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Some weighted norm inequalities for a one-sided
version of g3

by

L. bE RosA and C. SEGOVIA (Buenos Aires)

Abstract. We study the boundedness of the one-sided operator g;'#, between the

weighted spaces L (M ~w) and L?(w) for every weight w. If A = 2/p whenever 1 < p < 2,
and in the case p = 1 for A > 2, we prove the weak type of g)tgo. For every A > 1 and
p=2,or A>2/pand 1< p< 2, the boundedness of this operator is obtained. For p > 2
and A > 1, we obtain the boundedness of g;(p from LP((M~)P/2+1y) to LP(w), where

(M™)* denotes the operator M~ iterated k times.

1. Notations and definitions. As usual, S denotes the class of all
those C'°*°-functions defined on R such that

sup [z (D")(z)| < oo
zeR

for all non-negative integers m and n. We also consider the space C§° of all
C*°-functions defined on R with compact support.

If E C R is a Lebesgue measurable set, we denote its Lebesgue measure
by |E|, and the characteristic function of E by xg(z).

Let f be a measurable function defined on R. The one-sided Hardy-
Littlewood maximal functions M~ f and M ™ f are given by

x x+h
Mof@) = s | IF@ld M f@) = sz | L) dn
h>0 " ~, h>0 z

A weight w is a measurable and non-negative function defined on R. If
E C Ris a measurable set, we denote its w-measure by w(E) = |, w(t) dt.
Given p > 1, LP(w) is the space of all measurable functions f such that

< 1/p
Il = (§ 1f@)Pw(@)dz) " < oo,
—00
If w =1, we simply write L? and || f]| »-
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We shall say that a function B : [0,00) — [0,00) is a Young function
if it is continuous, convex, increasing and satisfies lim;_,o, B(t) = 0o. The
Luxemburg norm of a function f is given by

Il = inf{A > 0: {BAFI/N) <1},

and the average over an interval I is:
|fllzs = nt{x>0: ! SiBAsN <1}

The one-sided maximal operators assomated to B are defined as
Mg(f)(w)=§Lliré\|f\|3,[x,x+h], Mg (f)(z) =

Let ¢ belong to S and be supported on (—oo, 0] Wlth {¢(z)dz = 0. For
every A > 1, the one-sided operator g; , Was defined in [RoSe] as

st 0@ = (35 (i ) et 2)

0 x
Throughout this paper the letter C will always mean a positive constant
not necessarily the same at each occurrence. If 1 < p < oo then p’ denotes
its conjugate exponent: p +p’ = pp'.

Jz—h,x]

2. Statement of the results. In [CW], S. Chanillo and R. Wheeden
obtained the boundedness of the area integral between the spaces LP(Mw)
and LP(w) when 1 < p < 2. For p = 2 and A > 1, if the support of ¢ is
compact, they showed in [CW, Lemma (1.1)] that the operator gj‘\,(p maps
L?*(Mw) into L?(w). We shall give, in Theorem A, a one sided-version of
this result without the restriction on the support of p. For 1 < p < 2 and
A = 2/p, in order to prove Theorem B below, we use some arguments due to
C. Fefferman (see [F]). As a consequence of Theorems A and B, for 1 < p < 2
and A > 2/p, we obtain, in Theorem C, the boundedness of g:{ o between
LP(M~w) and LP(w). For p > 2, the known techniques (see [P]) allow us to
prove Theorem D.

Next, we state the already mentioned Theorems A-D.

THEOREM A. Let ¢ € S with supp(p) C (—00,0] and §¢(z)dz = 0.
Then, for every A > 1,

( OSO giw(f)(xyw(x) dx)l/2 < CA,@( OSO |f(z)2M~w(z) d$>1/2,

—0o0 —0o0
with a constant C) , not depending on f.

THEOREM B. Let ¢ € S with supp(p) C (—00,0] and {¢(z)dz = 0.
Let A\ > 2 if p =1, and A = 2/p whenever 1 < p < 2. Then there ezists a
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constant Cp \ w,, such that

oo

W g, (D) > uh) < PEL | |(@)PM () da

—0o0
for every function f and p > 0.

THEOREM C. Let ¢ € S with supp(yp) C (—00,0] and §p(z)dz = 0. Let
1 <p<2 IfX>2/p, then there exists a constant Cp x ., such that

| o (N@Pw()de < Cpruwy | 1F(@)PM w(x) de

for every function f.

THEOREM D. Let ¢ € S with supp(yp) C (—o0,0] and §o(z) dx = 0. Let
A > 1 and p > 2. Then there exists a constant Cp, x ,, such that

o0 o0

V ox (N@Pw@)de < Cprwe | 1f(@)P(M)PPH (w)(2) da.

—0o0 —0o0
3. Proof of the results. The following lemma and remark will be used
in the proof of Theorem A.

LEMMA 1. Let p € C§° with supp(p) C [—2%,0], s> 0, and {¢(z) dz=0.
Then

S giw(f)(m)%(w)dwéc’ﬂ“(ﬁ \@(t)!sz,) [ 1f@)PM w(z) dr,

with a constant C depending neither on f nor on .

Proof. By Fubini’s theorem, we have

[e.9]

| ot (N (@) w) de

- o0 o000 )\
= S(#) 1 * o) 2 (@) do

ora\tty—a 12

T 1Y t A dy dt
_ 2
= é_soo|f*80t(y)| (; _L(m) w(z) de)T-

For each integer k, we consider the set

A = {(y,t) Lokl < % § (m/%x>)\w(x) dz < 2k}.

—00



24 L. de Rosa and C. Segovia

Then
@ | o DePua s < 2] 17l .6 B
- k€Z 0 —oo

For every (y,t) belonging to Ay and y < z < y + 25¢, we have

15 t A 1 1Y t A
- v > z
t_Soo<t+z—x> w(z)de 2 2(s+1>At_S <t+y—x> w(z) v

[e.9]

2k71
Z SN
On the other hand, since A > 1, there exists a constant C) such that for
every z,

! _i(mﬁ)kw("”) de < O\M " w(z).

Therefore, if (y,t) € Ay and y < z < y + 2%t then z belongs to E = {z :
M~w(z) > (Cy/25TDM) 2511 Taking into account that supp(p) C [-2°,0],
we get

Frey) =\ F(2)xe (2)ey — 2) dz = (fxm, = e0) ).
Then, by Plancherel’s and Fubini’s theorems, (2) is majorized by

oo o0 o0 o0

S22 el T =32 | IR W | 1B
kEZ 0 —o0 keZ  —oo 0

The inner integral is bounded by Cy, = {*_(|3(t)[?/|t]) dt. Thus, applying
Plancherel’s theorem again, we get

| 9l (D@ w(@)de <Oy § £ 25xm,(v) dy.
— 0 —00 keZ

Finally, we observe that by the definition of E},

> 2k xg, (y) < Ca2* M w(y)
kEZ

for almost every y, ending the proof of the lemma. =

REMARK. We observe that if ¢ € S and {p(z) dz = 0, then

@ L IewE L (] lsllelds) + | o) Pas

In fact, since {¢(z)dz = 0, we have

(e e}

) = | § e = 1yae| < 2mls] | el le(t)] de.

—00
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Consequently,

[ 1R T < an?(§ lsll(o)las)

o<1 [s] %

On the other hand, in view of Plancherel’s theorem

BEOE ‘d‘ < S B)Pds < | lo(s)Pds,
|s]>1 —o0

which shows that (3) holds.

Let n be a non-negative and C§°-function with support contained in
-2, — ] and {n(z)dxz = 1. For every non-negative integer k, let ny(z) =
2” ( kx). We define

oz)= | n@)d.
|| /2<]t]<|=|
Then 0 € C§° and supp(f) C [—4, —1] U [1,4]. For every positive integer k,
let
O (z) = 627" a),
and for k£ =0, let
Oo(x)=1— | ny)dy.
lyl|<lz|
Then > 722, 0k(z) = 1 for every x. Given ¢ € S with supp(p) C (—o0,0]
and {p(x)dz =0, we deﬁne

ak—Szah dy, kZO, a_1:O.

For every non—negatlve 1nteger k, let o be given by

(4) or(r) = O (z) () + ag—1m—1(2) — apmy ().

It is easy to check that supp(gy) C [-2FF1, —2F=1] for k& > 1, and supp(og) C
[—2,0]. Moreover, { ox(x) dz = 0 for every k > 0, and » ;7 , or, = ¢. We shall
show that for every N > 2,

[e.9]

- ds _ _
(5) Co = | 12(s)” o < One? 2R(N=-2),

—0o0

By definition of gy,

©  (§ la@Pds)” < (_Of 0c(2) () da)

—00

1/2

(e} [e.e]

ol (§ ea@Par)” (] o ar)”

—00 —00
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Since 0 < Ox(z) < 1 and supp(fpp) C [-2FF1 281 for £ > 1, and
supp(bop) C [—2,0], we have

O (Jm@ewra) < (] o w)”
e supp (0 #)

< Oy 2 FV=1/2),

By definition of aj, and taking into account that {¢(z)dx =0, we get

k] = H > )ey) dy] < | lewldy
h=kl [y 2+
d
S | |£zk T v < e

Thus,
(8) Iakl( OSO |77k(x)|2d33)1/2 = %( OSO |77(33)’2d$)1/2 < Oy 2 HN=1/2),
Then, by (6)-(5), _

T loc(@)2de < Oy 22512
Simple calculations SLT)OW that

OSO 2] |o(z)|? d < O ,272HIN=2),

Now, using (3) we obtain (5).

Proof of Theorem A. We consider the sequence of functions { g, k¥ > 0}
defined in (4). Since > ;2 or = @ and D32 Xsupp(ox) (%) < 3, we have

fxo(y) = Zf * (on)¢(y)
k=0

for every y. Then
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Keeping in mind that supp(ox) C [—2*"1,0] and {ox(z)dz = 0, we can
apply Lemma 1. Then, by the estimate (5) with N > A+ 2, we find that (9)
is bounded by a constant times

o0 o 1/2 0
St (§ ol ) (1 @Rt )
k=0 —oo

o 1/2
< Crp( | @PM w(@)dz) . -
In order to prove Theorem B, we shall need the following one-sided

Fefferman—Stein type inequality and Lemma 11.

LEMMA 10. There exists a positive constant C, such that

[e.9]

w({$¢M+(f)($)>u})§% V 1f@)M w(z) de

—00

for every function f, and p > 0.

Proof. The proof is similar to the proof of Theorem 1 in [M, p. 693], and
it shall not be given. m

LEMMA 11. Let I = (a,3), a bounded interval, 1 < A\ < 2, and k > 4.
Then there ezists a constant Cy ), such that for every x < o — 21|,

co 2] t A t  dy dt |7|*—2
S S t 4 < C)\,k; A°
0l +y—=x t+a—y t (a0 — 1)

Proof. Changing the variables (y,t) to
z=(a—y)/t and u=(a—zx)/t,
we obtain

OSO S ( 1 >A< 1 >kdydt
L) AL/

0 a—z>a—y>2|I|

17 1 1
T la—x)2 S S W - ududz.
(a—x)? ] us r>2 ) (cmg) 14+u—2)* (1+2)

We set A = 2|I|/(ov — z). Applying Fubini’s theorem, it is enough to show
that

1 U
S — _dudz < C) AN
k S ERYY = YAk
0 (1 + Z) z<u<z/A (1 Tu Z)
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Recalling that 1 < A < 2, we have
o
1 S u

S dud
§(1+z)k X ez

z<u<z/A u—z>u/2 (1 tu— Z)
oo z/A A oo 2-X

1 2 1 z
<|{—— (= = = = A2,
_é(l—i—z)k (S)(u) ududz O)‘é(l—i—z)k(A) dz
Since kK >4, A <1 and A\ < 2, it follows that

[e.9]

1 S U

S - dud
§)(1+z)k X ez

z<u<z/A,u—z<u/2 (1 Tu-— Z)

o) 2z

=

2

L dz< AN

which ends the proof of the lemma. =

Proof of Theorem B. By a density argument it is enough to consider f €
LP(M~w) N LP. Tt is well known that the set 2 = {z : M (|f|P)(z)"/? > u}
is open. Let {I;};>1 be its connected components. Since f € LP, each I; is
a bounded interval, and it is well known (see [HSt, pp. 421-424]) that

1 p — 4P
(12) 7l | 1/ ()P de = pP.

<.

Given I; = (o, 3;), we write I, = (o — 4|1}, ;). By (12), we have

=L T w(I;) T il T “w(z)dx
w(fn—ﬂplsjm = suplsjm )PM ™ w(x) da.

Therefore, if we define Q= U =11 U1, applying Lemma 10 we obtain

w($2) < w()+ Y w(I})

j>1
< E N F@PMw@ o+ — 37 | 1@ M w() do
LS s,
< S @M w(a) da.

Consequently, it is enough to prove that

[ee]

(13) w({w¢f?:giw(f)($)>ﬂ})§% | 17 @) PV w() de.

—00
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We define .
o(z) = f(x)xae(x) + Z(m S f> i, (@),
j=1 M
by) = <f<w) -7 f)m (@), =1
I

Then f = g+ b where b = ijl b;.
By Chebyshev’s inequality and applying Theorem A, we get

(14)  w{z ¢ 2 gL, (@) > u}) < Mi [ o5, (9)(@)2w(x) da

Qc
g% [ l9(@) M~ (wxpo)(@) da

COO

2 \ 9@ P Plg(@)P M~ (wx o) (z) da.

—00
We observe that |g(x)| < p almost everywhere. Then, by the definition of g
and Holder’s inequality, (14) is bounded by

|f(@)[PM ™ (wxge) () do+ 2)|Pdz | M~ (wxse)(x)dx|.
L e (g D)o,

It is easy to see that M~ (wx z.)(z) < CM~(w)(z) for every x, z € I;. Thus,

o

(15)  w({z ¢ 2:g],(9)(x)>u}) < ug | £ @M w(z) de.
We define I = (a; — 2|I;|, 3;) for every j > 1. We can write
(16) 9o (0)(@) < g' () + g (@),

where

g'(x) = <O§O§<t+y > ‘ Z bix iy ‘2%>I/Q’

Yy
00 00 2 1/2
dy dt
2
g($)=<H<t+y_x> D bixpi(y) —t2> .
0z iryel?

Let us consider g!(z). Taking into account that b; x ¢;(y) = 0 if y > 3;,
and {|b;(z)| dz < 2|I;|p, it follows that
y—z
P n .

’Z bi * pi(y ’<—'u Z |1;] sup

* * I;
it y¢l] irygly, y<p; #€h
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Since ¢ € S, and supp(p) C (—o0, 0], we deduce that

- C
‘w(u)‘ < ﬁ for y ¢ I¥ and z,w € I;.

AN
Then
C dw
‘Z bz‘*@t(y)‘ﬁ—u Z Sﬁﬁcﬂ'
| t (1+ “=v)
iiyglr tryglr,y<pB I t
Therefore,
T dy dt
1,02
g'(x) SCMSS(H_y_m) ‘zb*% ‘ = CuF (),
iiyglr
and by Chebyshev’s inequality we get
~ C
(17) w({z ¢ 2:g'(x) > p}) < m | Flz)w(z)de.

e
Since {b;(2) dz = 0, applying the mean value theorem, for every y < a; —2|I;]
we obtain the estimate

ot < 31 o (L5 ) (152 )| 2

. 4
S%S‘bi(z)‘ : tal <t+oj— ) *
H i—Y
< Ol rar =7 [ 1£(2)] dz.

I;

Then, by the definition of F'(z), (17) is majorized by

C T t\"
a SYfrelEln] 1 ()

21 I; Qe 0 z<y<fi,y¢I;
1
"t oyt
where 1 < X < inf(},2). Now, applying Lemma 11 with k = 4, we find that
(18) is bounded by

dy dt w(zx) dz,

a174|1i|

’Ii|A/—1
_ZS |£(2) S mw(x)xﬁc(x) dzx.

i>1 I; —00

The inner integral is bounded by CM ™ (wx . )(a;). It is easy to verify that,
by Hélder’s inequality and (12),
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1 1
V<=V IfIP
Al
Thus, we obtain

(19)  wfe ¢ 2:g'@) > p}) < ZSIf )P dz M~ (wx ge)(ai)

I

<

t|Q

=V IrPMw(z) dz,

Now, let us consider g2(z). By (12), there exists an integer ko such that
1| < |[fllpp= < 2% for every j > 1. Let Ay = {j : 2871 < |I;| < 2%},

k < ko. We can write
Ji=U UE
j=1 k<ko jE€Ak

Where EY =I5\ Ujsp Usen, I3 for each j € Ay We observe that if I} N E}
is not empty then I} C I ©, where I is the interval with the same center of

I; and with measure 20|Ij]. For each z ¢ 2, we have

S e I

t2
k<ko j€AL 0 z<y, yeE;-‘ iryely

We observe that if z ¢ 2, 2 < y and y € E% then z < «aj — 4][;| and
t+y—x>(aj—x)— (aj —y) > (oj —)/2. Then

@ PPy Y oo

kSko jEAk,J?<Oé]'

><OSO S T 2’21)*% ‘dydt

0 z<y, yGE* i:y€el’

If we define D;j = ;. prrys 9 Li and b (x) = |b(x)|xp,(x) then, for every
¥l i
€ E;, we obtain
| b= Y TG ety - 2)ldz
iiyel; iiyelr I;
| 6(2)] lee(y — 2)| dz

. I
Uz:E}fﬁIf#V) i

V 16(2)] lor(y — 2)| dz = (b7 * |oplo) (9)-
Dj

IN

IN
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Consequently, by (20), we have

(21) @) <C Z Z ﬁ
k<ko jEAk,x<aj J

o0

< | AW el ) dy dt.
Oz<y,y€E;f

We claim that

(22) V3 A2« lole) ()P dy dt < CLEF 27|67
0 E;
In fact, by Fubini’s theorem, we have

[e.9]

| 72107 = [ole) ()P it

0
= {0 ) § el (U ol (U5 ) drdwa
Yy Y 0
Since p € S, and \ < 3,

Os:t* el (U5 el (U5 a

T 1
<c\ dt
§ 1+“f>2(1+%>2
o A—4
§CS dt = Cx(z +w — 2y) 3

1 + ztw— 2y)2

Then the left hand side of (22) is bounded by

o e 1
CS Sb](z)Slﬂ(w) s dwdzdy
By ; (z +w—2y)
T V() T V(w)

SCSS 32 dzg 32 Wy
By (z — y)B=N/2 ) —y)B=N/

< S |I(+)\_1)/2(bj)(y)|2dy,
ES

where I (Jg\_l) /2 denotes the one-sided fractional integral operator of order

— . In the case 1 < p < 2 an = 2/p, since, as is well known,
A—1)/2. In th 1 2 and A\ = 2 i i 1 k
I(—;—l)/2 is a bounded operator from LP to L2, it follows that (22) holds.
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For 2 < A < 3, the operator I(J;\il)/z maps L' into weak-L2/3~» . Then, by

Kolmogorov’s condition (see [GRu, p. 485]), we obtain (22).
On the other hand, since | |b;(y)[P dy < (2u)P|I;|, we have

. 1/p
W< (> ewrInl) " <2l = Culn .
i BXOIF D
Therefore, by (21) and (22) we get
sepsopy Y 0
- (aj — )

k<ko jEAk,z<aj

Consequently,
oj—4|1;] N
(23) wfa ¢ 2: @) >up) <GP | “’(f,)’ﬁ”;§f) da
< E S IsP d= M- (g (ay)
w i
e

From (15), (16), (19) and (23) we deduce that (13) holds for A = 2/p if
1 <p<2and for 2 < X < 3 if p=1. Taking into account that if Ay < Ag
then gj\; L)) < gj\rl »(f)(@), the proof of the theorem is complete. =

We now deduce Theorem C from Theorems A and B.

Proof of Theorem C. The case p = 2 and A > 1 was considered in
Theorem A. Let 1 < p < 2 and 2/p < A < 2. We have A\ = 2/q with
1 < ¢ < p. Then, by Theorem B, g;;p maps LY(M~w) into weak-L?(w).
Since g;: is bounded from L?(M~w) to L?(w), by interpolation, we get the
assertion for A < 2. The case A\ > 2 follows by simple arguments. =

The following remark shows that for A = 2 and p = 1, a weak type
inequality as in Theorem B cannot be valid.

REMARK. Let ¢ # 0 belong to S with supp(¢) C [—1,0] and {¢(z) dz
= 0. There exists f € L' such that g;;p(f)(x) = oo for every z belonging to
an unbounded set.

In fact, we consider

1
ft) = <M — C> X[=1/2,0] ()
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where ¢ is the unique constant such that § f(¢) dt = 0. For every z < —4, we
have

(24) 93, (F)(x)* 2 )

0
V1f*eu(y) ) dy dt.
-2

O e

The support of f * ¢; is contained in (—o0,0] and the fractional integral
I j2(f) ¢ L? (see [Z, p. 232]). Then Plancherel’s theorem yields

oo 0 00 00
= S S!f*%% ) dy dt = S §| (ty) 2| F(y)|? dy dt
0 0 —

—00

=Cyp | (W) dy = oc

—0oQ0

Applying the mean value theorem, for every y < —2 we obtain

1 0 Y
rramist §EIe(5) - oY)
1/2
0 2
1 |z t 1
< - —Cy| —— | dz2<(C—r—.
<3 ) eife () s opty
—-1/2
Using these inequalities we get
oo —2 0o —2
o 2
Ay .—S S |f * ()] dydthS S 7 dy dt < oo.
0 — 0 —oco +| |
Since |+ @e(y)| < Hlelloolflls, we have
oo 0 oo 0
Ay =\ [ [f=eu(y)Pdydt < C S dydt<oo
1 -2 1 -

By (24) and the estimates obtained for A, A;, and As it follows that
giw(f)(x) = oo for every x < —4.

To prove Theorem D, we proceed as in Theorem 1.10 of [P, p. 150].

Proof of Theorem D. More generally, we shall prove that

o0 [e.e]

| sl (N@re@de <C | 1f@)P Mg @) @)" da,

—0o0 —00
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where B is a Young function that satisfies

% rup/2 N (P/2) =1 1y

In the case B(t) ~ t*/2(1 + In* t)[?/2], we get Theorem D.
Let r = p/2. We have

[e.9]

I =g, (Do) = 195, (w0l = § gl ,())(@)w(@)V"g() da,

—0o
for some g € L™ with unit norm. We recall that
M~ (g192)(x) < My (g1)(2) M5 (92) (@),
where B is the complementary function to B. Then Theorem A and Holder’s

inequality yield

I<cC S |f(@)PM ™ (w'/"g)(2) da

—00

<O | 1f(@)PMp (w7 (2) M (g)(x) da

<o | @) (| e w)”

= Clf 2o IMZ @],

where v = Mg (w'/")(x)". By Theorem 2.6 in [RiRoT], if B satisfies (25),
then

I < ClfIEeyllgll < ClFI o)
It is easy to check that Mg (w'/")(z)" = Mé(w)(:n), where B(t) = B(t'/").

If B(t) = (1 4+ In* )l then B satisfies (25), and by Proposition 2.15 in
[RiRoT] there exist two constants C7 and C3 such that

CLM (w) (@) < (M) () < CoM (w)(a),

which completes the proof. =
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