Erratum to the paper
“On the Kaczmarz algorithm of approximation
in infinite-dimensional spaces”
(Studia Math. 148 (2001), 75–86)

by

STANISŁAW KWAPIEŃ (Warszawa) and JAN MYCIELSKI (Boulder, CO)

There is an error in the proof of Proposition 2 in the above mentioned paper. The arguments on page 83, lines 13–10 from the bottom, which show that \(\sum_{n=0}^{\infty} |c_n| < \infty \) leads to a contradiction, are false. However, this fact is true and it can be justified as follows:

Since the function \(1/F(z) = \sum_{k=0}^{\infty} c_k z^k \) is continuous on \(\mathbb{D} \cup \mathbb{T} \), not identically zero, and the sequence \((z_0^k) \) is dense in \(\mathbb{T} \), there exists an integer \(l \) such that

\[
\lim_{r \to 1^-} (1 - r) F(r z_0^l) = \lim_{r \to 1^-} (1 - r) \sum_{k=0}^{\infty} h(z_0^k) z_0^l r^k = 0.
\]

For each continuous function \(f \) on \(\mathbb{T} \) we have

\[
\lim_{r \to 1^-} (1 - r) \sum_{k=0}^{\infty} f(z_0^k) r^k = \int_{\mathbb{T}} f(z) \, dz.
\]

Indeed, this equality holds true for each function \(f(z) \equiv z^m \) where \(m \) is an integer, the family of such functions is linearly dense in \(C(\mathbb{T}) \), and we have \(|(1 - r) \sum_{k=0}^{\infty} f(z_0^k) r^k| \leq ||f|| \) for each \(0 < r < 1 \). As a result we find that \(\int_{\mathbb{T}} h(z) z^l \, dz = \hat{h}(-l) = 0 \). This contradicts the assumption that \(\hat{h}(m) = |\hat{b}(m)|^2 \neq 0 \) for each integer \(m \).

Institute of Mathematics
Warsaw University
Banacha 2
02-097 Warszawa, Poland
E-mail: kwapstan@mimuw.edu.pl

Department of Mathematics
University of Colorado
Boulder, CO 80309-0395, U.S.A.
E-mail: jmyciel@euclid.colorado.edu

Received August 10, 2006

2000 Mathematics Subject Classification: 41A65, 60G25, 60H25.