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Algebraic isomorphisms and Jordan derivations of
J -subspace lattice algebras

by

Fangyan Lu (Suzhou) and Pengtong Li (Nanjing)

Abstract. It is shown that every algebraic isomorphism between standard subalge-
bras of J -subspace lattice algebras is quasi-spatial and every Jordan derivation of standard
subalgebras of J -subspace lattice algebras is an additive derivation. Also, it is proved that
every finite rank operator in a J -subspace lattice algebra can be written as a finite sum
of rank one operators each belonging to that algebra. As an additional result, a multi-
plicative bijection of a J -subspace lattice algebra onto an arbitrary ring is proved to be
automatically additive. Those results can be applied to atomic Boolean subspace lattice
algebras and pentagon subspace lattice algebras.

1. Introduction and preliminaries. Let X be a real or complex Ba-
nach space. A family L of subspaces of X is a subspace lattice on X if it
contains (0) and X, and is closed under the operations ∨ and ∩ in the sense
that

∨
γ∈Γ Lγ ∈ L and

⋂
γ∈Γ Lγ ∈ L for every family {Lγ}γ∈Γ of elements

of L. For a subspace lattice L on X, the associated subspace lattice algebra
AlgL is the set of operators on X leaving every subspace in L invariant.
Obviously, AlgL is a unital weakly closed operator algebra.

The class of J -subspace lattices was defined in [17] and subsequently
discussed in [12, 13]. Given a subspace lattice L on X, put

J (L) = {K ∈ L : K 6= (0) and K− 6= X},
where K− =

∨{L ∈ L : K 6⊆ L}. Call L a J -subspace lattice on X if

(1)
∨{K : K ∈ J (L)} = X,

(2)
⋂{K− : K ∈ J (L)} = (0),

(3) K ∨K− = X for every K ∈ J (L),
(4) K ∩K− = (0) for every K ∈ J (L).

The relevance of J (L) is due to the following lemma which is crucial to
what follows.
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Lemma 1.1 (Longstaff [11]; see also [9]). If L is a subspace lattice on X,
then the rank one operator x⊗ f is in AlgL if and only if there exists some
K ∈ J (L) such that x ∈ K and f ∈ K⊥− , where L⊥− means (L−)⊥.

From Lemma 1.1 we can see that if L is a J -subspace lattice then AlgL
is rich in rank one operators, and hence deserves some attention. It should
be mentioned that both atomic Boolean subspace lattices and pentagon
subspace lattices are members of the class of J -subspace lattices [13].

There are two important transformations on operator algebras: “isomor-
phism” and “derivation”. Let A1 and A2 be algebras of operators on Banach
spaces X1 and X2, respectively. An algebraic isomorphism φ : A1 → A2 from
A1 onto A2 is a multiplicative linear bijection. Call φ spatial if there exists a
bounded linear bijective operator T : X1 → X2 such that φ(A) = TAT−1 for
all A ∈ A1. Algebraic isomorphisms need not be spatial and need not even
preserve rank (see [3, Example 5.1]). It is well known that every algebraic
isomorphism from B(X1) onto B(X2) is spatial. A partial generalization of
this result was obtained by Ringrose [19], namely, if N1 and N2 are nests of
subspaces of Hilbert spaces H1 and H2, respectively, then every algebraic
isomorphism from AlgN1 onto AlgN2 is spatial.

Compared to spatiality, quasi-spatiality is a strictly weaker notion. With
A1, A2, X1 and X2 as in the preceding paragraph, an algebraic isomorphism
φ from A1 onto A2 is said to be quasi-spatial if there exists a densely defined,
closed, injective linear transformation T : D(T ) ⊆ X1 → X2 with dense
range, and with domain D(T ) invariant under every element of A1, such
that φ(A)Tx = TAx for every A ∈ A1 and every x ∈ D(T ). The notion
of quasi-spatiality was introduced by Lambrou in [10], where it is shown
that every algebraic isomorphism between atomic Boolean subspace lattice
algebras is quasi-spatial. This result also holds for pentagon subspace lattice
algebras [8] and for J -subspace lattice algebras on reflexive Banach spaces
[17]. In addition, every rank preserving algebraic isomorphism from AlgL1

onto AlgL2 is quasi-spatial, where Li is either a finite distributive subspace
lattice on Xi (see [18]) or a completely distributive commutative subspace
lattice on a Hilbert space Hi (see [3]), for i = 1, 2.

Let A be an algebra of operators on a Banach space X and let δ : A →
B(X) be a map. Then δ is called an additive (respectively linear) derivation
if δ is additive (respectively linear) and δ(AB) = δ(A)B + Aδ(B) for all
A,B ∈ A. We say that δ is a Jordan derivation if δ is additive and for every
A ∈ A we have δ(A2) = Aδ(A) + δ(A)A. Clearly, an additive derivation is
a Jordan derivation. The converse problem of whether a Jordan derivation
is an additive derivation has received many mathematicians’ attention for
many years [1, 4, 20, 21]. In [4], I. N. Herstein proved that every Jordan
derivation of a 2-torsion free prime ring is an additive derivation. In [1],
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M. Brešar generalized this result to 2-torsion free semisimple rings. It follows
immediately that every Jordan derivation of a semisimple Banach algebra is
an additive derivation. Recently, J. H. Zhang [21] proved that every linear
Jordan derivation of a nest algebra on a Hilbert space is an inner derivation.

In this paper, we show that every algebraic isomorphism between stan-
dard subalgebras of J -subspace lattice algebras is quasi-spatial and every
Jordan derivation of a standard subalgebra of a J -subspace lattice alge-
bra to B(X) is an additive derivation. Also, it is proved that every finite
rank operator in a J -subspace lattice algebra can be written as a finite sum
of rank one operators each belonging to that algebra. This result was first
proved in [17]. As an additional result, a multiplicative bijection of a stan-
dard subalgebra of a J -subspace lattice algebra onto an arbitrary ring is
proved to be automatically additive.

Let us introduce the notation and concepts that we will use throughout.
All algebras and vector spaces will be over F, where F is either the real field R
or the complex field C. Given a Banach space X with topological dual X∗, by
B(X) we denote the algebra of all bounded linear operators on X. The terms
operator on X and subspace of X will mean “bounded linear map of X into
itself” and “norm closed linear manifold in X”, respectively. For A ∈ B(X),
denote by A∗ the adjoint of A, and by I the identity operator on X. For
x ∈ X and f ∈ X∗, the operator x⊗f is defined by y 7→ f(y)x for y ∈ X. For
any nonempty subset L ⊆ X, L⊥ denotes its annihilator, that is, L⊥ = {f ∈
X∗ : f(x) = 0 for all x ∈ L}. For every family {Lγ}γ∈Γ of subspaces of X,
we have (

∨
γ∈Γ Lγ)⊥ =

⋂
γ∈Γ L

⊥
γ and

∨
γ∈Γ L

⊥
γ ⊆ (

⋂
γ∈Γ Lγ)⊥; indeed, it is

easy to verify that (
⋂
γ∈Γ Lγ)⊥ is the weak∗ closure of

∨
γ∈Γ L

⊥
γ . Here “∨”

and “∩” denote “norm closed linear span” and “set-theoretic intersection”.
Given a subspace lattice L, we say that a subalgebra of AlgL is standard
if it contains all the finite rank operators in AlgL. It will be convenient
to write 〈x〉 = {λx : λ ∈ F} for a vector x and denote by 〈J (L)〉 the (not
necessarily closed) linear span of

⋃{K : K ∈ J (L)} for a subspace lattice L.
In general, for a set S of vectors, 〈S〉 denotes the linear manifold spanned
by S.

We close this section by summarizing some basic properties of a J -
subspace lattice (algebra), which can be found in [13].

Lemma 1.2. Let L be a J -subspace lattice on a Banach space. Then

(i) K ⊆ L− for any K,L ∈ J (L) with K 6= L;

(ii) K ∩ L = (0) for any K,L ∈ J (L) with K 6= L;

(iii) x ⊗ f ∈ AlgL if and only if there exists a unique K ∈ J (L) such
that x ∈ K and f ∈ K⊥− ;
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(iv) for every nonzero vector x ∈ K with K ∈ J (L), there exists an
f ∈ K⊥− such that f(x) = 1; dually , for every nonzero functional f ∈ K⊥−
with K ∈ J (L), there exists an x ∈ K such that f(x) = 1.

2. Algebraic isomorphisms. In this section, we study algebraic iso-
morphisms between standard subalgebras of J -subspace lattice algebras. It
will be shown that such maps are quasi-spatial.

We will make a crucial use of the following lemma which assures that
every algebraic isomorphism of J -subspace lattice algebras preserves rank
one operators, that is, it carries rank one operators to rank one operators.
The next result follows from Lemma 3.3.2 and Theorem 3.3.2 of [17]. We
include a proof here for the reader’s convenience.

Lemma 2.1. Let L be a J -subspace lattice on a Banach space X and
suppose that T ∈ AlgL is nonzero. Then T is of rank one if and only
if whenever ATB = 0 with A,B ∈ AlgL being of rank one, then either
AT = 0 or TB = 0.

Proof. Necessity is obvious.
Sufficiency. Since T 6= 0, there are K ∈ J (L) and x0 ∈ K such that

Tx0 6= 0. First we show that Tx ∈ 〈Tx0〉 for every x ∈ K. Otherwise, there
is x1 ∈ K such that Tx1 is linearly independent of Tx0. Since both Tx0 and
Tx1 are in K and K ∩K− = (0), there is fi ∈ K⊥− such that fi(Txj) = δij
(i, j = 0, 1). Let A = x0⊗ f0 and B = x1⊗ f1. Then A,B ∈ AlgL. It is easy
to verfy that ATB = 0. But ATx0 6= 0 and TBTx1 6= 0.

Next we show that if E 6= K with E ∈ J (L), then Tx = 0 for every
x ∈ E. Otherwise, suppose there is x ∈ E such that Tx 6= 0. Take nonzero
functionals f0 ∈ K⊥− and f ∈ E⊥− such that f0(Tx0) 6= 0. Since Tx ∈ E
⊆ K−, it follows that (x0 ⊗ f0)T (x ⊗ f) = 0. But (x0 ⊗ f0)Tx0 6= 0 and
Tx⊗ f 6= 0.

Consequently, the range of T restricted to 〈J (L)〉 is 〈Tx0〉. Since 〈J (L)〉
is dense in X, T is of rank one.

For reflexive Banach spaces, the following result can be proved using [17,
Theorem 3.3.5] and [10, Theorem 4.2].

Theorem 2.2. Let Li be a J -subspace lattice on a Banach space Xi,
i = 1, 2. Let φ be an algebraic isomorphism from AlgL1 onto AlgL2. Then
φ is automatically (norm) continuous.

Proof. By the closed graph theorem, it suffices to prove that φ is a closed
operator from AlgL1 into AlgL2. Let Tn, T be in AlgL1 and S in AlgL2
such that Tn → T and φ(Tn)→ S.

Let F be in J (L2) and x in F . We want to prove that φ(T )x = Sx.
Otherwise, since (φ(T ) − S)x ∈ F and F ∩ F− = (0), there is g ∈ F⊥− such
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that g((φ(T ) − S)x) 6= 0. Take nonzero vectors y ∈ F and f ∈ F⊥− . Then
x⊗ f and y⊗ g are both in AlgL2. Since φ preserves rank one operators by
Lemma 2.1, there are u⊗ h and v ⊗ w in AlgL1 such that

φ(u⊗ h) = x⊗ f and φ(v ⊗ w) = y ⊗ g.
Thus we have

g(Sx)(y ⊗ f) = (y ⊗ g)S(x⊗ f) = lim
n→∞

(y ⊗ g)φ(Tn)(x⊗ f)

= lim
n→∞

φ(v ⊗ w)φ(Tn)φ(u⊗ h) = lim
n→∞

w(Tnu)φ(v ⊗ h)

= w(Tu)φ(v ⊗ h) = φ((v ⊗ w)T (u⊗ h))

= (y ⊗ g)φ(T )(x⊗ f) = g(φ(T )x)(y ⊗ f).

It follows that g(Sx) = g(φ(T )x). This is a contradiction.
Now since S and φ(T ) are linear and 〈J (L2)〉 is dense in X2 we conclude

that φ(T ) = S.

Our main result in this section is the following.

Theorem 2.3. Let Li be a J -subspace lattice on a Banach space Xi

and Ai be a standard subalgebra of AlgLi, i = 1, 2. Let φ be an algebraic
isomorphism from A1 onto A2. Then φ is quasi-spatial.

For clarity of exposition, we organize the proof in a series of lemmas.

Lemma 2.4. For every K ∈ J (L1), there exists an injective linear map
TK : K → X2 such that φ(A)TKx = TKAx for A ∈ A1 and x ∈ K.

Proof. Since K ∩K− = (0), we can choose xK ∈ K and fK ∈ K⊥− such
that fK(xK) = 1. Then xK ⊗ fK ∈ A1. Since, by Lemma 2.1, φ preserves
rank one operators, we can suppose φ(xK ⊗ fK) = yK ⊗ gK , where yK ∈ X2
and gK ∈ X∗2 . It follows from fK(xK) = 1 that gK(yK) = 1. Noting that
x⊗ fK ∈ AlgL1 for every x ∈ K, define a map TK : K → X2 by

TKx = φ(x⊗ fK)yK , x ∈ K.
Then TK is linear. For A ∈ A1, Ax ∈ K for every x ∈ K. Thus

φ(A)TKx = φ(A)φ(x⊗ fK)yK = φ(Ax⊗ fK)yK = TKAx, x ∈ K.
Finally we show that TK is injective. Suppose that TKx = 0 with x ∈ K.
Then φ(x⊗ fK) = φ((x⊗ fK)(xK ⊗ fK)) = φ(x⊗ fK)yK ⊗ gK = 0. By the
injectivity of φ, we conclude that x = 0.

In what follows, for every K ∈ J (L1), TK will denote the map as con-
structed in Lemma 2.4. Obviously, it depends on the choices of xK , fK , yK
and gK . So it will be assumed that those choices have been made for every
K ∈ J (L1).

Lemma 2.5. There exists a surjective map φ̂ from J (L1) onto J (L2)
such that for every K ∈ J (L1), TKx ∈ φ̂(K) for every x ∈ K.
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Proof. LetK be in J (L1). Since yK⊗gK = φ(xK⊗fK) is in AlgL2, there
is K̂ ∈ J (L2) such that yK ∈ K̂. Since the intersection of any two distinct
elements in J (L2) is (0), such a K̂ is unique. Thus the map φ̂(K) = K̂
is well defined. For x ∈ K, since φ(x ⊗ fK) ∈ A2, it follows that TKx =
φ(x⊗ fK)yK ∈ φ̂(K).

It remains to prove that φ̂ is surjective. Let L be an arbitrary element
in J (L2). Take nonzero vectors y ∈ L and g ∈ L⊥− such that g(y) = 1.
Then there is a rank one operator x ⊗ f ∈ A1 with f(x) = 1 such that
φ(x⊗ f) = y ⊗ g. Suppose that x ∈ K where K ∈ J (L1). Then

TKx = φ(x⊗ fK)yK = φ(x⊗ f)φ(x⊗ fK)yK = g(TKx)y.

It follows that y ∈ φ̂(K). Consequently, L = φ̂(K).

Lemma 2.6. For every K ∈ J (L1), TK is a surjective linear map from
K onto φ̂(K).

Proof. Let K be in J (L1). Let y ∈ φ̂(K) with y 6= 0. It is easy to see
that gK ∈ φ̂(K)⊥−. So there is a rank one operator x ⊗ f ∈ AlgL1 with
x ∈ M and f ∈ M⊥− for some M ∈ J (L1), such that φ(x ⊗ f) = y ⊗ gK .
Thus

φ(f(xK)x⊗ fK) = φ((x⊗ f)(xK ⊗ fK)) = (y ⊗ gK)(yK ⊗ gK) = y ⊗ gK .
This implies that f(xK) 6= 0, and hence M = K. Moreover,

TK(f(xK)x) = φ(f(xK)x⊗ fK)yK = y.

Lemma 2.7. Suppose that K1, . . . ,Kn are distinct elements in J (L1),
and let xi ∈ Ki. If x1 + . . .+ xn = 0, then x1 = . . . = xn = 0.

Proof. Indeed, for each i, we have xi ∈ Ki ∩ (
∨
j 6=iKj) ⊆ Ki ∩ (Ki)−

= (0). Hence xi = 0.

We can now prove our main result.

Proof of Theorem 2.3. Every nonzero x ∈ 〈J (L1)〉 has a representation
x = x1 + . . . + xn with xi ∈ Ki, 1 ≤ i ≤ n, where K1, . . . ,Kn are distinct
elements in J (L1). If each xi is required to be nonzero, by Lemma 2.7, this
representation is unique up to permutations of the Ki’s. Thus we can define
a linear map T0 from 〈J (L1)〉 to X2 by

T0x = TK1x1 + . . .+ TKnxn,

where 0 6= x = x1 + . . . + xn with 0 6= xi ∈ Ki, 1 ≤ i ≤ n, and where
K1, . . . ,Kn are distinct elements in J (L1). By a routine computation, we
get

φ(A)T0x = T0Ax(2.1)

for A ∈ A1 and x ∈ 〈J (L1)〉.
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Let G(T0) be the graph of T0, that is, G(T0) = {(x, T0x) : x ∈ 〈J (L1)〉},
and let G(T0) be the norm closure of G(T0). Let D = {x ∈ X1 : (x, y) ∈
G(T0) for some y ∈ X2}. Then D is obviously a linear manifold and 〈J (L1)〉
⊆ D. Since 〈J (L1)〉 is dense in X1, so is D.

For every x ∈ D, we will show that there exists a unique y ∈ X2 such
that (x, y) ∈ G(T0). Suppose that (0, y) ∈ G(T0). Then we have a sequence
{xm}∞m=1 of vectors in 〈J (L1)〉 such that xm → 0 and T0xm → y. If y 6= 0,
there is g ∈ L⊥− with L ∈ J (L2) such that g(y) 6= 0 since

⋃{L⊥− : L ∈ J (L2)}
is weak∗ dense in X∗2 . Let z be a nonzero vector in L, and suppose that
φ(A) = z ⊗ g, where A in A1 is of rank one. Then T0A is a bounded
operator from X1 to X2. Thus, from (2.1), we have (z ⊗ g)y = 0. This
is a contradiction.

Therefore, we can define a map T : D ⊆ X1 → X2 in an obvious way,
such that G(T ) = G(T0). Clearly, T is linear and injective. Moreover, the
range of T contains that of T0. By Lemmas 2.5 and 2.6, the range of T0 is
〈J (L2)〉, so the range of T is dense in X2.

It remains to prove that D is invariant under every element in A1 and
φ(A)Tx = TAx for every A ∈ A1 and every x ∈ D.

Let A ∈ A1 and x ∈ D. Then (x, Tx) ∈ G(T0). Thus there exists a
sequence {xm}∞1 of elements in 〈J (L1)〉 such that xm → x and T0xm → Tx.
It follows from (2.1) that T0Axm → φ(A)Tx. Therefore (Axm, T0Axm) →
(Ax, φ(A)Tx). Since (Axm, T0Axm)∈G(T0), we have (Ax, φ(A)Tx)∈G(T0).
Consequently, Ax ∈ D and φ(A)Tx = TAx.

Remark 2.8. Though Theorem 2.2 ensures that an algebraic isomor-
phism between J -subspace lattice algebras is bounded, we do not know
whether it is necessarily spatial.

Remark 2.9. If φ is only a ring isomorphism in Theorem 2.3, the above
proof gives the same result except that T is just additive.

As we know, a ring isomorphism preserves the additive and the mul-
tiplicative structures. It is an interesting problem to study when a multi-
plicative map is additive. The first quite surprising result is due to Martin-
dale [16], who proved the following.

Theorem M. Let R be a ring containing a family {eα : α ∈ Λ} of
idempotents which satisfies:

(1) xR = 0 implies x = 0.
(2) If eαRx = 0 for each α ∈ Λ, then x = 0.
(3) For each α ∈ Λ, eαxeαR(1− eα) = 0 implies eαxeα = 0.

Then any multiplicative isomorphism of R onto an arbitrary ring is additive.
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For more information on multiplicative maps, we refer to [14] and its
references. The following result can be reformulated by saying that the ad-
ditivity assumption in the definition of ring isomorphisms of certain standard
subalgebras of J -subspace lattice algebras is superfluous.

Theorem 2.10. Let L be a J -subspace lattice on a Banach space X.
Let A be a standard subalgebra of AlgL. Suppose dimK ≥ 2 for every
K ∈ J (L). Then every multiplicative isomorphism φ of A onto an arbitrary
ring is additive.

Proof. Consider the family S = {x ⊗ f : x ∈ K, f ∈ K⊥− , f(x) = 1,
K ∈ J (L)} of idempotent rank one operators. Now it suffices to verify that
conditions (1)–(3) in Theorem M are satisfied.

(1) Suppose T ∈ A is such that TA = 0. For each K ∈ J (L), fix a
nonzero functional fK ∈ K⊥− . Then for every x ∈ K, x ⊗ fK ∈ A. So
Tx ⊗ fK = 0. This implies that Tx = 0 for every x ∈ K. Hence Tx = 0
for every x ∈ 〈J (L)〉. Since T is linear and continuous, and 〈J (L)〉 is dense
in X, it follows that T = 0.

(2) Suppose that T ∈ A is such that (x⊗ f)AT = 0 for every x⊗ f ∈ S
and A ∈ A. In particular, setting A = x⊗ f , we have

(x⊗ f)T = 0(2.2)

for every x⊗f ∈ S. Let K ∈ J (L) and y ∈ K. For every nonzero functional
f ∈ K⊥− , since K∨K− = X, there exists x ∈ K such that f(x) = 1. Thus by
(2.2), f(Ty) = 0 for every f ∈ K⊥− . This implies that Ty ∈ K−. But clearly
Ty ∈ K. Therefore Ty = 0 for every y ∈ 〈J (L)〉. Consequently, T = 0.

(3) Let x⊗ f ∈ S and T ∈ A. Suppose that

(x⊗ f)T (x⊗ f)A(1− x⊗ f) = 0(2.3)

for every A ∈ A. Now x ∈ K and f ∈ K⊥− for some K ∈ J (L). Since
dimK ≥ 2 and K ∨K− = X and K ∩K− = 0, we have 〈x〉∨K− 6= X. Thus
there is a nonzero functional g ∈ K⊥− such that g(x) = 0. Putting A = x⊗ g
in (2.3), we get (x⊗f)T (x⊗g) = 0. This implies that f(Tx) = 0. Therefore
(x⊗ f)T (x⊗ f) = f(Tx)(x⊗ f) = 0.

For a pentagon subspace lattice, the condition that dimK ≥ 2 for every
K ∈ J (L) in Theorem 2.10 is automatically satisfied. However, for a general
J -subspace lattice, this condition cannot be removed. The simplest example
is φ(λ) = λ|λ| for λ ∈ F.

3. Jordan derivations. We begin with the continuity of linear deriva-
tions of J -subspace lattice algebras.

Theorem 3.1. Let L be a J -subspace lattice on a Banach space X. Let
δ be a linear derivation from AlgL to B(X). Then δ is automatically (norm)
continuous.
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Proof. By the closed graph theorem, it suffices to prove that δ is a closed
operator from AlgL into B(X). Let Tn, T in AlgL and S in B(X) be such
that Tn → T and δ(Tn)→ S.

Let F be in J (L) and x in F . We want to prove that δ(T )x = Sx. Take
a nonzero functional f in F⊥− . Let E be an arbitrary element in J (L), and
take nonzero vectors y ∈ E and g ∈ E⊥− . Then x⊗ f and y ⊗ g are both in
AlgL. From the fact that for every A ∈ AlgL,

δ((y ⊗ g)A(x⊗ f))

= δ(y ⊗ g)A(x⊗ f) + (y ⊗ g)δ(A)(x⊗ f) + (y ⊗ g)Aδ(x⊗ f),

we have

(y ⊗ g)S(x⊗ f) = lim
n→∞

(y ⊗ g)δ(Tn)(x⊗ f)

= lim
n→∞

δ((y ⊗ g)Tn(x⊗ f))

− lim
n→∞

δ(y ⊗ g)Tn(x⊗ f)− lim
n→∞

(y ⊗ g)Tnδ(x⊗ f))

= δ((y ⊗ g)T (x⊗ f))

− δ(y ⊗ g)T (x⊗ f)− (y ⊗ g)Tδ(x⊗ f)

= (y ⊗ g)δ(T )(x⊗ f).

It follows that g(δ(T )x) = g(Sx) for every E ∈ J (L) and every g ∈ E⊥− .
Since span{K⊥− : K ∈ J (L)} is weak∗ dense in X∗, we conclude that
δ(T )x = Sx. Hence δ(T ) = S since 〈J (L)〉 is dense in X.

As we have seen above and will see below, finite rank operators and
rank one operators play an important role in the study of J -subspace lat-
tice algebras. The question of whether a finite rank operator in an operator
algebra can be written as a finite sum of rank one operators in that algebra
has been studied by many authors (see [15] and its references). It has been
shown that finite rank operators in nest algebras, in finite width CSL alge-
bras, and in atomic Boolean subspace lattice algebras have this property.
However, Hopenwasser and Moore [5] produced an example of a commuta-
tive, completely distributive subspace lattice algebra in which there is a rank
two operator which cannot be written as a finite sum of rank one operators.
So the following result has independent interest. It was first proved in [17,
Proposition 3.3.1], and we include a proof here for the convenience of the
reader.

Proposition 3.2. Let L be a J -subspace lattice on a Banach space X
and suppose that A is an operator of rank n in AlgL. Then A can be written
as a sum of n rank one operators in AlgL.

Proof. Let

{Kα ∈ J (L) : α ∈ Λ} = {K ∈ J (L) : Ax 6= 0 for some x ∈ K}.
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For each α ∈ Λ, let {xα1 , . . . , xαnα} be a Hamel basis for {Ax : x ∈ Kα}. Then
nα < ∞ for each α ∈ Λ and {xα1 , . . . , xαnα}α∈Λ is a linearly independent set
of vectors. It is clear that the linear span of {xα1 , . . . , xαnα}α∈Λ is contained
in the range of A. It follows that the set {xα1 , . . . , xαnα}α∈Λ is finite and Λ
has at most n elements. Hence since

∨{K : K ∈ J (L)} = X, the range
of A is equal to the linear span of {xα1 , . . . , xαnα}α∈Λ. Suppose that Λ =
{1, . . . ,m} (m ≤ n). Then n1 + . . .+ nm = n and

(3.1) A = x1
1 ⊗ f1

1 + . . .+ x1
n1
⊗ f1

n1
+ . . .+ xm1 ⊗ fm1 + . . .+ xmnm ⊗ fmnm ,

where f ji ∈ X∗. Now it suffices to prove that each f ji , 1 ≤ i ≤ nj , is
in (Kj)⊥−. For simplicity, we only prove that f 1

1 , . . . , f
1
n1
∈ (K1)⊥−. For every

x ∈ (K1)−, Ax ∈ (K1)−. Since Kj 6= K1, j = 2, . . . ,m, we have Kj ⊆ (K1)−.
It follows that {xji : 2 ≤ j ≤ m, 1 ≤ i ≤ nj} ⊂ (K1)−. Thus, from (3.1),
f1

1 (x)x1
1 + . . .+ f1

n1
(x)x1

n1
belongs to (K1)−. But this vector also belongs to

K1. It follows from K1 ∩ (K1)− = (0) that f1
1 (x)x1

1 + . . . + f1
n1

(x)x1
n1

= 0.
Hence since x1

1, . . . , x
1
n1

are linearly independent, f 1
1 (x) = . . . = f1

n1
(x) = 0.

Since x is an abitrary vector in (K1)−, we conclude that f 1
1 , . . . , f

1
n1
∈ (K1)⊥−.

The following is the main result in this section.

Theorem 3.3. Let L be a J -subspace lattice on a Banach space X and
A be a standard subalgebra of AlgL. Then every Jordan derivation δ of A
to B(X) is an additive derivation.

For the proof of Theorem 3.3, we need some lemmas. The first can be
found in [4].

Lemma 3.4. For A,B,C ∈ A, we have

(i) δ(AB +BA) = Aδ(B) + δ(A)B +Bδ(A) + δ(B)A.
(ii) δ(ABA) = δ(A)BA+Aδ(B)A+ ABδ(A).

In what follows, forK ∈ J (L), write F(K) = 〈{x⊗f : x ∈ K, f ∈ K⊥−}〉.
Then F(K) is an ideal of A.

Lemma 3.5. Let K ∈ J (L) and suppose that dimK ≥ 2. Suppose that
ϕ is a ring homomorphism from F(K) to B(X) and ψ is a ring anti-
homomorphism from F(K) to B(X). If , for every A ∈ F(K),

ϕ(A) + ψ(A) = A,(3.2)

then ψ = 0.

Proof. Since dimK ≥ 2, we can choose nonzero vectors x1, x2 ∈ K and
f ∈ K⊥− satisfying f(x1) = 1 and f(x2) = 0. Then both x1 ⊗ f and x2 ⊗ f
are in F(K). Moreover, by (3.2), x1 ⊗ f is the sum of two idempotents
ϕ(x1 ⊗ f) and ψ(x1 ⊗ f). It follows that one of ϕ(x1 ⊗ f) and ψ(x1 ⊗ f)
is zero. We will show that ψ(x1 ⊗ f) = 0. Otherwise, ϕ(x1 ⊗ f) = 0. Then
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ϕ(x2 ⊗ f) = ϕ((x2 ⊗ f)(x1 ⊗ f)) = 0. By (3.2), we have ψ(x1 ⊗ f) = x1 ⊗ f
and ψ(x2 ⊗ f) = x2 ⊗ f . Thus we would have x2 ⊗ f = ψ(x2 ⊗ f) =
ψ((x2 ⊗ f)(x1 ⊗ f)) = ψ(x1 ⊗ f)ψ(x2 ⊗ f) = (x1 ⊗ f)(x2 ⊗ f) = 0. This
is impossible. So ψ(x1 ⊗ f) = 0. For every x ⊗ g ∈ F(K), ψ(x ⊗ g) =
ψ((x⊗ f)(x1 ⊗ f)(x1 ⊗ g)) = 0. Consequently, ψ = 0.

Recall that an algebra A is called a matrix algebra of rank n if there
exists a system {eij : 1 ≤ i, j ≤ n} ⊆ A satisfying eijekl = δjkeil such that
x =

∑
i,j tijeij for each x ∈ A, where tij ∈ F. An algebra A is called a locally

matrix algebra if for every finite set of elements A1, . . . , An in A there is
a subalgebra B of A, which is a matrix algebra of rank ≥ 2, such that all
A1, . . . , An are in B. The following lemma ensures that Theorem 8 in [6] can
be applied.

Lemma 3.6. Let K ∈ J (L) and suppose that dimK ≥ 2. Then F(K)
is a locally matrix algebra.

Proof. We first establish the following claim.

Claim. For every finite set of rank one operators x1⊗ f1, . . . , xn⊗ fn ∈
F(K), there is an idempotent operator P of rank ≥ 2 in F(K) such that
Pxi ⊗ fiP = xi ⊗ fi, i = 1, . . . , n.

Proceed by induction. Consider a rank one operator x1 ⊗ f1 ∈ F(K). If
f1(x1) = λ 6= 0, it follows from dimK ≥ 2 that there are y ∈ K and g ∈ K⊥−
such that g(y) = 1 and g(x1) = f1(y) = 0. Set P = λ−1x1 ⊗ f1 + y ⊗ g.
It is easy to verify that this is the desired P . If f1(x1) = 0, it follows from
dimK ≥ 2 that there are y ∈ K and g ∈ K⊥− such that g(x1) = f1(y) = 1
and g(y) = 0. The desired P is P = x1 ⊗ g + y ⊗ f1.

Now suppose that the claim is valid for n− 1, that is, there is an idem-
potent operator Q of rank ≥ 2 in F(K) such that Qxi ⊗ fiQ = xi ⊗ fi,
i = 1, . . . , n − 1. We want to prove that the claim is also valid for n. We
distinguish some cases.

Case 1: (I −Q)xn 6= 0 and (I −Q)∗fn 6= 0. Note that (I −Q)xn ∈ K
and (I −Q)∗fn ∈ K⊥− .

If fn((I −Q)xn) = λ 6= 0, we set P = Q+ λ−1(I −Q)xn ⊗ (I −Q)∗fn.
If fn((I − Q)xn) = 0, then there is y ∈ K such that fn((I − Q)y) = 1.

Let g ∈ K⊥− be such that g((I −Q)y) = 0 and g((I −Q)xn) = 1. Set

P = Q+ (I −Q)xn ⊗ (I −Q)∗g + (I −Q)y ⊗ (I −Q)∗fn.

Case 2: (I −Q)xn 6= 0 and (I −Q)∗fn = 0. Then fn((I −Q)xn)) = 0.
Let g ∈ K⊥− be such that g((I −Q)xn) = 1. Set

P = Q+ (I −Q)xn ⊗ (I −Q)∗g.
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Case 3: (I − Q)xn = 0 and (I − Q)∗fn 6= 0. Pick y ∈ K such that
fn((I −Q)y) = 1. Set

P = Q+ (I −Q)y ⊗ (I −Q)∗fn.

Case 4: (I −Q)xn = 0 and (I −Q)∗fn = 0. Set P = Q.

This establishes the claim.

LetA1, . . . , An be in F(K). By the claim, there is an idempotent operator
P of rank ≥ 2 in F(K) such that PAiP = Ai, i = 1, . . . , n. Let {x1, . . . , xm}
be a basis of the range of P . Let fi ∈ X∗, i = 1, . . . ,m, be such that

fi(xj) = δij , fi(z) = 0 for every z ∈ kerP.

Then fi ∈ K⊥− and P = x1 ⊗ f1 + . . . + xn ⊗ fn. Define B = 〈{xk ⊗ fj :
1 ≤ k, j ≤ m}〉. Then B is a matrix algebra and all A1, . . . , An belong to B.
Moreover, for each 1 ≤ i ≤ n,

Ai =
∑

k,j

tikjxk ⊗ fj ,

where tikj = fk(Aixj).

Lemma 3.7. Let K ∈ J (L) and δK be the restriction of δ to F(K).
Then δK is an additive derivation.

Proof. We distinguish two cases.

Case 1: dimK = 1. Then K + K− = X, and hence dimK⊥− = 1.
Thus F(K) is of dimension one. (Though in this case F(K) and B(X) are
prime, it seems that Herstein’s result in [4] cannot be directly used. We also
believe that a complete description of all Jordan derivations from a prime
subalgebra to B(X) has not yet been published. Here we give an elementary
proof.)

Let x0 ∈ K and f0 ∈ K⊥− be such that f0(x0) = 1, and set P = x0 ⊗ f0.
Then F(K) = {λP : λ ∈ F}. Multiplying by P the equation δK(P ) =
δK(P 2) = δK(P )P + PδK(P ) from the left, we get PδK(P )P = 0. Let
x = δK(P )x0 and f = δK(P )∗f0. Then f0(x) = f(x0) = 0. For λ ∈ F, let
h(λ) = f0(δK(λP )x0). Then PδK(λP )P = h(λ)P . Moreover, by Lemma 3.4,
we have

δK(λP ) = δK(P (λP )P ) = δK(P )(λP )P + PδK(λP )P + P (λP )δK(P )

= λx0 ⊗ f + λx⊗ f0 + h(λ)P.

Thus

δK(λP )P = λx⊗ f0 + h(λ)P, PδK(λP ) = λx0 ⊗ f + h(λ)P.

Therefore, for λ, µ ∈ F,
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2(λµx0 ⊗ f + λµx⊗ f0 + h(λµ)P )

= 2δK(λµP ) = δK(2λµP ) = δK((λP )(µP ) + (µP )(λP ))

= δK(λP )µP + λPδK(µP ) + δK(µP )λP + µPδK(λP )

= µ(λx⊗ f0 + h(λ)P ) + λ(µx0 ⊗ f + h(µ)P )

+ λ(µx⊗ f0 + h(µ)P ) + µ(λx0 ⊗ f + h(λ)P )

= 2(λµx0 ⊗ f + λµx⊗ f0 + (λh(µ) + µh(λ))P ).

It follows that h(λµ) = λh(µ) + µh(λ). Further, for λ, µ ∈ F,

δK(λP )µP + λPδK(µP )

= µ(λx⊗ f0 + h(λ)P ) + λ(µx0 ⊗ f + h(µ)P )

= λµx0 ⊗ f + λµx⊗ f0 + (λh(µ) + µh(λ))P

= λµx0 ⊗ f + λµx⊗ f0 + h(λµ)P = δK((λP )(µP )).

Case 2: dimK ≥ 2. Define a mapping φ : F(K)→ B(X ⊕X) by

φ(A) =
[
A δK(A)

0 A

]
.

Then φ is an additive Jordan homomorphism. Since F(K) is a locally matrix
algebra by Lemma 3.6, by Theorem 8 in [6], φ = ϕ + ψ, where ϕ is a ring
homomorphism from F(K) to B(X⊕X) and ψ is a ring anti-homomorphism
from F(K) to B(X ⊕X). Furthermore, ϕ and ψ are of the form

ϕ(A) =
[
ϕ1(A) ϕ2(A)

0 ϕ3(A)

]
, ψ(A) =

[
ψ1(A) ψ2(A)

0 ψ3(A)

]
,(3.3)

where ϕ1 and ϕ3 are ring homomorphisms from F(K) to B(X), and ψ1

and ψ3 are ring anti-homomorphisms from F(K) to B(X). Thus the equa-
tions ϕ1(A) +ψ1(A) = A and ϕ3(A) +ψ3(A) = A hold for every A ∈ F(K).
By Lemma 3.5, ψ1 = ψ3 = 0. Thus relation (3.3) becomes

ϕ(A) =
[
A ϕ2(A)

0 A

]
, ψ(A) =

[
0 ψ2(A)

0 0

]
.(3.4)

It follows from (3.4) that ϕ2 is an additive derivation and ψ(AB)=ψ(B)ψ(A)
= 0. Hence for all A,B in F(K), we have ψ2(AB) = 0. For every rank one
operator x⊗ f ∈ F(K), we take y ∈ K such that f(y) = 1. Thus

ψ2(x⊗ f) = ψ2((x⊗ f)(y ⊗ f)) = 0.

Hence ψ2 = 0. Thus δK = ϕ2 is an additive derivation.

Proof of Theorem 3.3. Let K be an arbitrary element in J (L) and δK
be the restriction of δ to F(K). Fix fK ∈ K⊥− and xK ∈ K such that
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fK(xK) = 1. Then x ⊗ fK ∈ F(K) for any x ∈ K. Define a map TK from
K to X by

TKx = δK(x⊗ fK)xK , x ∈ K.

For every C ∈ F(K), by Lemma 3.7,

δK(Cx⊗ fK) = δK(C)x⊗ fK + CδK(x⊗ fK), x ∈ K.
Applying the two sides of the above equation to xK , we get

δK(C)x = (TKC − CTK)x, x ∈ K.
Let A ∈ A be arbitrary. For every C ∈ F(K), since AC and CA are both
in F(K), we have, for any x ∈ K,

δ(AC + CA)x = δK(AC)x+ δK(CA)x

= (TKAC − ACTK)x+ (TKCA− CATK)x

= ((TKA− ATK)C + A(TKC − CTK))x

+ ((TKC − CTK)A+ C(TKA− ATK))x

= (TKA− ATK)Cx+Aδ(C)x+ δ(C)Ax+ C(TKA−ATK)x.

On the other hand, since δ is a Jordan derivation, by Lemma 3.4,

δ(AC + CA)x = δ(A)Cx+Aδ(C)x+ δ(C)Ax+ Cδ(A)x.

So we have

(TKA−ATK − δ(A))CxK = −C(TKA− ATK − δ(A))xK , C ∈ F(K).

In particular,

(TKA−ATK−δ(A))(x⊗fK)xK = −(x⊗fK)(TKA−ATK−δ(A))xK , x ∈ K.
It follows that (TKA − ATK − δ(A))x = λx for some λ ∈ F (where λ is
independent of x). Thus the above equation becomes

λx = −λx, x ∈ K,
from which λ = 0 and then

δ(A)x = (TKA− ATK)x

for every x ∈ K.
Now let A and B be in A. Let K be an arbitrary element in J (L). For

every x ∈ K, since Bx ∈ K we have

δ(AB)x = (TKAB − ABTK)x = (TKA− ATK)Bx+A(TKB −BTK)x

= δ(A)Bx+ Aδ(B)x.

Consequently, δ is an additive derivation.
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[1] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104
(1988), 1003–1006.

[2] P. R. Chernoff, Representations, automorphisms and derivations of some operators,
J. Funct. Anal. 12 (1973), 275–289.

[3] F. Gilfeather and R. L. Moore, Isomorphisms of certain CSL algebras, ibid. 67
(1986), 264–291.

[4] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957),
1104–1110.

[5] A. Hopenwasser and R. Moore, Finite rank operators in reflexive operator algebras,
J. London Math. Soc. (2) 27 (1983), 331–338.

[6] N. Jacobson and C. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math.
Soc. 69 (1950), 479–503.

[7] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Ka-
plansky , Amer. J. Math. 90 (1968), 1067–1073.

[8] A. Katavolos, M. S. Lambrou and W. E. Longstaff, Pentagon subspace lattices on
Banach spaces, J. Operator Theory 46 (2001), 355–380.

[9] M. S. Lambrou, Approximants, commutants and double commutants in normed al-
gebras, J. London Math. Soc. (2) 25 (1982), 499–512.

[10] —, Automatic continuity and implementation of homomorphisms, manuscript.
[11] W. E. Longstaff, Strongly reflexive lattices, J. London Math. Soc. (2) 11 (1975),

491–498.
[12] W. E. Longstaff, J. B. Nation and O. Panaia, Abstract reflexive sublattices and

completely distributive collapsibility , Bull. Austral. Math. Soc. 58 (1998), 245–260.
[13] W. E. Longstaff and O. Panaia, J-subspace lattices and subspace M-bases, Studia

Math. 139 (2000), 197–211.
[14] F. Y. Lu, Multiplicative mappings of operator algebras, Linear Algebra Appl. 347

(2002), 283–291.
[15] F. Y. Lu and S. J. Lu, Decomposability of finite-rank operators in commutative

subspace lattice algebras, J. Math. Anal. Appl. 264 (2001), 408–422.
[16] W. S. Martindale III, When are multiplicative mappings additive? , Proc. Amer.

Math. Soc. 21 (1969), 695–698.
[17] O. Panaia, Quasi-spatiality of isomorphisms for certain classes of operator algebras,

Ph.D. dissertation, Univ. of Western Australia, 1995.
[18] —, Algebraic isomorphisms and finite distributive subspace lattices, J. London Math.

Soc. (2) 59 (1999), 1033–1048.
[19] J. R. Ringrose, On some algebras of operators II , Proc. London Math. Soc. (3) 16

(1966), 385–402.
[20] A. M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach al-

gebras, Proc. Amer. Math. Soc. 24 (1970), 209–214.
[21] J. H. Zhang, Jordan derivations on nest algebras, Acta Math. Sinica 41 (1998),

205–213 (in Chinese).

Department of Mathematics
Suzhou University
Suzhou 215006, P.R. China
E-mail: fylu@pub.sz.jsinfo.net

Department of Mathematics
Nanjing University

Nanjing 210093, P.R. China
E-mail: ptli@nju.edu.cn

pengtonglee@sina.com.cn

Received September 3, 2002
Revised version April 3, 2003 (5031)


