomposition
satisfies EjA = AEj = AjEj . Let x = x1 + x2, where xj ∈ Xj for j = 1, 2.
Then

‖Ankxk‖
n

=
‖AnkEkx‖

n
=
‖EkAnx‖

n
≤ ‖Ek‖

‖Anx‖
n

→ 0,
∥∥∥∥

1
n

n∑

j=1

Ajkxk

∥∥∥∥ =

∥∥∥∥
1
n

n∑

j=1

EkA
jx

∥∥∥∥ ≤ ‖Ek‖ ·
∥∥∥∥

1
n

n∑

j=1

Ajx

∥∥∥∥.

By Case 1, we have n−1∑n
j=1A

j
2x2 → 0 as n→∞.

We shall now show that A1x1 = x1, hence n−1∑n
j=1A

k
1x1 = x1 for all

n ≥ 1. This will show that (n−1∑n
j=1A

jx)∞n=1 converges to x1+0 ∈ X1+X2,
which is a fixed point of A, thus completing the proof.

Indeed, it suffices to show that for any m×m cell K (where m ≥ 2) in
the Jordan form of A1,
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K =




1 1
1 1

. . . . . .
1 1

1



,

and any y = [y1, y2, . . . , ym]t ∈ Cm with ‖Kny‖/n → 0, we have y2 =
y3 = . . . = ym = 0, hence Ky = y. To this end, for each p ≥ m, let
Kpy = [k(p)

1 , k
(p)
2 , . . . , k

(p)
m ]t. Then for each j = 1, . . . ,m,

k
(p)
j = yj +

(
p

1

)
yj+1 + . . .+

(
p

m− j

)
ym.

Since
1
p
k

(p)
m−1 =

1
p
ym−1 +

1
p

(
p

1

)
ym → 0 as p→∞,

we must have ym = 0. If ym = . . . = yj = 0 for j ≥ 3, then since

1
p
k

(p)
j−2 =

1
p
yj−2 +

1
p

(
p

1

)
yj−1 + . . .+

1
p

(
p

m− j + 2

)
ym

=
1
p
yj−2 +

1
p

(
p

1

)
yj−1 → 0 as p→∞,

we must have yj−1 = 0. Thus by induction, y2 = y3 = . . . = ym = 0, and we
are done in Subcase 1.

Subcase 2. Suppose (X, ‖ · ‖) is a real Banach space. Let XC be the
complexification of X and let AC be the complexification of A (see e.g.
[PS] or [ERT, pp. 118–119]). Then n−1‖AnC(x, 0)‖ = n−1‖Anx‖ → 0 as
n → ∞ and the sequence (n−1∑n

j=1A
j
C(x, 0))∞n=1 = (n−1∑n

j=1A
jx, 0)∞n=1

is bounded. By Subcase 1, the sequence (n−1∑n
j=1A

j
C(x, 0))∞n=1 converges

to a fixed point (x, 0) of AC. It follows that (n−1∑n
j=1A

jx)∞n=1 converges
to x which is a fixed point of A.

It is clear that the conditions in Proposition 2.1(4) are satisfied if x,X,A
are as given in Theorem 2.3. We note also that as briefly mentioned pre-
viously, in [E] there is given an example of a real 2 × 2 matrix A which,
regarded as an operator on X = R2, satisfies supn n

−1∑n
j=1 ‖Aj‖ < ∞,

but for some x ∈ X, the sequence (n−1‖Anx‖)∞n=1 does not tend to 0. The
following theorem is an easy but interesting consequence of Theorem 2.3;
for some related results, the reader is referred to [BGM].

Theorem 2.4. Let (X, ‖ · ‖) be a (real or complex ) Banach space and
A ∈ B(X) be a compact operator. Let x ∈ X be such that a subsequence of
(Anx)∞n=1 is bounded. Then (n−1∑n

j=1A
jx)∞n=1 converges to a fixed point

of A.
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Proof. By Theorem 4 in [ERT, pp. 117–118], the whole sequence
(Anx)∞n=1 is bounded. The desired conclusion then follows readily from our
Theorem 2.3.

In particular, we have the following result which is Theorem 2.1 of [TT]:

Corollary 2.5. Let A be an m×m complex (respectively , real) matrix
and x be an m × 1 complex (respectively , real) vector. If (Anx)∞n=1 has a
bounded subsequence, then (n−1∑n

j=1A
jx)∞n=1 converges to a fixed vector

of A.

We emphasize that the compact operator A in Theorem 2.3 (respectively,
in Theorem 2.4, and the m×m matrix A in Corollary 2.5) is not assumed to
be mean-bounded. Indeed, we shall provide in the following a simple example
of a compact operator A satisfying the conditions in Theorem 2.3, Theorem
2.4 and Corollary 2.5 respectively, but which is not mean-bounded.

Example 2.6. Let X = R3 or C3 and

A =



b 0 0
0 c 0
0 0 d




where |b| < 1, |c| = 1, |d| > 1. Then A is a compact operator on X which
is not power-bounded and not mean-bounded so that Theorem 1 in [YK] is
not applicable. Let x = [r, s, u]t. Then the sequence ‖Anx‖/n→ 0 as n→∞
if and only if u = 0, if and only if (Anx)∞n=1 has a bounded subsequence;
moreover, in that case, the sequence (n−1∑n

j=1A
jx)∞n=1 (is bounded and)

converges to x, where

x =
{

[0, s, 0]t if c = 1,

0 if c 6= 1,
and x is a fixed point of A. Note that in the present example, the con-
dition u = 0 is even necessary for the boundedness of the sequence
(n−1∑n

j=1A
jx)∞n=1.

We now consider the conditions (a) A is power-bounded (i.e., supn≥1‖An‖
< ∞), and (b) ‖An‖/n → 0 as n → ∞. In general, (b) is strictly weaker
than (a) (see, e.g., [S]). However, in [MZ, Theorem 3], it is shown that for
a Riesz operator A on a complex Banach space, (a) and (b) are equivalent.
In Theorem 2.10 below we present a slightly more general result for a not
necessarily Riesz operator. It also generalizes the result of Sz.-Nagy [N] from
a compact operator on a complex Hilbert space to an operator more general
than a Riesz operator on a real or complex Hilbert space. For related results
for more restrictive classes of operators, we refer the reader to [Ze].

We will need (parts of) three lemmas which are of some independent
interest. In the first lemma, we consider a real Banach space (X, ‖ · ‖),
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and A ∈ B(X). Let (XC, ‖ · ‖C), and AC be its complexification. If ‖ · ‖ is
induced by an inner product 〈·, ·〉 i.e., if X is a real Hilbert space, then we
let (XC, 〈·, ·〉C) be the (Hilbert space) complexification of X; and ‖ · ‖C is
induced by 〈·, ·〉C (see, e.g., [PS] or [ERT, pp. 118–119]).

Lemma 2.7. We use the above notations.

(1) Let (X, ‖ · ‖) be a real Banach space, and let A ∈ B(X). Then A
is power-bounded if and only if its complexification AC is power-bounded.
Moreover , ‖An‖/n→ 0 as n→∞ if and only if ‖AnC‖/n→ 0 as n→∞.

(2) Let X be a real Hilbert space, and A ∈ B(X). Then A is similar
to a contraction on X if and only if its complexification AC is similar to a
contraction on XC.

Proof. (1) Since there is a positive constant d such that for every positive
integer n, ‖An‖ ≤ ‖AnC‖ ≤ d‖An‖, the assertions are obviously true.

(2) Suppose A is similar to a contraction on the real Hilbert space X,
and let S be an invertible operator in B(X) such that ‖SAS−1‖ ≤ 1. Let
T = S × S. Then T−1 = S−1 × S−1 in B(Y ), and ‖TACT−1‖ ≤ 1, so AC is
similar to a contraction.

Conversely, suppose AC is similar to a contraction on XC. We shall show
that A is similar to a contraction on X. Indeed, let W be an invertible
operator in B(XC) such that ‖WACW−1‖ ≤ 1. By the Riesz representation
theorem and spectral theorem, there exists a positive operator P ∈ B(X)
such that 〈Py, Px〉 = Re〈W (y, 0),W (x, 0)〉C; here, Re z denotes the real part
of the complex number z. Then P is bijective, hence invertible in B(X). Now
for each x ∈ X,

‖PAP−1x‖ = ‖W (AP−1x, 0)‖C = ‖WACW
−1W (P−1x, 0)‖C

≤ ‖W (P−1x, 0)‖C = ‖P (P−1x)‖ = ‖x‖;

thus ‖PAP−1‖ ≤ 1 and A is similar to a contraction on X.

Lemma 2.8. Let (X, ‖ · ‖) be a (real or complex ) Banach space, let A ∈
B(X), and let Xj , j = 1, 2, be A-invariant closed subspaces of X such that
X = X1 + X2. Let Aj denote the restriction of A to Xj, j = 1, 2. Then A
is power-bounded if and only if Aj , j = 1, 2, are power-bounded. Moreover ,
limn→∞ ‖An‖/n = 0 if and only if limn→∞ ‖Anj ‖/n = 0 for j = 1, 2.

Proof. Since Anj is the restriction of An to Xj , ‖Anj ‖ ≤ ‖An‖ and the
necessity of both assertions are obviously true. For the sufficiency, suppose
first X is a complex Banach space. Note that by [R, Theorem 5.20, p. 130],
there exists a positive constant r such that for each x ∈ X, there are xj ∈ Xj,
j = 1, 2, satisfying x = x1 + x2 and ‖x1‖ + ‖x2‖ ≤ r‖x‖. Hence for each
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positive integer n,

‖Anx‖ ≤ ‖An1x1‖+ ‖An2x2‖ ≤ (‖An1‖+ ‖An2‖)(‖x1‖+ ‖x2‖)
≤ (‖An1‖+ ‖An2‖)r‖x‖,

and the sufficiency of both assertions in the complex Banach space case
follows readily.

Suppose now that X is a real Banach space and each Aj is power-
bounded. For notational simplicity, let Y = XC and B = AC be their com-
plexifications. Define Yj = Xj × Xj for j = 1, 2. Then each Yj is a closed
B-invariant subspace of Y , and Y = XC = Y1 +Y2. Let Bj be the restriction
of B to Yj , j = 1, 2. Then Bj = Aj × Aj = (Aj)C. By Lemma 2.7, each
Bj is power-bounded. By the preceding paragraph, B is power-bounded. By
Lemma 2.7 again, A is power-bounded. Similarly the sufficiency of the other
assertion is proved.

Lemma 2.9. Let (X, ‖ · ‖) be a (real or complex ) Hilbert space, A ∈
B(X), and Xj , j = 1, 2, be A-invariant closed subspaces of X such that
X = X1 + X2. Let Aj denote the restriction of A to Xj, j = 1, 2. Then
A is similar to a contraction on X if and only if each Aj is similar to a
contraction on Xj , j = 1, 2.

Proof. (1) Suppose X is a complex Hilbert space. By Paulsen’s result
[P, Corollary 3.5], the lemma is equivalent to the assertion that A is com-
pletely polynomially bounded if and only if each Aj , j = 1, 2, is completely
polynomially bounded. To show the latter assertion, note that for every
square matrix [plk] of (complex) polynomials (of one variable), [plk(Aj)] is
a restriction of [plk(A)], so the necessity is clear. For the sufficiency, let cj ,
j = 1, 2, be constants such that for every square matrix [plk] of polynomials,
‖[plk(Aj)]‖ ≤ cj‖[plk]‖∞, j = 1, 2.

Consider [plk(A)]1≤l,k≤n as an operator on the direct sum X̃ =
∑n

k=1⊕X
of n copies of X, and let x̃ = [x(k)] ∈ X̃ be arbitrary. As in Lemma 2.8
above, there is a positive constant r (independent of n and x̃) and for each
k = 1, . . . , n, there are x(k)

j ∈ Xj, j = 1, 2, satisfying x(k) = x
(k)
1 + x

(k)
2 and

‖x(k)
1 ‖+ ‖x(k)

2 ‖ ≤ r‖x(k)‖. Hence

‖[x(k)
1 ]‖+ ‖[x(k)

2 ]‖ ≤
( n∑

k=1

‖x(k)
1 ‖2

)1/2
+
( n∑

k=1

‖x(k)
2 ‖2

)1/2

≤ 21/2
[ n∑

k=1

(‖x(k)
1 ‖2 + ‖x(k)

2 ‖2)
]1/2

≤ 21/2
[ n∑

k=1

r2‖x(k)‖2
]1/2
≤ c‖x̃‖,
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where c = 21/2r. Now we have

‖[plk(A)]x̃‖ =
∥∥∥
[ n∑

k=1

plk(A)x(k)
]∥∥∥ =

∥∥∥
[ n∑

k=1

2∑

j=1

plk(Aj)x
(k)
j

]∥∥∥

=
∥∥∥

2∑

j=1

[ n∑

k=1

plk(Aj)x
(k)
j

]∥∥∥

≤
∥∥∥
[ n∑

k=1

plk(A1)x(k)
1

]∥∥∥+
∥∥∥
[ n∑

k=1

plk(A2)x(k)
2

]∥∥∥

= ‖[plk(A1)] [x(k)
1 ]‖+ ‖[plk(A2)] [x(k)

2 ]‖
≤ ‖[plk(A1)]‖ ‖[x(k)

1 ]‖+ ‖[plk(A2)]‖ ‖[x(k)
2 ]‖

≤ max(c1, c2)‖[plk]‖∞(‖[x(k)
1 ]‖+ ‖[x(k)

2 ]‖)
≤ cmax(c1, c2)‖[plk]‖∞‖x̃‖,

so that ‖[plk(A)]‖ ≤ c max(c1, c2)‖[plk]‖∞. Thus A is completely polynomi-
ally bounded. So the lemma is proved in the complex Hilbert space case.

(2) Suppose X is a real Hilbert space. Then as in Lemma 2.8, we consider
the complexifications. With the notation therein and by Lemma 2.7, A (re-
spectively Aj) is similar to a contraction if and only if so is B (respectively
Bj). By (1) above, the desired conclusion follows readily.

Theorem 2.10. Let (X, ‖ · ‖) be a (real or complex ) Banach space and
let A ∈ B(X). Let X1,X2 be closed A-invariant subspaces of X such that
X1 is finite-dimensional , X = X1 + X2, and the spectral radius rσ(A2) =
limn→∞ ‖An2‖1/n is less than 1, where Aj denotes the restriction of A to Xj.
Suppose ‖An‖/n→ 0 as n→∞. Then A is power-bounded. If X is a Hilbert
space, then A is similar to a contraction on X.

Proof. (1) Suppose X is a complex Banach space. By Lemma 2.8,
limn→∞ ‖Anj ‖/n = 0 for j = 1, 2. Since A1 is compact, A1 is power-bounded
by [MZ, Theorem 3]. Since rσ(A2) < 1 and ‖An2‖ → 0 as n → ∞, A2 is
power-bounded. By Lemma 2.8, A is power-bounded.

(2) Let X be a real Banach space. As in Lemma 2.8, we consider the
complexifications. Using the notations therein and by Lemma 2.7, each Yj
is a B-invariant closed subspace of Y , Y1 is finite-dimensional, Y = Y1 +Y2,
limn→∞ ‖Bn‖/n = 0, and rσ(B2) = limn→∞ ‖Bn

2 ‖1/n = limn→∞ ‖An2‖1/n
< 1. By (1) above, B is power-bounded. By Lemma 2.7, A is power-bounded.

(3) Let X be a complex Hilbert space. Since rσ(A2) < 1, by Rota’s result
[RO], A2 is similar to a (proper) contraction on X2. On the other hand, since
‖An1‖/n → 0 as n → ∞, rσ(A1) ≤ 1. If rσ(A1) < 1, then again by Rota’s
result [RO], A1 is similar to a (proper) contraction on X1. If rσ(A1) = 1,
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then the condition limn→∞ ‖An1‖/n = 0 together with Jordan canonical form
(since X1 is finite-dimensional) implies that A1 is diagonalizable, and A1 is
similar to a contraction on X1. Therefore each Aj is similar to a contraction
on Xj for j = 1, 2. By Lemma 2.9, A is similar to a contraction on X.

(4) Finally, let X be a real Hilbert space. As in (2) above, we have
Y = XC = Y1 + Y2 (all complex Hilbert spaces) with Y1 finite-dimensional,
B = AC = B1 + B2, rσ(B2) < 1. Thus by (3) above, AC is similar to a
contraction on XC. By Lemma 2.9, A is similar to a contraction on X.

We note that in Lemma 2.8, Lemma 2.9, and Theorem 2.10, the sum
X = X1 +X2 need not be a direct sum; in particular, when X is a Hilbert
space, the sum X = X1 +X2 need not be an orthogonal (or direct) sum.

Theorem 2.10 implies readily the following result in which the case of
a compact operator on a complex Hilbert space was proved by Sz.-Nagy
in [N]:

Corollary 2.11. Let A be a power-bounded compact operator (respec-
tively , a Riesz operator) on a real or complex (respectively , complex ) Hilbert
space H. Then A is similar to a contraction on H.
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[PS] D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Editura
Academiei, Bucureşti, 1978.
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