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Hankel forms and sums of random variables

by

Henry Helson (Berkeley)

Abstract. A well known theorem of Nehari asserts on the circle group that bilinear
forms in H2 can be lifted to linear functionals on H1. We show that this result can be
extended to Hankel forms in infinitely many variables of a certain type. As a corollary we
find a new proof that all the Lp norms on the class of Steinhaus series are equivalent.

1. Hankel forms. A Hankel form in ℓ2 is one of the form

(1.1) 〈a, b〉 =
∞∑

j,k=0

ajbk̺j+k

where (̺n) (n ≥ 0) is a square-summable sequence. It can be written

(1.2)

∞∑

k=0

k∑

j=0

ajbk−j̺k.

From this it is easy to see that if

(1.3) f(eix) =
∑

ake
ikx, g(eix) =

∑
bke

ikx

then the value of the sum (1.1) depends on the function fg, but not on f
and g individually. Furthermore if (fn), (gn) is a finite collection of functions
in H2(T ) (T is the circle group) with coefficients respectively (ank), (bnk)
such that

(1.4)
∑

fngn

is 0, then

(1.5)
∑

n

∞∑

k=0

k∑

j=0

anjbn,k−j̺k = 0.
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Thus the form defines a linear functional on the subspace of H1(T ) spanned
by such products fg. Actually every function of H1(T ) is a product of two
functions in H2(T ), so the functional is defined on H1(T ) itself. It follows

that there is a function φ in L∞(T ) such that φ̂(k) = ̺k (k ≥ 0). This is a
well known result of Nehari. The converse is easy: every bounded function
φ leads to a bounded Hankel form by the reverse route.

The recent evolution of the theory of Dirichlet series leads to ques-
tions about analogous statements for forms in many variables. Let K be
the infinite-dimensional torus whose dual Γ is realized as the subgroup of
the line (in discrete topology) consisting of all real numbers log r, where r
is a positive rational number. If r has the prime factoring

(1.6) r =
∏

p
nj

j

where p1 = 2, p2 = 3, . . . are the prime integers, then the character log r has
values

(1.7) χlog r(e
ix1 , eix2 , . . .) = exp

(
i
∑

njxj

)
.

Thus Γ can also be viewed as the group of sequences (n1, n2, . . .) of integers
terminating in zeros.

The narrow cone Λ in Γ consists of all log r such that each nj is non-
negative; that is, r is a positive integer. Hp(K) (p ≥ 1) consists of all
functions f in Lp(K) whose Fourier series are sums over the narrow cone:

(1.8) f(eix1 , . . .) ∼
∑

all nj≥0

a(n1, . . .)e
i
∑

njxj .

This is a power series in the variables zj = eixj (j = 1, 2, . . .). It depends
on infinitely many variables, but each term only contains a finite number of
them.

Addition in Γ is addition of corresponding components of sequences
(n1, . . .). This mirrors multiplication of the corresponding rational numbers
r given by (1.6). Thus it is natural to define a Hankel form in infinitely many
variables to be a form

(1.9) 〈a, b〉 =
∑

j,k≥1

ajbk̺jk

where a, b are square-summable sequences indexed by the positive integers,
the kernel ̺ is a square-summable sequence, and jk is a product of integers,
not a double subscript. If φ is a bounded function on K and φ̂(log n) = ̺n

(n ≥ 1) then the form is bounded. We ask whether the converse, the analogue
of Nehari’s theorem, is true. It is no longer the case that every function of
H1(K) is the product of functions in H2(K), so the argument given above
does not apply. Nevertheless the form defines a linear functional at least in
the part of H1(K) spanned by products gh, where g, h belong to H2(K),



Hankel forms and sums of random variables 87

exactly as recounted for the circle group above, and if a bounded function
φ realizes this functional, then φ is lifted from the form. If every bounded
Hankel form of some class can be lifted we shall say the class has the lifting

property .
In [5] the lifting property was connected to another question. Denote by

K the linear set of finite sums (1.4), where the factors all belong to H2(K).
In K we define the tensor norm

(1.10) ‖h‖ = inf
∑

‖fn‖2‖gn‖2

where the infimum extends over all finite sums (1.4) equal to h. Thus K is a
subspace of H1(K) with a larger norm. Perhaps the completion of K, which
we denote by K∗, is all of H1(K). It is if and only if the tensor norm on
K is equivalent to the norm in H1(K). We do not know whether this is the
case, but

The class of all bounded Hankel forms has the lifting property if and

only if K∗ = H1(K).

The equivalence, stated in [5], is easy to establish.

2. Hilbert–Schmidt forms. A Hankel form with kernel ̺ is of Hilbert–

Schmidt type if

(2.1)
∞∑

j,k=1

|̺jk|2 < ∞.

Then the form is bounded, with bound at most the square root of the sum.
The terms of the sum are the same for all pairs (j, k) such that the product
jk has a given value n. Therefore the sum in (2.1) is the same as

(2.2)
∞∑

n=1

|̺n|2d(n),

where d(n) is the number of divisors of n. (For example, if n is prime then
d(n) = 2.)

Our main result is this.

Theorem. The class of Hilbert–Schmidt Hankel forms in infinitely many

variables has the lifting property.

This answers Question 3 of [5, p. 54]. It does not settle the question
raised above, but has its own consequences.

The proof rests on the following result about the circle.

Lemma 1. For f in H1(T ) with Fourier coefficients an,

(2.3)
( ∞∑

n=0

|an|2/(n + 1)
)1/2

≤ ‖f‖1.
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The convergence of the sum on the left is of course a weaker statement
than the convergence of the sum in the better known inequality

(2.4)
∞∑

n=0

|an|/(n + 1) ≤ π‖f‖1

of Hardy and Littlewood [4, p. 129] (the bound π was found by I. Schur);
but for us the bound in (2.3) is essential, and it is due to Vukotić [8].

Throughout this paper, the Lebesgue spaces are constructed with nor-
malized Lebesgue measure, which we denote generically by σ on various
torus groups.

Here is a proof of (2.3). We may assume that f has norm 1. Factor f
as gh with g, h in H2(T ) and |g| = |h|, so that ‖g‖2 = ‖h‖2 = 1. Let g
and h have Fourier coefficients (bn) and (cn), respectively. Then the left side
of (2.3) is the supremum over sequences (en) of

(2.5)

∞∑

n=0

|an|en/
√

n + 1 =

∞∑

n=0

∣∣∣
n∑

j=0

bjcn−j

∣∣∣en/
√

n + 1

where the en are non-negative, square-summable, with squared-sum equal
to 1. If we replace the bn and cn by their moduli the expression on the right
is increased, so we may take them to be non-negative. Setting n = j + k
transforms (2.5) to

(2.6)

∞∑

j,k=0

bjckej+k/
√

j + k + 1.

This is a Hankel form of Hilbert–Schmidt type, whose bound is at most the
square root of

(2.7)

∞∑

j,k=0

e2
j+k/(j + k + 1).

For each non-negative integer m there are m + 1 terms with j + k = m;
therefore (2.7) is

(2.8)

∞∑

m=0

e2
m = 1.

This shows that the left side of (2.5) is at most 1, and the lemma is proved.

F. Bayart has proved this result [1, 2, 5]: for f in H1(K), and n =
∏

p
nj

j ,

(2.9)
∑

|f̂(n1, . . .)|2/nε < ∞
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for every positive ε. We are going to prove that

(2.10)
( ∞∑

n=1

|f̂(n1, . . .)|2/d(n)
)1/2

≤ ‖f‖1.

The statement of our theorem will follow easily by duality. This improves
Bayart’s theorem in two respects: d(n) = O(nε) for every positive ε, and
indeed d(n) is much smaller than nε if n is prime or has few factors; and
secondly, the precise bound given by (2.10) has no analogue in (2.9). But
our proof of (2.10) will be identical with the proof of Bayart, substituting
Lemma 1 above for a different piece of information.

The proof will be given in the next section; first we state a needed in-
equality, introduced into this subject by A. Bonami [3]:

Lemma 2. Let ̺ be a positive function on the product of spaces X and Y
carrying measures dx, dy. Then

(2.11)
(\( \̺

(x, y) dx
)2

dy
)1/2

≤
\( \̺

2(x, y) dy
)1/2

dx.

This is an integral version of Minkowski’s inequality. Note that the order
of integration is reversed by the inequality! (A proof is given in [5].)

3. Proof of the theorem. Let n have the prime factoring (1.6). All
the divisors of n are obtained by replacing each nj by all the kj satisfying
0 ≤ kj ≤ nj . Hence the number of divisors of n is exactly

(3.1)
∏

j

(nj + 1).

Of course only finitely many nj are different from 0.

We repeat Bayart’s argument. The statement to be proved is

(3.2)

( ∑

all nj≥0

|f̂(n1, n2, . . .)|2
(n1 + 1)(n2 + 1) . . .

)1/2

≤ ‖f‖1.

It will suffice to prove this for all f that are analytic trigonometric poly-
nomials. Lemma 1 is (3.2) for f depending on only one variable. Suppose
that f depends on k variables. For m = 1, . . . , k let Tm be the operator
defined by

(3.3) Tm

∑
a(n1, . . .)e

i
∑

njxj =
∑ a(n1, . . .)√

nm + 1
ei

∑
njxj .

Then (3.2) becomes

(3.4) ‖T1 · · ·Tkf‖2 ≤ ‖f‖1.
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Lemma 1, applied to the first variable, gives us

(3.5)
(\

|T1 · · ·Tkf |2 dσ(x1, . . . , xk)
)1/2

≤
(\(\

|T2 · · ·Tkf | dσ(x1)
)2

dσ(x2, . . . xk)
)1/2

.

The next step uses Lemma 2; the right side is less than

(3.6)
\(\

|T2 · · ·Tkf |2 dσ(x2, · · · , xk)
)1/2

dσ(x1).

Now we have one fewer T ’s, and one variable removed from the inside inte-
gral. We apply Lemma 1 to the second variable, and so forth. After k steps
we have left ‖f‖1, and (2.10) is proved.

The dual of the operation that carries an analytic trigonometric polyno-
mial f depending on k variables with the norm of H1(K) to T1 · · ·Tkf in
H2(K), which we have shown reduces norm, maps H2(K) into the dual of
H1(K). This means that if ̺ satisfies

(3.7)
∞∑

n=1

|̺n|2d(n) < ∞

then there is a bounded function φ on K whose Fourier coefficients φ̂(n1, . . .)
are ̺n. This is the statement of the theorem.

4. Homogeneous Fourier series. The theorem has an unexpected
application to some results that are usually treated in probability theory.
A Steinhaus series [6, p. 134] is a sum

(4.1)
∞∑

n=1

aneixn

where the xn are independent real variables. These are the complex analogue
of Rademacher series [6, p. 125], and we expect the same results about them.
It is well known that all the p-norms are equivalent on such sums. This is
a statement about Fourier series, and deserves a simple treatment in those
terms. We shall show now that (2.10) contains this and other results.

Theorem. Let m be a positive integer , and

(4.2) f(x) ∼
∑

∑
nj=m

a(n1, . . .)e
i
∑

njxj

the Fourier series of a function f belonging to H1(K) and homogeneous of

degree m. Then f belongs to Hq(K) for every finite q. For q = 2 we have

(4.3) ‖f‖2 ≤ 2m/2‖f‖1.

If m = 2 then exp |f | is summable.
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The first statement was proved by Bayart [2]. The bound in the second
statement is not the best possible; in a difficult paper, Sawa [7] shows for
m = 1 (the case of Steinhaus series) that the best bound is 2/π1/2.

According to (2.10), for f in H1(K)

(4.4)
(∑

|f̂(n1, . . .)|2/d(n)
)1/2

≤ ‖f‖1.

If n is the product of m distinct primes, then d(n) = 2m. If some of the
primes are repeated d(n) is smaller. Therefore for f with Fourier series (4.2)

(4.5)
(∑

|f̂(n1, . . .)|2/2m
)1/2

≤ ‖f‖1,

which is (4.3).

Now f2 is summable, and its Fourier series is also homogeneous (of de-
gree 2m), so f2 is also square-summable, and so on. Therefore f belongs to
Hq(K) for every finite q.

When we keep track of the bounds at each step, we find that

(4.6) ‖f‖n ≤ nm/2‖f‖1

when n is a power of 2. For other values of n the next power of 2 is less than
2n, so that

(4.7) ‖f‖n ≤ (2n)m/2‖f‖1

for all positive integers n. The expansion

(4.8) eλ|f | =
∞∑

n=0

λn|f |n/n!

converges in the norm of L1(K) for positive λ such that

(4.9)
∞∑

n=0

λn‖f‖n
n/n! < ∞.

Hadamard’s formula relates the radius of convergence of this series to

(4.10) lim sup

[
log ‖f‖n − 1

n

n∑

k=1

log k

]
.

By comparing the sum with an integral we have

(4.11)
1

n

n∑

k=1

log k > log n − 1.

From this fact and (4.7), (4.10) is less than

(4.12) lim sup

[
log ‖f‖1 +

m

2
(log n + log 2) − log n + 1

]
.
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For m = 2 the bracket is the constant log ‖f‖1 + log 2 + 1. Thus the radius
of convergence is large if ‖f‖1 is small.

The argument finishes in the conventional way. By omitting the first
terms in (4.2) the norm of f in L2(K) can be made as small as we please. All
the norms are equivalent, so the norm of f in L1(K) is small too, and (4.12)
can be made negatively large, and (4.9) converges for large λ. The omitted
terms are a bounded function, and the proof is finished.

The same proof (as pointed out by H. Queffélec) leads to the statement
that for any positive integer m, exp |f |2/m is summable if f is homogeneous
of degree m.
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