Algebraic isomorphisms and Jordan derivations of \mathcal{J}-subspace lattice algebras

by
Fangyan Lu (Suzhou) and Pengtong Li (Nanjing)

Abstract

It is shown that every algebraic isomorphism between standard subalgebras of \mathcal{J}-subspace lattice algebras is quasi-spatial and every Jordan derivation of standard subalgebras of \mathcal{J}-subspace lattice algebras is an additive derivation. Also, it is proved that every finite rank operator in a \mathcal{J}-subspace lattice algebra can be written as a finite sum of rank one operators each belonging to that algebra. As an additional result, a multiplicative bijection of a \mathcal{J}-subspace lattice algebra onto an arbitrary ring is proved to be automatically additive. Those results can be applied to atomic Boolean subspace lattice algebras and pentagon subspace lattice algebras.

1. Introduction and preliminaries. Let X be a real or complex Ba nach space. A family \mathcal{L} of subspaces of X is a subspace lattice on X if it contains (0) and X, and is closed under the operations \vee and \cap in the sense that $\bigvee_{\gamma \in \Gamma} L_{\gamma} \in \mathcal{L}$ and $\bigcap_{\gamma \in \Gamma} L_{\gamma} \in \mathcal{L}$ for every family $\left\{L_{\gamma}\right\}_{\gamma \in \Gamma}$ of elements of \mathcal{L}. For a subspace lattice \mathcal{L} on X, the associated subspace lattice algebra $\operatorname{Alg} \mathcal{L}$ is the set of operators on X leaving every subspace in \mathcal{L} invariant. Obviously, $\operatorname{Alg} \mathcal{L}$ is a unital weakly closed operator algebra.

The class of \mathcal{J}-subspace lattices was defined in [17] and subsequently discussed in $[12,13]$. Given a subspace lattice \mathcal{L} on X, put

$$
\mathcal{J}(\mathcal{L})=\left\{K \in \mathcal{L}: K \neq(0) \text { and } K_{-} \neq X\right\},
$$

where $K_{-}=\bigvee\{L \in \mathcal{L}: K \nsubseteq L\}$. Call \mathcal{L} a \mathcal{J}-subspace lattice on X if
(1) $\bigvee\{K: K \in \mathcal{J}(\mathcal{L})\}=X$,
(2) $\cap\left\{K_{-}: K \in \mathcal{J}(\mathcal{L})\right\}=(0)$,
(3) $K \vee K_{-}=X$ for every $K \in \mathcal{J}(\mathcal{L})$,
(4) $K \cap K_{-}=(0)$ for every $K \in \mathcal{J}(\mathcal{L})$.

The relevance of $\mathcal{J}(\mathcal{L})$ is due to the following lemma which is crucial to what follows.

[^0]Lemma 1.1 (Longstaff [11]; see also [9]). If \mathcal{L} is a subspace lattice on X, then the rank one operator $x \otimes f$ is in $\operatorname{Alg} \mathcal{L}$ if and only if there exists some $K \in \mathcal{J}(\mathcal{L})$ such that $x \in K$ and $f \in K_{-}^{\perp}$, where L_{-}^{\perp} means $\left(L_{-}\right)^{\perp}$.

From Lemma 1.1 we can see that if \mathcal{L} is a \mathcal{J}-subspace lattice then $\operatorname{Alg} \mathcal{L}$ is rich in rank one operators, and hence deserves some attention. It should be mentioned that both atomic Boolean subspace lattices and pentagon subspace lattices are members of the class of \mathcal{J}-subspace lattices [13].

There are two important transformations on operator algebras: "isomorphism" and "derivation". Let \mathcal{A}_{1} and \mathcal{A}_{2} be algebras of operators on Banach spaces X_{1} and X_{2}, respectively. An algebraic isomorphism $\phi: \mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ from \mathcal{A}_{1} onto \mathcal{A}_{2} is a multiplicative linear bijection. Call ϕ spatial if there exists a bounded linear bijective operator $T: X_{1} \rightarrow X_{2}$ such that $\phi(A)=T A T^{-1}$ for all $A \in \mathcal{A}_{1}$. Algebraic isomorphisms need not be spatial and need not even preserve rank (see [3, Example 5.1]). It is well known that every algebraic isomorphism from $B\left(X_{1}\right)$ onto $B\left(X_{2}\right)$ is spatial. A partial generalization of this result was obtained by Ringrose [19], namely, if \mathcal{N}_{1} and \mathcal{N}_{2} are nests of subspaces of Hilbert spaces H_{1} and H_{2}, respectively, then every algebraic isomorphism from $\operatorname{Alg} \mathcal{N}_{1}$ onto $\operatorname{Alg} \mathcal{N}_{2}$ is spatial.

Compared to spatiality, quasi-spatiality is a strictly weaker notion. With $\mathcal{A}_{1}, \mathcal{A}_{2}, X_{1}$ and X_{2} as in the preceding paragraph, an algebraic isomorphism ϕ from \mathcal{A}_{1} onto \mathcal{A}_{2} is said to be quasi-spatial if there exists a densely defined, closed, injective linear transformation $T: \mathcal{D}(T) \subseteq X_{1} \rightarrow X_{2}$ with dense range, and with domain $\mathcal{D}(T)$ invariant under every element of \mathcal{A}_{1}, such that $\phi(A) T x=T A x$ for every $A \in \mathcal{A}_{1}$ and every $x \in \mathcal{D}(T)$. The notion of quasi-spatiality was introduced by Lambrou in [10], where it is shown that every algebraic isomorphism between atomic Boolean subspace lattice algebras is quasi-spatial. This result also holds for pentagon subspace lattice algebras [8] and for \mathcal{J}-subspace lattice algebras on reflexive Banach spaces [17]. In addition, every rank preserving algebraic isomorphism from $\operatorname{Alg} \mathcal{L}_{1}$ onto $\operatorname{Alg} \mathcal{L}_{2}$ is quasi-spatial, where \mathcal{L}_{i} is either a finite distributive subspace lattice on X_{i} (see [18]) or a completely distributive commutative subspace lattice on a Hilbert space H_{i} (see [3]), for $i=1,2$.

Let \mathcal{A} be an algebra of operators on a Banach space X and let $\delta: \mathcal{A} \rightarrow$ $B(X)$ be a map. Then δ is called an additive (respectively linear) derivation if δ is additive (respectively linear) and $\delta(A B)=\delta(A) B+A \delta(B)$ for all $A, B \in \mathcal{A}$. We say that δ is a Jordan derivation if δ is additive and for every $A \in \mathcal{A}$ we have $\delta\left(A^{2}\right)=A \delta(A)+\delta(A) A$. Clearly, an additive derivation is a Jordan derivation. The converse problem of whether a Jordan derivation is an additive derivation has received many mathematicians' attention for many years [1, 4, 20, 21]. In [4], I. N. Herstein proved that every Jordan derivation of a 2-torsion free prime ring is an additive derivation. In [1],
M. Brešar generalized this result to 2-torsion free semisimple rings. It follows immediately that every Jordan derivation of a semisimple Banach algebra is an additive derivation. Recently, J. H. Zhang [21] proved that every linear Jordan derivation of a nest algebra on a Hilbert space is an inner derivation.

In this paper, we show that every algebraic isomorphism between standard subalgebras of \mathcal{J}-subspace lattice algebras is quasi-spatial and every Jordan derivation of a standard subalgebra of a \mathcal{J}-subspace lattice algebra to $B(X)$ is an additive derivation. Also, it is proved that every finite rank operator in a \mathcal{J}-subspace lattice algebra can be written as a finite sum of rank one operators each belonging to that algebra. This result was first proved in [17]. As an additional result, a multiplicative bijection of a standard subalgebra of a \mathcal{J}-subspace lattice algebra onto an arbitrary ring is proved to be automatically additive.

Let us introduce the notation and concepts that we will use throughout. All algebras and vector spaces will be over \mathbb{F}, where \mathbb{F} is either the real field \mathbb{R} or the complex field \mathbb{C}. Given a Banach space X with topological dual X^{*}, by $B(X)$ we denote the algebra of all bounded linear operators on X. The terms operator on X and subspace of X will mean "bounded linear map of X into itself" and "norm closed linear manifold in X ", respectively. For $A \in B(X)$, denote by A^{*} the adjoint of A, and by I the identity operator on X. For $x \in X$ and $f \in X^{*}$, the operator $x \otimes f$ is defined by $y \mapsto f(y) x$ for $y \in X$. For any nonempty subset $L \subseteq X, L^{\perp}$ denotes its annihilator, that is, $L^{\perp}=\{f \in$ $X^{*}: f(x)=0$ for all $\left.x \in L\right\}$. For every family $\left\{L_{\gamma}\right\}_{\gamma \in \Gamma}$ of subspaces of X, we have $\left(\bigvee_{\gamma \in \Gamma} L_{\gamma}\right)^{\perp}=\bigcap_{\gamma \in \Gamma} L_{\gamma}^{\perp}$ and $\bigvee_{\gamma \in \Gamma} L_{\gamma}^{\perp} \subseteq\left(\bigcap_{\gamma \in \Gamma} L_{\gamma}\right)^{\perp}$; indeed, it is easy to verify that $\left(\bigcap_{\gamma \in \Gamma} L_{\gamma}\right)^{\perp}$ is the weak* closure of $\bigvee_{\gamma \in \Gamma} L_{\gamma}^{\perp}$. Here " \vee " and " \cap " denote "norm closed linear span" and "set-theoretic intersection". Given a subspace lattice \mathcal{L}, we say that a subalgebra of $\operatorname{Alg} \mathcal{L}$ is standard if it contains all the finite rank operators in $\operatorname{Alg} \mathcal{L}$. It will be convenient to write $\langle x\rangle=\{\lambda x: \lambda \in \mathbb{F}\}$ for a vector x and denote by $\langle\mathcal{J}(\mathcal{L})\rangle$ the (not necessarily closed) linear span of $\bigcup\{K: K \in \mathcal{J}(\mathcal{L})\}$ for a subspace lattice \mathcal{L}. In general, for a set S of vectors, $\langle S\rangle$ denotes the linear manifold spanned by S.

We close this section by summarizing some basic properties of a \mathcal{J} subspace lattice (algebra), which can be found in [13].

Lemma 1.2. Let \mathcal{L} be a \mathcal{J}-subspace lattice on a Banach space. Then
(i) $K \subseteq L_{-}$for any $K, L \in \mathcal{J}(\mathcal{L})$ with $K \neq L$;
(ii) $K \cap L=(0)$ for any $K, L \in \mathcal{J}(\mathcal{L})$ with $K \neq L$;
(iii) $x \otimes f \in \operatorname{Alg} \mathcal{L}$ if and only if there exists a unique $K \in \mathcal{J}(\mathcal{L})$ such that $x \in K$ and $f \in K_{-}^{\perp}$;
(iv) for every nonzero vector $x \in K$ with $K \in \mathcal{J}(\mathcal{L})$, there exists an $f \in K_{-}^{\perp}$ such that $f(x)=1$; dually, for every nonzero functional $f \in K_{\perp}^{\perp}$ with $K \in \mathcal{J}(\mathcal{L})$, there exists an $x \in K$ such that $f(x)=1$.
2. Algebraic isomorphisms. In this section, we study algebraic isomorphisms between standard subalgebras of \mathcal{J}-subspace lattice algebras. It will be shown that such maps are quasi-spatial.

We will make a crucial use of the following lemma which assures that every algebraic isomorphism of \mathcal{J}-subspace lattice algebras preserves rank one operators, that is, it carries rank one operators to rank one operators. The next result follows from Lemma 3.3.2 and Theorem 3.3.2 of [17]. We include a proof here for the reader's convenience.

Lemma 2.1. Let \mathcal{L} be a \mathcal{J}-subspace lattice on a Banach space X and suppose that $T \in \operatorname{Alg} \mathcal{L}$ is nonzero. Then T is of rank one if and only if whenever $A T B=0$ with $A, B \in \operatorname{Alg} \mathcal{L}$ being of rank one, then either $A T=0$ or $T B=0$.

Proof. Necessity is obvious.
Sufficiency. Since $T \neq 0$, there are $K \in \mathcal{J}(\mathcal{L})$ and $x_{0} \in K$ such that $T x_{0} \neq 0$. First we show that $T x \in\left\langle T x_{0}\right\rangle$ for every $x \in K$. Otherwise, there is $x_{1} \in K$ such that $T x_{1}$ is linearly independent of $T x_{0}$. Since both $T x_{0}$ and $T x_{1}$ are in K and $K \cap K_{-}=(0)$, there is $f_{i} \in K_{-}^{\perp}$ such that $f_{i}\left(T x_{j}\right)=\delta_{i j}$ $(i, j=0,1)$. Let $A=x_{0} \otimes f_{0}$ and $B=x_{1} \otimes f_{1}$. Then $A, B \in \operatorname{Alg} \mathcal{L}$. It is easy to verfy that $A T B=0$. But $A T x_{0} \neq 0$ and $T B T x_{1} \neq 0$.

Next we show that if $E \neq K$ with $E \in \mathcal{J}(\mathcal{L})$, then $T x=0$ for every $x \in E$. Otherwise, suppose there is $x \in E$ such that $T x \neq 0$. Take nonzero functionals $f_{0} \in K_{-}^{\perp}$ and $f \in E_{-}^{\perp}$ such that $f_{0}\left(T x_{0}\right) \neq 0$. Since $T x \in E$ $\subseteq K_{-}$, it follows that $\left(x_{0} \otimes f_{0}\right) T(x \otimes f)=0$. But $\left(x_{0} \otimes f_{0}\right) T x_{0} \neq 0$ and $T x \otimes f \neq 0$.

Consequently, the range of T restricted to $\langle\mathcal{J}(\mathcal{L})\rangle$ is $\left\langle T x_{0}\right\rangle$. Since $\langle\mathcal{J}(\mathcal{L})\rangle$ is dense in X, T is of rank one.

For reflexive Banach spaces, the following result can be proved using [17, Theorem 3.3.5] and [10, Theorem 4.2].

Theorem 2.2. Let \mathcal{L}_{i} be a \mathcal{J}-subspace lattice on a Banach space X_{i}, $i=1,2$. Let ϕ be an algebraic isomorphism from $\operatorname{Alg} \mathcal{L}_{1}$ onto $\operatorname{Alg} \mathcal{L}_{2}$. Then ϕ is automatically (norm) continuous.

Proof. By the closed graph theorem, it suffices to prove that ϕ is a closed operator from $\operatorname{Alg} \mathcal{L}_{1}$ into $\operatorname{Alg} \mathcal{L}_{2}$. Let T_{n}, T be in $\operatorname{Alg} \mathcal{L}_{1}$ and S in $\operatorname{Alg} \mathcal{L}_{2}$ such that $T_{n} \rightarrow T$ and $\phi\left(T_{n}\right) \rightarrow S$.

Let F be in $\mathcal{J}\left(\mathcal{L}_{2}\right)$ and x in F. We want to prove that $\phi(T) x=S x$. Otherwise, since $(\phi(T)-S) x \in F$ and $F \cap F_{-}=(0)$, there is $g \in F_{-}^{\perp}$ such
that $g((\phi(T)-S) x) \neq 0$. Take nonzero vectors $y \in F$ and $f \in F_{-}^{\perp}$. Then $x \otimes f$ and $y \otimes g$ are both in $\operatorname{Alg} \mathcal{L}_{2}$. Since ϕ preserves rank one operators by Lemma 2.1, there are $u \otimes h$ and $v \otimes w$ in $\operatorname{Alg} \mathcal{L}_{1}$ such that

$$
\phi(u \otimes h)=x \otimes f \quad \text { and } \quad \phi(v \otimes w)=y \otimes g
$$

Thus we have

$$
\begin{aligned}
g(S x)(y \otimes f) & =(y \otimes g) S(x \otimes f)=\lim _{n \rightarrow \infty}(y \otimes g) \phi\left(T_{n}\right)(x \otimes f) \\
& =\lim _{n \rightarrow \infty} \phi(v \otimes w) \phi\left(T_{n}\right) \phi(u \otimes h)=\lim _{n \rightarrow \infty} w\left(T_{n} u\right) \phi(v \otimes h) \\
& =w(T u) \phi(v \otimes h)=\phi((v \otimes w) T(u \otimes h)) \\
& =(y \otimes g) \phi(T)(x \otimes f)=g(\phi(T) x)(y \otimes f)
\end{aligned}
$$

It follows that $g(S x)=g(\phi(T) x)$. This is a contradiction.
Now since S and $\phi(T)$ are linear and $\left\langle\mathcal{J}\left(\mathcal{L}_{2}\right)\right\rangle$ is dense in X_{2} we conclude that $\phi(T)=S$.

Our main result in this section is the following.
Theorem 2.3. Let \mathcal{L}_{i} be a \mathcal{J}-subspace lattice on a Banach space X_{i} and \mathcal{A}_{i} be a standard subalgebra of $\operatorname{Alg} \mathcal{L}_{i}, i=1,2$. Let ϕ be an algebraic isomorphism from \mathcal{A}_{1} onto \mathcal{A}_{2}. Then ϕ is quasi-spatial.

For clarity of exposition, we organize the proof in a series of lemmas.
Lemma 2.4. For every $K \in \mathcal{J}\left(\mathcal{L}_{1}\right)$, there exists an injective linear map $T_{K}: K \rightarrow X_{2}$ such that $\phi(A) T_{K} x=T_{K} A x$ for $A \in \mathcal{A}_{1}$ and $x \in K$.

Proof. Since $K \cap K_{-}=(0)$, we can choose $x_{K} \in K$ and $f_{K} \in K_{-}^{\perp}$ such that $f_{K}\left(x_{K}\right)=1$. Then $x_{K} \otimes f_{K} \in \mathcal{A}_{1}$. Since, by Lemma 2.1, ϕ preserves rank one operators, we can suppose $\phi\left(x_{K} \otimes f_{K}\right)=y_{K} \otimes g_{K}$, where $y_{K} \in X_{2}$ and $g_{K} \in X_{2}^{*}$. It follows from $f_{K}\left(x_{K}\right)=1$ that $g_{K}\left(y_{K}\right)=1$. Noting that $x \otimes f_{K} \in \operatorname{Alg} \mathcal{L}_{1}$ for every $x \in K$, define a map $T_{K}: K \rightarrow X_{2}$ by

$$
T_{K} x=\phi\left(x \otimes f_{K}\right) y_{K}, \quad x \in K
$$

Then T_{K} is linear. For $A \in \mathcal{A}_{1}, A x \in K$ for every $x \in K$. Thus

$$
\phi(A) T_{K} x=\phi(A) \phi\left(x \otimes f_{K}\right) y_{K}=\phi\left(A x \otimes f_{K}\right) y_{K}=T_{K} A x, \quad x \in K
$$

Finally we show that T_{K} is injective. Suppose that $T_{K} x=0$ with $x \in K$. Then $\phi\left(x \otimes f_{K}\right)=\phi\left(\left(x \otimes f_{K}\right)\left(x_{K} \otimes f_{K}\right)\right)=\phi\left(x \otimes f_{K}\right) y_{K} \otimes g_{K}=0$. By the injectivity of ϕ, we conclude that $x=0$.

In what follows, for every $K \in \mathcal{J}\left(\mathcal{L}_{1}\right), T_{K}$ will denote the map as constructed in Lemma 2.4. Obviously, it depends on the choices of x_{K}, f_{K}, y_{K} and g_{K}. So it will be assumed that those choices have been made for every $K \in \mathcal{J}\left(\mathcal{L}_{1}\right)$.

LEmmA 2.5. There exists a surjective map $\widehat{\phi}$ from $\mathcal{J}\left(\mathcal{L}_{1}\right)$ onto $\mathcal{J}\left(\mathcal{L}_{2}\right)$ such that for every $K \in \mathcal{J}\left(\mathcal{L}_{1}\right), T_{K} x \in \widehat{\phi}(K)$ for every $x \in K$.

Proof. Let K be in $\mathcal{J}\left(\mathcal{L}_{1}\right)$. Since $y_{K} \otimes g_{K}=\phi\left(x_{K} \otimes f_{K}\right)$ is in $\operatorname{Alg} \mathcal{L}_{2}$, there is $\widehat{K} \in \mathcal{J}\left(\mathcal{L}_{2}\right)$ such that $y_{K} \in \widehat{K}$. Since the intersection of any two distinct elements in $\mathcal{J}\left(\mathcal{L}_{2}\right)$ is (0), such a \widehat{K} is unique. Thus the map $\widehat{\phi}(K)=\widehat{K}$ is well defined. For $x \in K$, since $\phi\left(x \otimes f_{K}\right) \in \mathcal{A}_{2}$, it follows that $T_{K} x=$ $\phi\left(x \otimes f_{K}\right) y_{K} \in \widehat{\phi}(K)$.

It remains to prove that $\widehat{\phi}$ is surjective. Let L be an arbitrary element in $\mathcal{J}\left(\mathcal{L}_{2}\right)$. Take nonzero vectors $y \in L$ and $g \in L \perp$ such that $g(y)=1$. Then there is a rank one operator $x \otimes f \in \mathcal{A}_{1}$ with $f(x)=1$ such that $\phi(x \otimes f)=y \otimes g$. Suppose that $x \in K$ where $K \in \mathcal{J}\left(\mathcal{L}_{1}\right)$. Then

$$
T_{K} x=\phi\left(x \otimes f_{K}\right) y_{K}=\phi(x \otimes f) \phi\left(x \otimes f_{K}\right) y_{K}=g\left(T_{K} x\right) y
$$

It follows that $y \in \widehat{\phi}(K)$. Consequently, $L=\widehat{\phi}(K)$.
Lemma 2.6. For every $K \in \mathcal{J}\left(\mathcal{L}_{1}\right), T_{K}$ is a surjective linear map from K onto $\widehat{\phi}(K)$.

Proof. Let K be in $\mathcal{J}\left(\mathcal{L}_{1}\right)$. Let $y \in \widehat{\phi}(K)$ with $y \neq 0$. It is easy to see that $g_{K} \in \widehat{\phi}(K) \perp$. So there is a rank one operator $x \otimes f \in \operatorname{Alg} \mathcal{L}_{1}$ with $x \in M$ and $f \in M_{-}^{\perp}$ for some $M \in \mathcal{J}\left(\mathcal{L}_{1}\right)$, such that $\phi(x \otimes f)=y \otimes g_{K}$. Thus

$$
\phi\left(f\left(x_{K}\right) x \otimes f_{K}\right)=\phi\left((x \otimes f)\left(x_{K} \otimes f_{K}\right)\right)=\left(y \otimes g_{K}\right)\left(y_{K} \otimes g_{K}\right)=y \otimes g_{K}
$$

This implies that $f\left(x_{K}\right) \neq 0$, and hence $M=K$. Moreover,

$$
T_{K}\left(f\left(x_{K}\right) x\right)=\phi\left(f\left(x_{K}\right) x \otimes f_{K}\right) y_{K}=y
$$

Lemma 2.7. Suppose that K_{1}, \ldots, K_{n} are distinct elements in $\mathcal{J}\left(\mathcal{L}_{1}\right)$, and let $x_{i} \in K_{i}$. If $x_{1}+\ldots+x_{n}=0$, then $x_{1}=\ldots=x_{n}=0$.

Proof. Indeed, for each i, we have $x_{i} \in K_{i} \cap\left(\bigvee_{j \neq i} K_{j}\right) \subseteq K_{i} \cap\left(K_{i}\right)_{-}$ $=(0)$. Hence $x_{i}=0$.

We can now prove our main result.
Proof of Theorem 2.3. Every nonzero $x \in\left\langle\mathcal{J}\left(\mathcal{L}_{1}\right)\right\rangle$ has a representation $x=x_{1}+\ldots+x_{n}$ with $x_{i} \in K_{i}, 1 \leq i \leq n$, where K_{1}, \ldots, K_{n} are distinct elements in $\mathcal{J}\left(\mathcal{L}_{1}\right)$. If each x_{i} is required to be nonzero, by Lemma 2.7, this representation is unique up to permutations of the K_{i} 's. Thus we can define a linear map T_{0} from $\left\langle\mathcal{J}\left(\mathcal{L}_{1}\right)\right\rangle$ to X_{2} by

$$
T_{0} x=T_{K_{1}} x_{1}+\ldots+T_{K_{n}} x_{n}
$$

where $0 \neq x=x_{1}+\ldots+x_{n}$ with $0 \neq x_{i} \in K_{i}, 1 \leq i \leq n$, and where K_{1}, \ldots, K_{n} are distinct elements in $\mathcal{J}\left(\mathcal{L}_{1}\right)$. By a routine computation, we get

$$
\begin{equation*}
\phi(A) T_{0} x=T_{0} A x \tag{2.1}
\end{equation*}
$$

for $A \in \mathcal{A}_{1}$ and $x \in\left\langle\mathcal{J}\left(\mathcal{L}_{1}\right)\right\rangle$.

Let $G\left(T_{0}\right)$ be the graph of T_{0}, that is, $G\left(T_{0}\right)=\left\{\left(x, T_{0} x\right): x \in\left\langle\mathcal{J}\left(\mathcal{L}_{1}\right)\right\rangle\right\}$, and let $\overline{G\left(T_{0}\right)}$ be the norm closure of $G\left(T_{0}\right)$. Let $\mathcal{D}=\left\{x \in X_{1}:(x, y) \in\right.$ $\overline{G\left(T_{0}\right)}$ for some $\left.y \in X_{2}\right\}$. Then \mathcal{D} is obviously a linear manifold and $\left\langle\mathcal{J}\left(\mathcal{L}_{1}\right)\right\rangle$ $\subseteq \mathcal{D}$. Since $\left\langle\mathcal{J}\left(\mathcal{L}_{1}\right)\right\rangle$ is dense in X_{1}, so is \mathcal{D}.

For every $x \in \mathcal{D}$, we will show that there exists a unique $y \in X_{2}$ such that $(x, y) \in \overline{G\left(T_{0}\right)}$. Suppose that $(0, y) \in \overline{G\left(T_{0}\right)}$. Then we have a sequence $\left\{x_{m}\right\}_{m=1}^{\infty}$ of vectors in $\left\langle\mathcal{J}\left(\mathcal{L}_{1}\right)\right\rangle$ such that $x_{m} \rightarrow 0$ and $T_{0} x_{m} \rightarrow y$. If $y \neq 0$, there is $g \in L_{-}^{\perp}$ with $L \in \mathcal{J}\left(\mathcal{L}_{2}\right)$ such that $g(y) \neq 0$ since $\bigcup\left\{L_{-}^{\perp}: L \in \mathcal{J}\left(\mathcal{L}_{2}\right)\right\}$ is weak* dense in X_{2}^{*}. Let z be a nonzero vector in L, and suppose that $\phi(A)=z \otimes g$, where A in \mathcal{A}_{1} is of rank one. Then $T_{0} A$ is a bounded operator from X_{1} to X_{2}. Thus, from (2.1), we have $(z \otimes g) y=0$. This is a contradiction.

Therefore, we can define a map $T: \mathcal{D} \subseteq X_{1} \rightarrow X_{2}$ in an obvious way, such that $G(T)=\overline{G\left(T_{0}\right)}$. Clearly, T is linear and injective. Moreover, the range of T contains that of T_{0}. By Lemmas 2.5 and 2.6, the range of T_{0} is $\left\langle\mathcal{J}\left(\mathcal{L}_{2}\right)\right\rangle$, so the range of T is dense in X_{2}.

It remains to prove that \mathcal{D} is invariant under every element in \mathcal{A}_{1} and $\phi(A) T x=T A x$ for every $A \in \mathcal{A}_{1}$ and every $x \in \mathcal{D}$.

Let $A \in \mathcal{A}_{1}$ and $x \in \mathcal{D}$. Then $(x, T x) \in \overline{G\left(T_{0}\right)}$. Thus there exists a sequence $\left\{x_{m}\right\}_{1}^{\infty}$ of elements in $\left\langle\mathcal{J}\left(\mathcal{L}_{1}\right)\right\rangle$ such that $x_{m} \rightarrow x$ and $T_{0} x_{m} \rightarrow T x$. It follows from (2.1) that $T_{0} A x_{m} \rightarrow \phi(A) T x$. Therefore $\left(A x_{m}, T_{0} A x_{m}\right) \rightarrow$ $(A x, \phi(A) T x)$. Since $\left(A x_{m}, T_{0} A x_{m}\right) \in G\left(T_{0}\right)$, we have $(A x, \phi(A) T x) \in \overline{G\left(T_{0}\right)}$. Consequently, $A x \in \mathcal{D}$ and $\phi(A) T x=T A x$.

Remark 2.8. Though Theorem 2.2 ensures that an algebraic isomorphism between \mathcal{J}-subspace lattice algebras is bounded, we do not know whether it is necessarily spatial.

Remark 2.9. If ϕ is only a ring isomorphism in Theorem 2.3, the above proof gives the same result except that T is just additive.

As we know, a ring isomorphism preserves the additive and the multiplicative structures. It is an interesting problem to study when a multiplicative map is additive. The first quite surprising result is due to Martindale [16], who proved the following.

Theorem M. Let \mathcal{R} be a ring containing a family $\left\{e_{\alpha}: \alpha \in \Lambda\right\}$ of idempotents which satisfies:
(1) $x \mathcal{R}=0$ implies $x=0$.
(2) If $e_{\alpha} \mathcal{R} x=0$ for each $\alpha \in \Lambda$, then $x=0$.
(3) For each $\alpha \in \Lambda, e_{\alpha} x e_{\alpha} \mathcal{R}\left(1-e_{\alpha}\right)=0$ implies $e_{\alpha} x e_{\alpha}=0$.

Then any multiplicative isomorphism of \mathcal{R} onto an arbitrary ring is additive.

For more information on multiplicative maps, we refer to [14] and its references. The following result can be reformulated by saying that the additivity assumption in the definition of ring isomorphisms of certain standard subalgebras of \mathcal{J}-subspace lattice algebras is superfluous.

Theorem 2.10. Let \mathcal{L} be a \mathcal{J}-subspace lattice on a Banach space X. Let \mathcal{A} be a standard subalgebra of $\operatorname{Alg} \mathcal{L}$. Suppose $\operatorname{dim} K \geq 2$ for every $K \in \mathcal{J}(\mathcal{L})$. Then every multiplicative isomorphism ϕ of \mathcal{A} onto an arbitrary ring is additive.

Proof. Consider the family $S=\left\{x \otimes f: x \in K, f \in K_{-}^{\perp}, f(x)=1\right.$, $K \in \mathcal{J}(\mathcal{L})\}$ of idempotent rank one operators. Now it suffices to verify that conditions (1)-(3) in Theorem M are satisfied.
(1) Suppose $T \in \mathcal{A}$ is such that $T \mathcal{A}=0$. For each $K \in \mathcal{J}(\mathcal{L})$, fix a nonzero functional $f_{K} \in K_{-}^{\perp}$. Then for every $x \in K, x \otimes f_{K} \in \mathcal{A}$. So $T x \otimes f_{K}=0$. This implies that $T x=0$ for every $x \in K$. Hence $T x=0$ for every $x \in\langle\mathcal{J}(\mathcal{L})\rangle$. Since T is linear and continuous, and $\langle\mathcal{J}(\mathcal{L})\rangle$ is dense in X, it follows that $T=0$.
(2) Suppose that $T \in \mathcal{A}$ is such that $(x \otimes f) A T=0$ for every $x \otimes f \in S$ and $A \in \mathcal{A}$. In particular, setting $A=x \otimes f$, we have

$$
\begin{equation*}
(x \otimes f) T=0 \tag{2.2}
\end{equation*}
$$

for every $x \otimes f \in S$. Let $K \in \mathcal{J}(\mathcal{L})$ and $y \in K$. For every nonzero functional $f \in K_{-}^{\perp}$, since $K \vee K_{-}=X$, there exists $x \in K$ such that $f(x)=1$. Thus by (2.2), $f(T y)=0$ for every $f \in K_{-}^{\perp}$. This implies that $T y \in K_{-}$. But clearly $T y \in K$. Therefore $T y=0$ for every $y \in\langle\mathcal{J}(\mathcal{L})\rangle$. Consequently, $T=0$.
(3) Let $x \otimes f \in S$ and $T \in \mathcal{A}$. Suppose that

$$
\begin{equation*}
(x \otimes f) T(x \otimes f) A(1-x \otimes f)=0 \tag{2.3}
\end{equation*}
$$

for every $A \in \mathcal{A}$. Now $x \in K$ and $f \in K_{\perp}^{\perp}$ for some $K \in \mathcal{J}(\mathcal{L})$. Since $\operatorname{dim} K \geq 2$ and $K \vee K_{-}=X$ and $K \cap K_{-}=0$, we have $\langle x\rangle \vee K_{-} \neq X$. Thus there is a nonzero functional $g \in K_{-}^{\perp}$ such that $g(x)=0$. Putting $A=x \otimes g$ in (2.3), we get $(x \otimes f) T(x \otimes g)=0$. This implies that $f(T x)=0$. Therefore $(x \otimes f) T(x \otimes f)=f(T x)(x \otimes f)=0$.

For a pentagon subspace lattice, the condition that $\operatorname{dim} K \geq 2$ for every $K \in \mathcal{J}(\mathcal{L})$ in Theorem 2.10 is automatically satisfied. However, for a general \mathcal{J}-subspace lattice, this condition cannot be removed. The simplest example is $\phi(\lambda)=\lambda|\lambda|$ for $\lambda \in \mathbb{F}$.
3. Jordan derivations. We begin with the continuity of linear derivations of \mathcal{J}-subspace lattice algebras.

Theorem 3.1. Let \mathcal{L} be a \mathcal{J}-subspace lattice on a Banach space X. Let δ be a linear derivation from $\operatorname{Alg} \mathcal{L}$ to $B(X)$. Then δ is automatically (norm) continuous.

Proof. By the closed graph theorem, it suffices to prove that δ is a closed operator from $\operatorname{Alg} \mathcal{L}$ into $B(X)$. Let T_{n}, T in $\operatorname{Alg} \mathcal{L}$ and S in $B(X)$ be such that $T_{n} \rightarrow T$ and $\delta\left(T_{n}\right) \rightarrow S$.

Let F be in $\mathcal{J}(\mathcal{L})$ and x in F. We want to prove that $\delta(T) x=S x$. Take a nonzero functional f in F_{-}^{\perp}. Let E be an arbitrary element in $\mathcal{J}(\mathcal{L})$, and take nonzero vectors $y \in E$ and $g \in E_{-}^{\perp}$. Then $x \otimes f$ and $y \otimes g$ are both in $\operatorname{Alg} \mathcal{L}$. From the fact that for every $A \in \operatorname{Alg} \mathcal{L}$,

$$
\begin{aligned}
& \delta((y \otimes g) A(x \otimes f)) \\
& \quad=\delta(y \otimes g) A(x \otimes f)+(y \otimes g) \delta(A)(x \otimes f)+(y \otimes g) A \delta(x \otimes f)
\end{aligned}
$$

we have

$$
\begin{aligned}
(y \otimes g) S(x \otimes f)= & \lim _{n \rightarrow \infty}(y \otimes g) \delta\left(T_{n}\right)(x \otimes f) \\
= & \lim _{n \rightarrow \infty} \delta\left((y \otimes g) T_{n}(x \otimes f)\right) \\
& \left.-\lim _{n \rightarrow \infty} \delta(y \otimes g) T_{n}(x \otimes f)-\lim _{n \rightarrow \infty}(y \otimes g) T_{n} \delta(x \otimes f)\right) \\
= & \delta((y \otimes g) T(x \otimes f)) \\
& -\delta(y \otimes g) T(x \otimes f)-(y \otimes g) T \delta(x \otimes f) \\
= & (y \otimes g) \delta(T)(x \otimes f)
\end{aligned}
$$

It follows that $g(\delta(T) x)=g(S x)$ for every $E \in \mathcal{J}(\mathcal{L})$ and every $g \in E_{-}^{\perp}$. Since $\operatorname{span}\left\{K_{-}^{\perp}: K \in \mathcal{J}(\mathcal{L})\right\}$ is weak* dense in X^{*}, we conclude that $\delta(T) x=S x$. Hence $\delta(T)=S$ since $\langle\mathcal{J}(\mathcal{L})\rangle$ is dense in X.

As we have seen above and will see below, finite rank operators and rank one operators play an important role in the study of \mathcal{J}-subspace lattice algebras. The question of whether a finite rank operator in an operator algebra can be written as a finite sum of rank one operators in that algebra has been studied by many authors (see [15] and its references). It has been shown that finite rank operators in nest algebras, in finite width CSL algebras, and in atomic Boolean subspace lattice algebras have this property. However, Hopenwasser and Moore [5] produced an example of a commutative, completely distributive subspace lattice algebra in which there is a rank two operator which cannot be written as a finite sum of rank one operators. So the following result has independent interest. It was first proved in [17, Proposition 3.3.1], and we include a proof here for the convenience of the reader.

Proposition 3.2. Let \mathcal{L} be a \mathcal{J}-subspace lattice on a Banach space X and suppose that A is an operator of rank n in $\operatorname{Alg} \mathcal{L}$. Then A can be written as a sum of n rank one operators in $\operatorname{Alg} \mathcal{L}$.

Proof. Let

$$
\left\{K_{\alpha} \in \mathcal{J}(\mathcal{L}): \alpha \in \Lambda\right\}=\{K \in \mathcal{J}(\mathcal{L}): A x \neq 0 \text { for some } x \in K\}
$$

For each $\alpha \in \Lambda$, let $\left\{x_{1}^{\alpha}, \ldots, x_{n_{\alpha}}^{\alpha}\right\}$ be a Hamel basis for $\left\{A x: x \in K_{\alpha}\right\}$. Then $n_{\alpha}<\infty$ for each $\alpha \in \Lambda$ and $\left\{x_{1}^{\alpha}, \ldots, x_{n_{\alpha}}^{\alpha}\right\}_{\alpha \in \Lambda}$ is a linearly independent set of vectors. It is clear that the linear span of $\left\{x_{1}^{\alpha}, \ldots, x_{n_{\alpha}}^{\alpha}\right\}_{\alpha \in \Lambda}$ is contained in the range of A. It follows that the set $\left\{x_{1}^{\alpha}, \ldots, x_{n_{\alpha}}^{\alpha}\right\}_{\alpha \in \Lambda}$ is finite and Λ has at most n elements. Hence since $\bigvee\{K: K \in \mathcal{J}(\mathcal{L})\}=X$, the range of A is equal to the linear span of $\left\{x_{1}^{\alpha}, \ldots, x_{n_{\alpha}}^{\alpha}\right\}_{\alpha \in \Lambda}$. Suppose that $\Lambda=$ $\{1, \ldots, m\}(m \leq n)$. Then $n_{1}+\ldots+n_{m}=n$ and

$$
\begin{equation*}
A=x_{1}^{1} \otimes f_{1}^{1}+\ldots+x_{n_{1}}^{1} \otimes f_{n_{1}}^{1}+\ldots+x_{1}^{m} \otimes f_{1}^{m}+\ldots+x_{n_{m}}^{m} \otimes f_{n_{m}}^{m} \tag{3.1}
\end{equation*}
$$

where $f_{i}^{j} \in X^{*}$. Now it suffices to prove that each $f_{i}^{j}, 1 \leq i \leq n_{j}$, is in $\left(K_{j}\right)_{-}^{\perp}$. For simplicity, we only prove that $f_{1}^{1}, \ldots, f_{n_{1}}^{1} \in\left(K_{1}\right)_{-}^{\perp}$. For every $x \in\left(K_{1}\right)_{-}, A x \in\left(K_{1}\right)_{-}$. Since $K_{j} \neq K_{1}, j=2, \ldots, m$, we have $K_{j} \subseteq\left(K_{1}\right)_{-}$. It follows that $\left\{x_{i}^{j}: 2 \leq j \leq m, 1 \leq i \leq n_{j}\right\} \subset\left(K_{1}\right)_{-}$. Thus, from (3.1), $f_{1}^{1}(x) x_{1}^{1}+\ldots+f_{n_{1}}^{1}(x) x_{n_{1}}^{1}$ belongs to $\left(K_{1}\right)_{-}$. But this vector also belongs to K_{1}. It follows from $K_{1} \cap\left(K_{1}\right)_{-}=(0)$ that $f_{1}^{1}(x) x_{1}^{1}+\ldots+f_{n_{1}}^{1}(x) x_{n_{1}}^{1}=0$. Hence since $x_{1}^{1}, \ldots, x_{n_{1}}^{1}$ are linearly independent, $f_{1}^{1}(x)=\ldots=f_{n_{1}}^{1}(x)=0$. Since x is an abitrary vector in $\left(K_{1}\right)_{-}$, we conclude that $f_{1}^{1}, \ldots, f_{n_{1}}^{1} \in\left(K_{1}\right) \perp$.

The following is the main result in this section.
Theorem 3.3. Let \mathcal{L} be a \mathcal{J}-subspace lattice on a Banach space X and \mathcal{A} be a standard subalgebra of $\operatorname{Alg} \mathcal{L}$. Then every Jordan derivation δ of \mathcal{A} to $B(X)$ is an additive derivation.

For the proof of Theorem 3.3, we need some lemmas. The first can be found in [4].

Lemma 3.4. For $A, B, C \in \mathcal{A}$, we have
(i) $\delta(A B+B A)=A \delta(B)+\delta(A) B+B \delta(A)+\delta(B) A$.
(ii) $\delta(A B A)=\delta(A) B A+A \delta(B) A+A B \delta(A)$.

In what follows, for $K \in \mathcal{J}(\mathcal{L})$, write $\mathcal{F}(K)=\left\langle\left\{x \otimes f: x \in K, f \in K_{-}^{\perp}\right\}\right\rangle$. Then $\mathcal{F}(K)$ is an ideal of \mathcal{A}.

Lemma 3.5. Let $K \in \mathcal{J}(\mathcal{L})$ and suppose that $\operatorname{dim} K \geq 2$. Suppose that φ is a ring homomorphism from $\mathcal{F}(K)$ to $B(X)$ and ψ is a ring antihomomorphism from $\mathcal{F}(K)$ to $B(X)$. If, for every $A \in \mathcal{F}(K)$,

$$
\begin{equation*}
\varphi(A)+\psi(A)=A \tag{3.2}
\end{equation*}
$$

then $\psi=0$.
Proof. Since $\operatorname{dim} K \geq 2$, we can choose nonzero vectors $x_{1}, x_{2} \in K$ and $f \in K_{-}^{\perp}$ satisfying $f\left(x_{1}\right)=1$ and $f\left(x_{2}\right)=0$. Then both $x_{1} \otimes f$ and $x_{2} \otimes f$ are in $\mathcal{F}(K)$. Moreover, by (3.2), $x_{1} \otimes f$ is the sum of two idempotents $\varphi\left(x_{1} \otimes f\right)$ and $\psi\left(x_{1} \otimes f\right)$. It follows that one of $\varphi\left(x_{1} \otimes f\right)$ and $\psi\left(x_{1} \otimes f\right)$ is zero. We will show that $\psi\left(x_{1} \otimes f\right)=0$. Otherwise, $\varphi\left(x_{1} \otimes f\right)=0$. Then
$\varphi\left(x_{2} \otimes f\right)=\varphi\left(\left(x_{2} \otimes f\right)\left(x_{1} \otimes f\right)\right)=0$. By (3.2), we have $\psi\left(x_{1} \otimes f\right)=x_{1} \otimes f$ and $\psi\left(x_{2} \otimes f\right)=x_{2} \otimes f$. Thus we would have $x_{2} \otimes f=\psi\left(x_{2} \otimes f\right)=$ $\psi\left(\left(x_{2} \otimes f\right)\left(x_{1} \otimes f\right)\right)=\psi\left(x_{1} \otimes f\right) \psi\left(x_{2} \otimes f\right)=\left(x_{1} \otimes f\right)\left(x_{2} \otimes f\right)=0$. This is impossible. So $\psi\left(x_{1} \otimes f\right)=0$. For every $x \otimes g \in \mathcal{F}(K), \psi(x \otimes g)=$ $\psi\left((x \otimes f)\left(x_{1} \otimes f\right)\left(x_{1} \otimes g\right)\right)=0$. Consequently, $\psi=0$.

Recall that an algebra \mathcal{A} is called a matrix algebra of rank n if there exists a system $\left\{e_{i j}: 1 \leq i, j \leq n\right\} \subseteq \mathcal{A}$ satisfying $e_{i j} e_{k l}=\delta_{j k} e_{i l}$ such that $x=\sum_{i, j} t_{i j} e_{i j}$ for each $x \in \mathcal{A}$, where $t_{i j} \in \mathbb{F}$. An algebra \mathcal{A} is called a locally matrix algebra if for every finite set of elements A_{1}, \ldots, A_{n} in \mathcal{A} there is a subalgebra \mathcal{B} of \mathcal{A}, which is a matrix algebra of rank ≥ 2, such that all A_{1}, \ldots, A_{n} are in \mathcal{B}. The following lemma ensures that Theorem 8 in [6] can be applied.

Lemma 3.6. Let $K \in \mathcal{J}(\mathcal{L})$ and suppose that $\operatorname{dim} K \geq 2$. Then $\mathcal{F}(K)$ is a locally matrix algebra.

Proof. We first establish the following claim.
Claim. For every finite set of rank one operators $x_{1} \otimes f_{1}, \ldots, x_{n} \otimes f_{n} \in$ $\mathcal{F}(K)$, there is an idempotent operator P of $\operatorname{rank} \geq 2$ in $\mathcal{F}(K)$ such that $P x_{i} \otimes f_{i} P=x_{i} \otimes f_{i}, i=1, \ldots, n$.

Proceed by induction. Consider a rank one operator $x_{1} \otimes f_{1} \in \mathcal{F}(K)$. If $f_{1}\left(x_{1}\right)=\lambda \neq 0$, it follows from $\operatorname{dim} K \geq 2$ that there are $y \in K$ and $g \in K_{-}^{\perp}$ such that $g(y)=1$ and $g\left(x_{1}\right)=f_{1}(y)=0$. Set $P=\lambda^{-1} x_{1} \otimes f_{1}+y \otimes g$. It is easy to verify that this is the desired P. If $f_{1}\left(x_{1}\right)=0$, it follows from $\operatorname{dim} K \geq 2$ that there are $y \in K$ and $g \in K_{-}^{\perp}$ such that $g\left(x_{1}\right)=f_{1}(y)=1$ and $g(y)=0$. The desired P is $P=x_{1} \otimes g+y \otimes f_{1}$.

Now suppose that the claim is valid for $n-1$, that is, there is an idempotent operator Q of rank ≥ 2 in $\mathcal{F}(K)$ such that $Q x_{i} \otimes f_{i} Q=x_{i} \otimes f_{i}$, $i=1, \ldots, n-1$. We want to prove that the claim is also valid for n. We distinguish some cases.

CASE 1: $(I-Q) x_{n} \neq 0$ and $(I-Q)^{*} f_{n} \neq 0$. Note that $(I-Q) x_{n} \in K$ and $(I-Q)^{*} f_{n} \in K_{-}^{\perp}$.

If $f_{n}\left((I-Q) x_{n}\right)=\lambda \neq 0$, we set $P=Q+\lambda^{-1}(I-Q) x_{n} \otimes(I-Q)^{*} f_{n}$.
If $f_{n}\left((I-Q) x_{n}\right)=0$, then there is $y \in K$ such that $f_{n}((I-Q) y)=1$. Let $g \in K_{-}^{\perp}$ be such that $g((I-Q) y)=0$ and $g\left((I-Q) x_{n}\right)=1$. Set

$$
P=Q+(I-Q) x_{n} \otimes(I-Q)^{*} g+(I-Q) y \otimes(I-Q)^{*} f_{n}
$$

CASE 2: $(I-Q) x_{n} \neq 0$ and $(I-Q)^{*} f_{n}=0$. Then $\left.f_{n}\left((I-Q) x_{n}\right)\right)=0$. Let $g \in K_{-}^{\perp}$ be such that $g\left((I-Q) x_{n}\right)=1$. Set

$$
P=Q+(I-Q) x_{n} \otimes(I-Q)^{*} g
$$

CASE 3: $(I-Q) x_{n}=0$ and $(I-Q)^{*} f_{n} \neq 0$. Pick $y \in K$ such that $f_{n}((I-Q) y)=1$. Set

$$
P=Q+(I-Q) y \otimes(I-Q)^{*} f_{n}
$$

CASE 4: $(I-Q) x_{n}=0$ and $(I-Q)^{*} f_{n}=0$. Set $P=Q$.
This establishes the claim.
Let A_{1}, \ldots, A_{n} be in $\mathcal{F}(K)$. By the claim, there is an idempotent operator P of rank ≥ 2 in $\mathcal{F}(K)$ such that $P A_{i} P=A_{i}, i=1, \ldots, n$. Let $\left\{x_{1}, \ldots, x_{m}\right\}$ be a basis of the range of P. Let $f_{i} \in X^{*}, i=1, \ldots, m$, be such that

$$
f_{i}\left(x_{j}\right)=\delta_{i j}, \quad f_{i}(z)=0 \quad \text { for every } z \in \operatorname{ker} P .
$$

Then $f_{i} \in K_{-}^{\perp}$ and $P=x_{1} \otimes f_{1}+\ldots+x_{n} \otimes f_{n}$. Define $\mathcal{B}=\left\langle\left\{x_{k} \otimes f_{j}:\right.\right.$ $1 \leq k, j \leq m\}\rangle$. Then \mathcal{B} is a matrix algebra and all A_{1}, \ldots, A_{n} belong to \mathcal{B}. Moreover, for each $1 \leq i \leq n$,

$$
A_{i}=\sum_{k, j} t_{k j}^{i} x_{k} \otimes f_{j},
$$

where $t_{k j}^{i}=f_{k}\left(A_{i} x_{j}\right)$.
Lemma 3.7. Let $K \in \mathcal{J}(\mathcal{L})$ and δ_{K} be the restriction of δ to $\mathcal{F}(K)$. Then δ_{K} is an additive derivation.

Proof. We distinguish two cases.
Case 1: $\operatorname{dim} K=1$. Then $K+K_{-}=X$, and hence $\operatorname{dim} K_{-}^{\perp}=1$. Thus $\mathcal{F}(K)$ is of dimension one. (Though in this case $\mathcal{F}(K)$ and $B(X)$ are prime, it seems that Herstein's result in [4] cannot be directly used. We also believe that a complete description of all Jordan derivations from a prime subalgebra to $B(X)$ has not yet been published. Here we give an elementary proof.)

Let $x_{0} \in K$ and $f_{0} \in K_{-}^{\perp}$ be such that $f_{0}\left(x_{0}\right)=1$, and set $P=x_{0} \otimes f_{0}$. Then $\mathcal{F}(K)=\{\lambda P: \lambda \in \mathbb{F}\}$. Multiplying by P the equation $\delta_{K}(P)=$ $\delta_{K}\left(P^{2}\right)=\delta_{K}(P) P+P \delta_{K}(P)$ from the left, we get $P \delta_{K}(P) P=0$. Let $x=\delta_{K}(P) x_{0}$ and $f=\delta_{K}(P)^{*} f_{0}$. Then $f_{0}(x)=f\left(x_{0}\right)=0$. For $\lambda \in \mathbb{F}$, let $h(\lambda)=f_{0}\left(\delta_{K}(\lambda P) x_{0}\right)$. Then $P \delta_{K}(\lambda P) P=h(\lambda) P$. Moreover, by Lemma 3.4, we have

$$
\begin{aligned}
\delta_{K}(\lambda P) & =\delta_{K}(P(\lambda P) P)=\delta_{K}(P)(\lambda P) P+P \delta_{K}(\lambda P) P+P(\lambda P) \delta_{K}(P) \\
& =\lambda x_{0} \otimes f+\lambda x \otimes f_{0}+h(\lambda) P .
\end{aligned}
$$

Thus

$$
\delta_{K}(\lambda P) P=\lambda x \otimes f_{0}+h(\lambda) P, \quad P \delta_{K}(\lambda P)=\lambda x_{0} \otimes f+h(\lambda) P .
$$

Therefore, for $\lambda, \mu \in \mathbb{F}$,

$$
\begin{aligned}
2\left(\lambda \mu x_{0} \otimes f+\right. & \left.\lambda \mu x \otimes f_{0}+h(\lambda \mu) P\right) \\
= & 2 \delta_{K}(\lambda \mu P)=\delta_{K}(2 \lambda \mu P)=\delta_{K}((\lambda P)(\mu P)+(\mu P)(\lambda P)) \\
= & \delta_{K}(\lambda P) \mu P+\lambda P \delta_{K}(\mu P)+\delta_{K}(\mu P) \lambda P+\mu P \delta_{K}(\lambda P) \\
= & \mu\left(\lambda x \otimes f_{0}+h(\lambda) P\right)+\lambda\left(\mu x_{0} \otimes f+h(\mu) P\right) \\
& +\lambda\left(\mu x \otimes f_{0}+h(\mu) P\right)+\mu\left(\lambda x_{0} \otimes f+h(\lambda) P\right) \\
= & 2\left(\lambda \mu x_{0} \otimes f+\lambda \mu x \otimes f_{0}+(\lambda h(\mu)+\mu h(\lambda)) P\right)
\end{aligned}
$$

It follows that $h(\lambda \mu)=\lambda h(\mu)+\mu h(\lambda)$. Further, for $\lambda, \mu \in \mathbb{F}$,

$$
\begin{aligned}
\delta_{K}(\lambda P) \mu P+\lambda P & \delta_{K}(\mu P) \\
& =\mu\left(\lambda x \otimes f_{0}+h(\lambda) P\right)+\lambda\left(\mu x_{0} \otimes f+h(\mu) P\right) \\
& =\lambda \mu x_{0} \otimes f+\lambda \mu x \otimes f_{0}+(\lambda h(\mu)+\mu h(\lambda)) P \\
& =\lambda \mu x_{0} \otimes f+\lambda \mu x \otimes f_{0}+h(\lambda \mu) P=\delta_{K}((\lambda P)(\mu P))
\end{aligned}
$$

CASE 2: $\operatorname{dim} K \geq 2$. Define a mapping $\phi: \mathcal{F}(K) \rightarrow B(X \oplus X)$ by

$$
\phi(A)=\left[\begin{array}{cc}
A & \delta_{K}(A) \\
0 & A
\end{array}\right]
$$

Then ϕ is an additive Jordan homomorphism. Since $\mathcal{F}(K)$ is a locally matrix algebra by Lemma 3.6, by Theorem 8 in [6], $\phi=\varphi+\psi$, where φ is a ring homomorphism from $\mathcal{F}(K)$ to $B(X \oplus X)$ and ψ is a ring anti-homomorphism from $\mathcal{F}(K)$ to $B(X \oplus X)$. Furthermore, φ and ψ are of the form

$$
\varphi(A)=\left[\begin{array}{cc}
\varphi_{1}(A) & \varphi_{2}(A) \tag{3.3}\\
0 & \varphi_{3}(A)
\end{array}\right], \quad \psi(A)=\left[\begin{array}{cc}
\psi_{1}(A) & \psi_{2}(A) \\
0 & \psi_{3}(A)
\end{array}\right]
$$

where φ_{1} and φ_{3} are ring homomorphisms from $\mathcal{F}(K)$ to $B(X)$, and ψ_{1} and ψ_{3} are ring anti-homomorphisms from $\mathcal{F}(K)$ to $B(X)$. Thus the equations $\varphi_{1}(A)+\psi_{1}(A)=A$ and $\varphi_{3}(A)+\psi_{3}(A)=A$ hold for every $A \in \mathcal{F}(K)$. By Lemma 3.5, $\psi_{1}=\psi_{3}=0$. Thus relation (3.3) becomes

$$
\varphi(A)=\left[\begin{array}{cc}
A & \varphi_{2}(A) \tag{3.4}\\
0 & A
\end{array}\right], \quad \psi(A)=\left[\begin{array}{cc}
0 & \psi_{2}(A) \\
0 & 0
\end{array}\right]
$$

It follows from (3.4) that φ_{2} is an additive derivation and $\psi(A B)=\psi(B) \psi(A)$ $=0$. Hence for all A, B in $\mathcal{F}(K)$, we have $\psi_{2}(A B)=0$. For every rank one operator $x \otimes f \in \mathcal{F}(K)$, we take $y \in K$ such that $f(y)=1$. Thus

$$
\psi_{2}(x \otimes f)=\psi_{2}((x \otimes f)(y \otimes f))=0
$$

Hence $\psi_{2}=0$. Thus $\delta_{K}=\varphi_{2}$ is an additive derivation.
Proof of Theorem 3.3. Let K be an arbitrary element in $\mathcal{J}(\mathcal{L})$ and δ_{K} be the restriction of δ to $\mathcal{F}(K)$. Fix $f_{K} \in K_{-}^{\perp}$ and $x_{K} \in K$ such that
$f_{K}\left(x_{K}\right)=1$. Then $x \otimes f_{K} \in \mathcal{F}(K)$ for any $x \in K$. Define a map T_{K} from K to X by

$$
T_{K} x=\delta_{K}\left(x \otimes f_{K}\right) x_{K}, \quad x \in K
$$

For every $C \in \mathcal{F}(K)$, by Lemma 3.7,

$$
\delta_{K}\left(C x \otimes f_{K}\right)=\delta_{K}(C) x \otimes f_{K}+C \delta_{K}\left(x \otimes f_{K}\right), \quad x \in K
$$

Applying the two sides of the above equation to x_{K}, we get

$$
\delta_{K}(C) x=\left(T_{K} C-C T_{K}\right) x, \quad x \in K
$$

Let $A \in \mathcal{A}$ be arbitrary. For every $C \in \mathcal{F}(K)$, since $A C$ and $C A$ are both in $\mathcal{F}(K)$, we have, for any $x \in K$,

$$
\begin{aligned}
\delta(A C+C A) x= & \delta_{K}(A C) x+\delta_{K}(C A) x \\
= & \left(T_{K} A C-A C T_{K}\right) x+\left(T_{K} C A-C A T_{K}\right) x \\
= & \left(\left(T_{K} A-A T_{K}\right) C+A\left(T_{K} C-C T_{K}\right)\right) x \\
& +\left(\left(T_{K} C-C T_{K}\right) A+C\left(T_{K} A-A T_{K}\right)\right) x \\
= & \left(T_{K} A-A T_{K}\right) C x+A \delta(C) x+\delta(C) A x+C\left(T_{K} A-A T_{K}\right) x .
\end{aligned}
$$

On the other hand, since δ is a Jordan derivation, by Lemma 3.4,

$$
\delta(A C+C A) x=\delta(A) C x+A \delta(C) x+\delta(C) A x+C \delta(A) x
$$

So we have

$$
\left(T_{K} A-A T_{K}-\delta(A)\right) C x_{K}=-C\left(T_{K} A-A T_{K}-\delta(A)\right) x_{K}, \quad C \in \mathcal{F}(K)
$$

In particular,
$\left(T_{K} A-A T_{K}-\delta(A)\right)\left(x \otimes f_{K}\right) x_{K}=-\left(x \otimes f_{K}\right)\left(T_{K} A-A T_{K}-\delta(A)\right) x_{K}, \quad x \in K$.
It follows that $\left(T_{K} A-A T_{K}-\delta(A)\right) x=\lambda x$ for some $\lambda \in \mathbb{F}$ (where λ is independent of x). Thus the above equation becomes

$$
\lambda x=-\lambda x, \quad x \in K
$$

from which $\lambda=0$ and then

$$
\delta(A) x=\left(T_{K} A-A T_{K}\right) x
$$

for every $x \in K$.
Now let A and B be in \mathcal{A}. Let K be an arbitrary element in $\mathcal{J}(\mathcal{L})$. For every $x \in K$, since $B x \in K$ we have

$$
\begin{aligned}
\delta(A B) x & =\left(T_{K} A B-A B T_{K}\right) x=\left(T_{K} A-A T_{K}\right) B x+A\left(T_{K} B-B T_{K}\right) x \\
& =\delta(A) B x+A \delta(B) x
\end{aligned}
$$

Consequently, δ is an additive derivation.
Acknowledgements. The authors would like to thank the referee for the very thorough reading of the paper and many helpful comments.

References

[1] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), 1003-1006.
[2] P. R. Chernoff, Representations, automorphisms and derivations of some operators, J. Funct. Anal. 12 (1973), 275-289.
[3] F. Gilfeather and R. L. Moore, Isomorphisms of certain CSL algebras, ibid. 67 (1986), 264-291.
[4] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110.
[5] A. Hopenwasser and R. Moore, Finite rank operators in reflexive operator algebras, J. London Math. Soc. (2) 27 (1983), 331-338.
[6] N. Jacobson and C. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479-503.
[7] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073.
[8] A. Katavolos, M. S. Lambrou and W. E. Longstaff, Pentagon subspace lattices on Banach spaces, J. Operator Theory 46 (2001), 355-380.
[9] M. S. Lambrou, Approximants, commutants and double commutants in normed algebras, J. London Math. Soc. (2) 25 (1982), 499-512.
[10] -, Automatic continuity and implementation of homomorphisms, manuscript.
[11] W. E. Longstaff, Strongly reflexive lattices, J. London Math. Soc. (2) 11 (1975), 491-498.
[12] W. E. Longstaff, J. B. Nation and O. Panaia, Abstract reflexive sublattices and completely distributive collapsibility, Bull. Austral. Math. Soc. 58 (1998), 245-260.
[13] W. E. Longstaff and O. Panaia, \mathcal{J}-subspace lattices and subspace M-bases, Studia Math. 139 (2000), 197-211.
[14] F. Y. Lu, Multiplicative mappings of operator algebras, Linear Algebra Appl. 347 (2002), 283-291.
[15] F. Y. Lu and S. J. Lu, Decomposability of finite-rank operators in commutative subspace lattice algebras, J. Math. Anal. Appl. 264 (2001), 408-422.
[16] W. S. Martindale III, When are multiplicative mappings additive?, Proc. Amer. Math. Soc. 21 (1969), 695-698.
[17] O. Panaia, Quasi-spatiality of isomorphisms for certain classes of operator algebras, Ph.D. dissertation, Univ. of Western Australia, 1995.
[18] -, Algebraic isomorphisms and finite distributive subspace lattices, J. London Math. Soc. (2) 59 (1999), 1033-1048.
[19] J. R. Ringrose, On some algebras of operators II, Proc. London Math. Soc. (3) 16 (1966), 385-402.
[20] A. M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209-214.
[21] J. H. Zhang, Jordan derivations on nest algebras, Acta Math. Sinica 41 (1998), 205-213 (in Chinese).

Department of Mathematics
Suzhou University
Suzhou 215006, P.R. China
E-mail: fylu@pub.sz.jsinfo.net

Department of Mathematics
Nanjing University
Nanjing 210093, P.R. China
E-mail: ptli@nju.edu.cn
pengtonglee@sina.com.cn

[^0]: 2000 Mathematics Subject Classification: 47L10, 47B48, 47B47.
 Key words and phrases: \mathcal{J}-subspace lattice, algebraic isomorphism, quasi-spatiality, Jordan derivation, additive derivation.

