Erratum to the paper "On the Kaczmarz algorithm of approximation in infinite-dimensional spaces" (Studia Math. 148 (2001), 75–86)

by

STANISŁAW KWAPIEŃ (Warszawa) and JAN MYCIELSKI (Boulder, CO)

There is an error in the proof of Proposition 2 in the above mentioned paper. The arguments on page 83, lines 13–10 from the bottom, which show that $\sum_{n=0}^{\infty} |c_n| < \infty$ leads to a contradiction, are false. However, this fact is true and it can be justified as follows:

Since the function $1/F(z) = \sum_{k=0}^{\infty} c_k z^k$ is continuous on $\mathbb{D} \cup \mathbb{T}$, not identically zero, and the sequence (z_0^k) is dense in \mathbb{T} , there exists an integer l such that

$$\lim_{r \to 1^{-}} (1-r)F(rz_0^l) = \lim_{r \to 1^{-}} (1-r)\sum_{k=0}^{\infty} h(z_0^k) z_0^{kl} r^k = 0.$$

For each continuous function f on \mathbb{T} we have

$$\lim_{r \to 1-} (1-r) \sum_{k=0}^{\infty} f(z_0^k) r^k = \int_{\mathbb{T}} f(z) \, dz.$$

Indeed, this equality holds true for each function $f(z) \equiv z^m$ where m is an integer, the family of such functions is linearly dense in $C(\mathbb{T})$, and we have $|(1-r)\sum_{k=0}^{\infty} f(z_0^k)r^k| \leq ||f||$ for each 0 < r < 1. As a result we find that $\int_{\mathbb{T}} h(z)z^l dz = \hat{h}(-l) = 0$. This contradicts the assumption that $\hat{h}(m) = |\hat{b}(m)|^2 \neq 0$ for each integer m.

Institute of Mathematics	Department of Mathematics
Warsaw University	University of Colorado
Banacha 2	Boulder, CO 80309-0395, U.S.A.
02-097 Warszawa, Poland	E-mail: jmyciel@euclid.colorado.edu
E-mail: kwapstan@mimuw.edu.pl	

Received August 10, 2006

(5947)

²⁰⁰⁰ Mathematics Subject Classification: 41A65, 60G25, 60H25.