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Classes of operators satisfying a-Weyl’s theorem

by

Pietro Aiena (Palermo)

Abstract. In this article Weyl’s theorem and a-Weyl’s theorem on Banach spaces
are related to an important property which has a leading role in local spectral theory: the
single-valued extension theory.

We show that if T has SVEP then Weyl’s theorem and a-Weyl’s theorem for T ∗ are
equivalent, and analogously, if T ∗ has SVEP then Weyl’s theorem and a-Weyl’s theorem
for T are equivalent. From this result we deduce that a-Weyl’s theorem holds for classes of
operators for which the quasi-nilpotent part H0(λI−T ) is equal to ker (λI−T )p for some
p ∈ N and every λ ∈ C, and for algebraically paranormal operators on Hilbert spaces. We
also improve recent results established by Curto and Han, Han and Lee, and Oudghiri.

1. Notation and terminology. We begin with some standard nota-
tions in Fredholm theory. Throughout this note by L(X) we denote the
algebra of all bounded linear operators acting on an infinite-dimensional
complex Banach space X. For every T ∈ L(X) we denote by α(T ) and β(T )
the dimension of the kernel kerT and the codimension of the range T (X),
respectively. The class of upper semi-Fredholm operators is defined by

Φ+(X) := {T ∈ L(X) : α(T ) <∞ and T (X) is closed},
whilst the class of lower semi-Fredholm operators is defined by

Φ−(X) := {T ∈ L(X) : β(T ) <∞}.
An operator T ∈ L(X) is said to be semi-Fredholm if T ∈ Φ+(X) ∪ Φ−(X),
whilst the class of Fredholm operators is Φ(X) := Φ+(X)∩Φ−(X). The index
of a semi-Fredholm operator is defined by indT := α(T )− β(T ).

For a linear operator T the ascent p := p(T ) is defined as the smallest
nonnegative integer p such that kerT p = kerT p+1. If such an integer does
not exist we put p(T ) =∞. Analogously, the descent q := q(T ) is defined as
the smallest nonnegative integer q such that T q(X) = T q+1(X), and if such
an integer does not exist we put q(T ) =∞. A classical result states that if
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p(T ) and q(T ) are both finite then p(T ) = q(T ) (see [24, Proposition 38.3]).
Moreover, λ ∈ σ(T ) (the spectrum of T ) is a pole of the resolvent precisely
when 0 < p(λI − T ) = q(λI − T ) <∞ (see Proposition 50.2 of [24]), and in
this case X = ker (λI−T )p⊕(λI−T )p(X), with p := p(λI−T ) = q(λI−T ).
Two important classes of operators in Fredholm theory are the class of upper
semi-Browder operators defined by

B+(X) := {T ∈ Φ+(X) : p(T ) <∞},
and the class of lower semi-Browder operators defined by

B−(X) := {T ∈ Φ−(X) : q(T ) <∞}.
The class of Browder operators (known in the literature also as the Riesz–
Schauder operators) is defined by B(X) := B+(X) ∩ B−(X). A bounded
operator T ∈ L(X) is called a Weyl operator if T ∈ Φ(X) and indT = 0.
A Browder operator T is Weyl since the finiteness of p(T ) and q(T ) entails
for a Fredholm operator T that T has index 0 (cf. [24, Proposition 38.5]).

The classes of operators defined above motivate the definition of several
spectra. The upper semi-Browder spectrum of T ∈ L(X) is defined by

σub(T ) := {λ ∈ C : λI − T 6∈ B+(X)},
the lower semi-Browder spectrum of T ∈ L(X) is defined by

σlb(T ) := {λ ∈ C : λI − T 6∈ B−(X)},
whilst the Browder spectrum of T ∈ L(X) is defined by

σb(T ) := {λ ∈ C : λI − T 6∈ B(X)}.
Finally, the Weyl spectrum of T ∈ L(X) is defined by

σw(T ) := {λ ∈ C : λI − T is not Weyl}.
It should be noted that σw(T ) = σw(T ∗), whilst

σub(T ) = σlb(T ∗), σlb(T ) = σub(T ∗).

Moreover,
σw(T ) ⊆ σb(T ) = σw(T ) ∪ accσ(T ),

where we write accK for the accumulation points of K ⊆ C.
Recall that T ∈ L(X) is said to be bounded below if T is injective and

has closed range. Let σa(T ) denote the classical approximate point spectrum
of T defined as

σa(T ) := {λ ∈ C : λI − T is not bounded below},
and let

σs(T ) := {λ ∈ C : λI − T is not surjective}
denote the surjectivity spectrum of T .
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For a bounded operator T ∈ L(X) set

p00(T ) := σ(T ) \ σb(T ) = {λ ∈ σ(T ) : λI − T is Browder}.
and, if we write isoK for the set of all isolated points of K ⊆ C, then we
define

π00(T ) := {λ ∈ isoσ(T ) : 0 < α(λI − T ) <∞}.
Obviously,

p00(T ) ⊆ π00(T ) for every T ∈ L(X).(1)

Following Coburn [10], we say that Weyl’s theorem holds for T ∈ L(X) if

σ(T ) \ σw(T ) = π00(T ),(2)

whilst T satisfies Browder’s theorem if

σ(T ) \ σw(T ) = p00(T ),

or equivalently, σw(T ) = σb(T ).
The Weyl (or essential) approximate point spectrum σwa(T ) of a bounded

operator T ∈ L(X) is the complement of those λ ∈ C for which λI − T ∈
Φ+(X) and ind(λI − T ) ≤ 0. Note that σwa(T ) is the intersection of all
approximate point spectra σa(T + K) of compact perturbations K of T
(see [32]). The Weyl surjectivity spectrum σws(T ) is the complement of those
λ ∈ C for which λI − T ∈ Φ−(X) and ind(λI − T ) ≥ 0. The spectrum
σwa(T ) coincides with the intersection of all surjectivity spectra σs(T +K)
of compact perturbations K of T (see [32] or [1, p. 151]). Clearly, the two
spectra are dual to each other, i.e.,

σwa(T ) = σws(T ∗) and σws(T ) = σwa(T ∗).

Furthermore, σw(T ) = σwa(T ) ∪ σws(T ). Note that σwa(T ) ⊆ σub(T ) and
σws(T ) ⊆ σlb(T ); precisely:

σub(T ) = σwa(T ) ∪ accσa(T ),(3)

σlb(T ) = σws(T ) ∪ accσs(T )(4)

(see [33]). Define

πa
00(T ) := {λ ∈ isoσa(T ) : 0 < α(λI − T ) <∞}.

Following Rakočević [32], we shall say that a-Weyl’s theorem holds for T ∈
L(X) if

σa(T ) \ σwa(T ) = πa
00(T ),

whilst we shall say that T satisfies a-Browder’s theorem if

σwa(T ) = σub(T ).

We have
a-Browder’s theorem ⇒ Browder’s theorem,
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and

a-Weyl’s theorem ⇒ Weyl’s theorem ⇒ Browder’s theorem

(see for instance [1, Chapter 3]).

2. Single-valued extension property. The single-valued extension
property dates back to the early days of local spectral theory and was in-
troduced by Dunford [19], in his theory of spectral operators. This property
plays a crucial role in local spectral theory (see the recent monograph of
Laursen and Neumann [26]). We shall consider a local version of this prop-
erty, which has been studied in recent papers [3], [4], [6], and previously by
Finch [20] and Mbekhta [29].

Definition 2.1. The operator T ∈ L(X) is said to have the single-
valued extension property at λ0 ∈ C (abbreviated SVEP at λ0) if for every
open disc U centered at λ0 the only analytic function f : U → X which
satisfies the equation (λI − T )f(λ) = 0 for all λ ∈ U is the function f ≡ 0.

An operator T ∈ L(X) is said to have SVEP if T has SVEP at every
point λ ∈ C.

Trivially, an operator T ∈ L(X) has SVEP at every point of the resolvent
set %(T ) := C \ σ(T ). Moreover, from the identity theorem for analytic
functions it easily follows that T ∈ L(X) has SVEP at every point of the
boundary ∂σ(T ) of the spectrum σ(T ). In particular, every operator has
SVEP at the isolated point of its spectrum.

An important subspace in local spectral theory is the glocal spectral sub-
space XT (F ) associated with a closed subset F ⊆ C. It is defined, for an
arbitrary operator T ∈ L(X) and a closed subset F of C, as the set of all
x ∈ X for which there exists an analytic function f : C \ F → X which
satisfies the identity (λI − T )f(λ) = x for all λ ∈ C \ F . The basic role
of SVEP arises in local spectral theory since all decomposable operators
enjoy this property. Recall T ∈ L(X) has the decomposition property (δ) if
X = XT (U) +XT (V ) for every open cover {U, V } of C. Decomposable oper-
ators may be defined in several ways, for instance as the union of those with
property (β) and property (δ) (see [26, Theorem 2.5.19] for relevant defini-
tions). Note that property (β) implies that T has SVEP, whilst property (δ)
implies SVEP for T ∗ (see [26, Theorem 2.5.19]).

Note that
p(λI − T ) <∞ ⇒ T has SVEP at λ,

and dually
q(λI − T ) <∞ ⇒ T ∗ has SVEP at λ

(see [5]). Furthermore,

σa(T ) does not cluster at λ ⇒ T has SVEP at λ,
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and
σs(T ) does not cluster at λ ⇒ T ∗ has SVEP at λ

(see [6]).
Let us consider the quasi-nilpotent part of T , i.e. the set

H0(T ) := {x ∈ X : lim
n→∞

‖Tnx‖1/n = 0}.

It is easily seen that ker(Tm) ⊆ H0(T ) for every m ∈ N and T is quasi-
nilpotent if and only if H0(T ) = X (see [29, Remarque 1.1]). Moreover, if T
is invertible then H0(T ) = {0}.

The analytic core of T is the set K(T ) of all x ∈ X such that there exists
a sequence (un) ⊂ X and δ > 0 for which x = u0, and Tun+1 = un and
‖un‖ ≤ δn‖x‖ for every n ∈ N. It easily follows, from the definition, that
K(T ) is a linear subspace of X and T (K(T )) = K(T ).

Definition 2.2. An operator T ∈ L(X), X a Banach space, is said to be
semi-regular if T (X) is closed and kerT ⊆ T∞(X). An operator T ∈ L(X) is
said to admit a generalized Kato decomposition, abbreviated GKD, if there
exists a pair (M,N) of T -invariant closed subspaces such that X = M ⊕N ,
the restriction T |M is semi-regular and T |N is quasi-nilpotent.

A relevant case is obtained if we assume in the definition above that T |N
is nilpotent. In this case T is said to be of Kato type (see for details [1]).
Recall that every semi-Fredholm operator is of Kato type, by the classical
result of Kato [25] (see also Chapter 1 of [1]). The following characterizations
of SVEP for operators of Kato type have been proved in [3] and [6] (see also
Chapter 3 in [1]).

Theorem 2.3. If λ0I − T ∈ L(X) is of Kato type then the following
statements are equivalent :

(i) T has SVEP at λ0;
(ii) p(λ0I − T ) <∞;
(iii) σa(T ) does not cluster at λ0;
(iv) H0(λ0I − T ) is closed.

If λ0I − T is semi-Fredholm then assertions (i)–(iv) are equivalent to the
following statement :

(v) H0(λ0I − T ) is finite-dimensional.

Dually , if λ0I − T is of Kato type then the following statements are equiva-
lent :

(vi) T ∗ has SVEP at λ0;
(vii) q(λ0I − T ) <∞;
(viii) σs(T ) does not cluster at λ0;
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If λ0I − T is semi-Fredholm then assertions (vi)–(viii) are equivalent to the
following statement :

(ix) K(λ0I − T ) is finite-codimensional.

Let λ0 be an isolated point of σ(T ) and let P0 denote the spectral pro-
jection P0 := (2πi)−1

�
Γ (λI−T )−1 dλ associated with {λ0}, via the classical

Riesz functional calculus. A classical result shows that the range P0(X) is
N := H0(λ0I − T ) (see [24, Proposition 49.1]), whilst kerP0 is the analytic
core M := K(λ0I−T ) of λ0I−T (see [34] and [29]). In this case, X = M⊕N
and

σ(λ0I − T |N) = {λ0}, σ(λ0I − T |M) = σ(T ) \ {λ0},
so λ0I−T |M is invertible and hence H0(λ0I−T |M) = {0}. Therefore from
the decomposition H0(λ0I − T ) = H0(λ0I − T |M) ⊕ H0(λ0I − T |N) we
deduce that N = H0(λ0I − T |N), so λ0I − T |N is quasi-nilpotent. Hence
the pair (M,N) is a GKD for λ0I − T .

Corollary 2.4. Let λ0 be an isolated point of σ(T ). Then

X = H0(λ0I − T )⊕K(λ0I − T )

and the following assertions are equivalent :

(i) λ0I − T is semi-Fredholm;
(ii) H0(λ0I − T ) is finite-dimensional ;
(iii) K(λ0I − T ) is finite-codimensional.

Proof. Since for every operator T ∈ L(X), both T and T ∗ have SVEP at
any isolated point, the equivalence of the assertions easily follows from the
decomposition X = H0(λ0I − T )⊕K(λ0I − T ), and from Theorem 2.3.

Theorem 2.5. Let T ∈ L(X) and suppose that T or T ∗ has SVEP.
Then

σub(T ) = σwa(T ), σlb(T ) = σws(T )(5)

and
σb(T ) = σw(T ).(6)

Proof. Suppose first that T has SVEP. To show the first equality of (5)
we only need to show the inclusion σub(T ) ⊆ σwa(T ). If λ 6∈ σwa(T ) then
λI−T ∈ Φ+(X) and the SVEP implies by Theorem 2.3 that p(λI−T ) <∞.
Hence λ 6∈ σub(T ).

Analogously, to prove the equality σlb(T ) = σws(T ) we only need to
show that σlb(T ) ⊆ σws(T ). If λ 6∈ σws(T ) then λI − T ∈ Φ−(X) with
β(λI−T ) ≤ α(λI−T ). Again, the SVEP at λ entails that p(λI−T ) <∞, and
hence from Proposition 38.5 of [24] we deduce that α(λI − T ) = β(λI − T ).
At this point, the finiteness of p(λI − T ) implies by Proposition 38.6 of [24]
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that also q(λI − T ) is finite, so λ 6∈ σlb(T ). Therefore σlb(T ) ⊆ σws(T ) and
the proof of the second equality is complete in the case that T has SVEP.

Suppose now that T ∗ has SVEP. Then, by the first part, σub(T ∗) =
σwa(T ∗) and σlb(T ∗) = σws(T ∗). By duality it follows that σlb(T ) = σws(T )
and σub(T ) = σwa(T ). The last equality is clear from the equality σb(T ) =
σub(T ) ∪ σlb(T ) and σw(T ) = σwa(T ) ∪ σws(T ).

We shall denote by H(σ(T )) the set of all analytic functions defined on
a neighborhood of σ(T ). The next result shows that for operators having
SVEP the spectral theorem holds for σw(T ). This is not, in general, true
for all operators, whilst the spectral theorem holds for σb(T ), σub(T ) and
σlb(T ) for every T ∈ L(X) (see [33] or also [1, Chapter 3]).

Corollary 2.6. Suppose that T or T ∗ has SVEP and f ∈ H(σ(T )).
Then

σwa(f(T )) = f(σwa(T )), σws(f(T )) = f(σws(T )),(7)

and
σw(f(T )) = f(σw(T )).(8)

Moreover , a-Browder’s theorem holds for both f(T ) and f(T ∗).

Proof. By Theorem 2.5 if T has SVEP (respectively, if T ∗ has SVEP)
then f(σub(T )) = f(σwa(T )). From the spectral mapping theorem for σub(T )
we then infer that f(σwa(T )) = σub(f(T )), and again by Theorem 2.5 the
last set coincides with σwa(f(T )), since f(T ) (respectively, f(T ∗) = f(T )∗)
has SVEP by Theorem 3.3.6 of [26]. Hence the first equality of (7) is proved.
The second equality of (7) and the equality (8) follow in a similar way.

The argument above shows that if T or T ∗ has SVEP then a-Browder’s
theorem holds for f(T ). Moreover, the SVEP for f(T ) (respectively, for
f(T ∗)) implies by Theorem 2.5 that σlb(f(T )) = σws(f(T )), and hence by
duality σub(f(T ∗)) = σwa(f(T ∗)), so a-Browder’s theorem also holds for
f(T ∗).

Note that Corollary 2.6 extends to a more general situation the result
established in Theorem 3.2 of [12]. The spectral theorem for σw(T ) in the
case T or T ∗ has SVEP has been proved by using different methods by Curto
and Han [11].

An operator U ∈ L(X,Y ) between the Banach spaces X and Y is said
to be a quasi-affinity if U is injective and has dense range. The operator
S ∈ L(Y ) is said to be a quasi-affine transform of T ∈ L(X), notation
S ≺ T , if there is a quasi-affinity U ∈ L(Y,X) such that TU = US. If both
S ≺ T and T ≺ S hold then S, T are called quasi-similar.

Theorem 2.7. If T ∈ L(X) has SVEP at λ0 ∈ C and S ∈ L(Y ) is
a quasi-affine transform of T then S has SVEP at λ0. In particular , if
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T ∈ L(X) has SVEP and S ≺ T then f(S) satisfies a-Browder’s theorem
for all f ∈ H(σ(T )).

Proof. Let f : U → Y be an analytic function defined on an open disc
U of λ0 such that (µI − S)f(µ) = 0 for all µ ∈ U . Then U(λI − S)f(µ) =
(µI − T )Uf(µ) = 0 and the SVEP of T at λ0 entails that Uf(µ) = 0 for all
µ ∈ U . Since U is injective it follows that f(µ) = 0 for all µ ∈ U , hence S
has SVEP at λ0.

Thus if T has SVEP then S has SVEP. The last assertion is clear by
Corollary 2.6.

3. Weyl’s theorems for Banach space operators. In this section
we give a useful description of operators which satisfy Weyl’s theorem, or
a-Weyl’s theorem, in terms of the SVEP. From these characterizations we
shall deduce that a-Weyl’s theorem holds for many classes of Banach space
operators.

Theorem 3.1. If T ∈ L(X) then the following assertions are equiva-
lent :

(i) Weyl’s theorem holds for T .
(ii) T has SVEP at every point λ 6∈ σw(T ) and π00(T ) = p00(T ).

In particular , if T or T ∗ has SVEP then Weyl’s theorem holds for T if and
only if π00(T ) = p00(T ).

Proof. (i)⇒(ii). Suppose that T satisfies Weyl’s theorem. Let λ 6∈ σw(T ).
Since T has SVEP at every λ 6∈ σ(T ) we may assume that λ ∈ σ(T )\σw(T )
= π00(T ). By definition of π00(T ) we know that λ is isolated in σ(T ), so T
has SVEP at λ.

To show that π00(T ) = p00(T ) it suffices to prove the inclusion π00(T ) ⊆
p00(T ). Suppose that λ ∈ π00(T ) = σ(T ) \ σw(T ). Since λI − T is Weyl,
by Theorem 2.3 it follows that both p(λI − T ) and q(λI − T ) are finite.
Consequently, λI − T is Browder and hence λ ∈ p00(T ).

(ii)⇒(i). Let λ ∈ σ(T ) \ σw(T ). By assumption T has SVEP at λ and
λI − T is Weyl, so by Theorem 2.3 both p(λI − T ) and q(λI − T ) are finite.
This shows that

σ(T ) \ σw(T ) ⊆ p00(T ) = π00(T ).

On the other hand, if λ ∈ π00(T ) = p00(T ) then p(λI−T ) = q(λI−T ) <∞
and α(λI − T ) < ∞, so by Proposition 38.6 of [24] we have β(λI − T ) =
α(λI −T ) <∞. Hence λ ∈ σ(T ) \σw(T ). Therefore σ(T ) \σw(T ) = π00(T ).
The last assertion is clear in the case T has SVEP. Suppose that T ∗ has
SVEP and π00(T ) = p00(T ). By Theorem 2.5, σw(T ) = σb(T ), and hence

π00(T ) = p00(T ) = σ(T ) \ σb(T ) = σ(T ) \ σw(T ),

so the proof is complete
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In general, we cannot expect that Weyl’s theorem holds for operators T
for which T or T ∗ has SVEP. For instance, if T ∈ L(`2(N)) is defined by

T (x0, x1, . . .) :=
(

1
2
x1,

1
3
x2, . . .

)
for all (xn) ∈ `2(N),

then T is quasi-nilpotent and hence both T and T ∗ have SVEP. But T does
not satisfy Weyl’s theorem, since p00(T ) = ∅, whilst π00(T ) = {0}.

Definition 3.2. A bounded operator T ∈ L(X) on a Banach space X
is said to have property (Hp) if for every λ ∈ C there exists an integer
p := p(λ) ≥ 1 such that

H0(λI − T ) = ker (λI − T )p.

A bounded operator T ∈ L(X) is said to be isoloid if every isolated point
of σ(T ) is an eigenvalue of T .

Lemma 3.3. If T ∈ L(X) has property (Hp) then T has SVEP and every
isolated point of the spectrum is a pole of the resolvent. In particular , T is
isoloid.

Proof. T has SVEP by Theorem 1.6 of [3]. Furthermore, if λ ∈ isoσ(T )
then by Theorem 2.4 we have

X = H0(λI − T )⊕K(λI − T ) = ker (λI − T )p ⊕K(λI − T ),

and consequently

(λI − T )p(X) = (λI − T )p(K(λI − T )) = K(λI − T ).

Therefore X = ker(λI − T )p ⊕ (λI − T )p(X), from which it follows by
Proposition 38.4 of [24] that p(λI − T ) = q(λI − T ) ≤ p, i.e. λ is a pole of
the resolvent of T .

We owe the following result to a recent work of M. Oudghiri [30].

Theorem 3.4. Let T ∈ L(X), X a Banach space, and suppose that
there exists an analytic function h ∈ H(σ(T )) with domain U , not identi-
cally constant in any component of U , such that h(T ) has property (Hp).
Then Weyl’s theorem holds for both f(T ) and f(T ∗) for every f ∈ H(σ(T )).
In particular , if T has property (Hp) then Weyl’s theorem holds for both T
and T ∗.

The class of operators having property (Hp) is rather large. In fact,
as observed in [30], every generalized scalar operator and every subscalar
operator on a Banach space has property (Hp) (see [30] and [26] for relevant
definitions). In particular, from Theorem 3.4 one may deduce that Weyl’s
theorem holds for the following classes of operators:

(a) An operator T ∈ L(H), H a Hilbert space, is called log-hyponormal
if T is invertible and satisfies log(T ∗T ) ≥ log(TT ∗). Every log-hyponormal
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operator has property (H1) (see [7]), so Weyl’s theorem holds for this class
of operators (see also [9]).

(b) An operator T ∈ L(H) on a Hilbert space H is called p-hyponormal,
with 0 < p ≤ 1, if (T ∗T )p ≥ (TT ∗)p. Every p-hyponormal has property
(Hp), since it is subscalar [28]. Weyl’s theorem holds for operators on Hilbert
spaces for which either T or T ∗ is a p-hyponormal operator [8].

(c) An operator T ∈ L(H) is said to be M -hyponormal if there is M > 0
for which TT ∗ ≤MT ∗T . Also everyM -hyponormal operator T obeys Weyl’s
theorem since it is subscalar [28].

(d) An operator T ∈ L(H) is said to be ∗-paranormal if ‖T ∗x‖2 ≤ ‖T 2x‖
for every unit vector x ∈ H. If λI − T is ∗-paranormal for every λ ∈ C then
T is said to be totally ∗-paranormal. If T is totally ∗-paranormal then T has
property (H1) (see [22, Lemma 2.2]).

(e) An important class of operators having property (H1) is given by
the class of all multipliers of commutative semi-simple Banach algebras [3].
In particular, every convolution operator on the group algebra L1(G), G a
locally compact abelian group, has property (H1).

Also transaloid operators on Banach spaces have property (H1) [11, The-
orem 2.3].

For a bounded operator T ∈ L(X) on a Banach space X define

pa
00(T ) := σa(T ) \ σub(T ) = {λ ∈ σa(T ) : λI − T ∈ B+(X)}.

We have
pa

00(T ) ⊆ πa
00(T ) for every T ∈ L(X).

In fact, if λ ∈ pa
00(T ) then λI − T ∈ Φ+(X) and p(λI − T ) < ∞. By

Theorem 2.3, λ is isolated in σa(T ). Furthermore, 0 < α(λI − T ) <∞ since
(λI − T )(X) is closed and λ ∈ σa(T ).

Theorem 3.5. If T ∈ L(X) the following statements are equivalent :

(i) T satisfies a-Weyl’s theorem;
(ii) T has SVEP at every point λ 6∈ σwa(T ) and pa

00(T ) = πa
00(T ).

In particular , if T or T ∗ has SVEP , then a-Weyl’s theorem holds for T if
and only if pa

00(T ) = πa
00(T ).

Proof. (i)⇒(ii). Suppose that T satisfies a-Weyl’s theorem. Let λ 6∈
σwa(T ). To show that T has SVEP at λ we may assume, since T has SVEP at
every point λ 6∈ σa(T ), that λ ∈ σa(T )\σwa(T ) = πa

00(T ). Since λ is isolated
in σa(T ) it follows that T has SVEP at λ. To prove that pa

00(T ) = πa
00(T ) it

suffices to prove πa
00(T ) ⊆ pa

00(T ). Let λ ∈ πa
00(T ) = σa(T ) \ σwa(T ). Then

λI − T ∈ Φ+(X) and since λ is isolated in σa(T ) it follows by Theorem 2.3
that p(λI − T ) <∞. Hence λ ∈ pa

00(T ), and consequently πa
00(T ) ⊆ pa

00(T ).



Operators satisfying a-Weyl’s theorem 115

(ii)⇒(i). Let λ ∈ σa(T ) \ σwa(T ). Then T has SVEP at λ and λI − T ∈
Φ+(X), so by Theorem 2.3 the ascent p(λI − T ) is finite. This shows that

σa(T ) \ σwa(T ) ⊆ pa
00(T ) = πa

00(T ).

On the other hand, if λ ∈ πa
00(T ) = pa

00(T ) then λI − T ∈ Φ+(X) with
p(λI − T ) < ∞. From Proposition 38.5 of [24] we deduce that α(λI − T )
≤ β(λI − T ), so ind(λI − T ) ≤ 0. Therefore, λ ∈ σa(T ) \ σwa(T ) and
consequently σa(T ) \ σwa(T ) = πa

00(T ).
The last assertion is clear in the case where T has SVEP. Suppose that

T ∗ has SVEP. If a-Weyl’s theorem holds for T then pa
00(T ) = πa

00(T ) by
the first part of the proof. Conversely, suppose that pa

00(T ) = πa
00(T ). The

SVEP for T ∗ ensures by Theorem 2.5 that σwa(T ) = σub(T ), so

πa
00(T ) = pa

00(T ) = σa(T ) \ σub(T ) = σa(T ) \ σwa(T ),

and hence a-Weyl’s theorem holds for T also in the case where T ∗ has
SVEP.

The next result has a crucial role in proving that many classes of oper-
ators satisfy a-Weyl’s theorem.

Theorem 3.6. If T ∈ L(X) has SVEP then the following statements
are equivalent :

(i) Weyl’s theorem holds for T ∗;
(ii) a-Weyl’s theorem holds for T ∗.

Analogously , if the dual T ∗ of T has SVEP then the following statements
are equivalent :

(iii) Weyl’s theorem holds for T ;
(iv) a-Weyl’s theorem holds for T .

Proof. (i)⇔(ii). We only have to show the implication (i)⇒(ii). Suppose
that T ∗ satisfies Weyl’s theorem, i.e., σ(T ∗)\σw(T ∗) = π00(T ∗). Since T has
SVEP we have σa(T ∗) = σ(T ∗) (see [26, Proposition 1.3.2]), hence πa

00(T ∗) =
π00(T ∗). The SVEP for T also implies by Theorem 2.5 and [2, Corollary 2.8]
that

σw(T ) = σb(T ) = σlb(T ) = σws(T ).

By duality we then obtain σw(T ∗) = σwa(T ∗), so

πa
00(T ∗) = π00(T ∗) = σ(T ∗) \ σw(T ∗) = σa(T ∗) \ σwa(T ∗),

and hence a-Weyl’s theorem holds for T ∗.
To prove the equivalence (iii)⇔(iv) we proceed in a similar way. Suppose

that the dual T ∗ has SVEP and that Weyl’s theorem holds for T . Then
σ(T )\σw(T ) = π00(T ) and by [26, Proposition 1.3.2], σa(T ) = σ(T ), so that



116 P. Aiena

πa
00(T ) = π00(T ). By Theorem 2.5 and [2, Corollary 2.8] we have

σw(T ) = σb(T ) = σub(T ) = σwa(T ).

From this it follows that

πa
00(T ) = π00(T ) = σ(T ) \ σw(T ) = σa(T ) \ σwa(T ),

so a-Weyl’s theorem holds for T .

In what follows, we shall denote by M⊥, for every M ⊂ X, the annihila-
tor of M ⊆ X, and by ⊥N the pre-annihilator of N ⊆ X∗. The next result
improves Theorem 3.4.

Theorem 3.7. If T ∈ L(X) has property (Hp) then a-Weyl’s holds for
f(T ∗) for every f ∈ H(σ(T )). Analogously , if T ∗ has property (Hp) then
a-Weyl’s holds for f(T ) for every f ∈ H(σ(T )).

Proof. If T ∈ L(H) has property (Hp) then T has SVEP by Lemma 3.3,
and hence by Theorem 3.3.6 of [26], f(T ) has SVEP for every f ∈ H(σ(T )).
Moreover, by Theorem 3.4 Weyl’s theorem holds for f(T )∗ = f(T ∗), and
this by Theorem 3.6 is equivalent to saying that a-Weyl’s theorem holds for
f(T ∗).

Suppose now that T ∗ has property (Hp). We show first that Weyl’s the-
orem holds for T . We know that T ∗ has SVEP, again by Lemma 3.3, so, in
order to show that T satisfies Weyl’s theorem it suffices by Theorem 3.1 to
prove that π00(T ) = p00(T ). Let λ ∈ π00(T ). Then λ is an isolated point in
σ(T ) = σ(T ∗), and hence by Lemma 3.3, λ is a pole of the resolvent of T ∗,
i.e. p := p(λI∗−T ∗) = q(λI∗−T ∗) <∞. Therefore, X∗ = ker (λI∗−T ∗)p⊕
(λI∗ − T ∗)p(X∗) and since (λI∗ − T ∗)p(X∗) is closed it follows that also
(λI − T )p(X) is closed. By the classical closed range theorem we then have

X = ⊥ker (λI∗− T ∗)p⊕ ⊥(λI∗− T ∗)p(X∗) = ker (λI − T )p⊕ (λI − T )p(X),

so by Proposition 38.4 of [24] we conclude that p(λI−T ) = q(λI−T ) <∞.
Finally, α(λI − T ) < ∞ by assumption and consequently β(λI − T ) < ∞,
from which we conclude that λ ∈ p00(T ). Hence Weyl’s theorem holds for T .

The argument above shows that if T ∗ has property (Hp) then T is isoloid.
We prove now that Weyl’s theorem holds for f(T ). In fact, since T is isoloid
and T satisfies Weyl’s theorem, by [27, Lemma] we have

σ(f(T )) \ π00(f(T )) = f(σ(T ) \ π00(T )) = f(σw(T )).

The SVEP for T ∗ entails that f(σw(T )) = σw(f(T )), by Theorem 2.5, and
hence Weyl’s theorem holds for f(T ).

Remark 3.8. Theorem 3.7 implies that if T is a multiplier of a com-
mutative semi-simple Banach algebra, or if T is transaloid, then a-Weyl’s
theorem holds for f(T ∗) for all f ∈ H(σ(T )).
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Remark 3.9. The following example shows that property (Hp) for an
operator T ∈ L(X) does not imply, in general, that T satisfies a-Weyl’s
theorem. Let T be the hyponormal operator T given by the direct sum of
the 1-dimensional zero operator and the unilateral right shift R on `2(N).
Then 0 is an isolated point of σa(T ) and 0 ∈ πa

00(T ), whilst 0 6∈ pa
00(T ), since

p(T ) = p(R) = ∞. Hence, by Theorem 3.5, T does not satisfy a-Weyl’s
theorem.

Corollary 3.10. Let T ∈ L(X), X a Banach space, be a generalized
scalar operator. Then a-Weyl’s theorem holds for f(T ) and f(T ∗) for all
f ∈ H(σ(T )).

Proof. Every generalized scalar operator has property (Hp), so by The-
orem 3.7 Weyl’s theorem holds for f(T ) and f(T ∗). Furthermore, since T is
decomposable [26] both T and T ∗ have SVEP, and consequently both f(T )
and f(T ∗) have SVEP. By Theorem 3.6 we then conclude that a-Weyl’s
theorem holds for f(T ) and f(T ∗).

Theorem 3.11. Suppose that T ∈ L(X) has property (β) and S ∈ L(Y )
has property (δ). If T and S are quasi-similar then the following statements
are equivalent :

(i) T satisfies Weyl’s theorem;
(ii) S satisfies a-Weyl’s theorem.

Proof. Since T has property (β) we have σ(T ) = σ(S) by a result of
Putinar [31], so isoσ(T ) = isoσ(S). Moreover, property (β) entails that T
has SVEP and hence also S has SVEP, by Theorem 2.7. From Theorem 5
of [16], T satisfies Weyl’s theorem precisely when S satisfies Weyl’s theorem.
Since property (δ) for S entails that S∗ has SVEP, by Theorem 3.6 we
conclude that (i) and (ii) are equivalent.

Corollary 3.12. Suppose that two quasi-similar operators T ∈ L(X)
and S ∈ L(Y ) are decomposable. Then T satisfies a-Weyl’s theorem if and
only if S does. In particular , every decomposable operator quasi-similar to
a generalized scalar operator satisfies a-Weyl’s theorem.

Proof. If T is decomposable then T ∗ has SVEP, so a-Weyl’s theorem
and Weyl’s theorem for T are equivalent. The statements are then clear
from Theorem 3.11 and Corollary 3.10.

4. Algebraically paranormal operators. In this section we shall de-
note by H a complex infinite-dimensional Hilbert space. In the case of oper-
ators defined on Hilbert spaces instead of the dual T ∗ it is more appropriate
to consider the Hilbert adjoint T ′ of T ∈ L(H). However, some of the basic
results established in the previous section for T ∗ are also true for the adjoint
T ′. In fact, by means of the classical Fréchet–Riesz representation theorem
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we know that if U is the conjugate-linear isometry that associates to each
y ∈ H the linear form x 7→ 〈x, y〉 then UT ′ = T ∗U . From this equality and
from Theorem 2.3 it easily follows that

q(λI − T ) <∞ ⇒ T ′ has SVEP at λ.

Note that σw(T ′) = σw(T ). Furthermore, using an argument similar to that
in the proof of Theorem 2.7, from the equality UT ′ = T ∗U we easily deduce
that

T ′ has SVEP at λ0 ⇔ T ∗ has SVEP at λ0.

Hence the SVEP of T ′ ensures by Corollary 2.6 that the equality f(σw(T )) =
f(σw(T )) holds for all f ∈ H(σ(T )).

Theorem 4.1. If T ′ has property (Hp) and f ∈ H(σ(T )) then a-Weyl’s
theorem holds for f(T ).

Proof. It is easily seen that if T ′ has property (Hp) then also T ∗ has
property (Hp) (this property is preserved by quasi-affine transformations,
and the same argument of [30, Lemma 3.2] works in our case, since UT ′ =
T ∗U and U is an isometry). By Theorem 3.7 it then follows that a-Weyl’s
theorem holds for f(T ).

Remark 4.2. It should be noted that Theorem 4.1 provides a general
framework for a-Weyl’s theorem, from which all the results listed in the
sequel follow as special cases. Note that in the literature a-Weyl’s theorem
has been proved separately for each class of operators.

(i) If T ′ is log-hyponormal or p-hyponormal then a-Weyl’s theorem
holds for f(T ) [15, Theorem 3.3], [17, Theorem 4.2].

(ii) If T ′ is M -hyponormal then a-Weyl’s theorem holds for f(T ) [15,
Theorem 3.6].

(iii) If T ′ is totally ∗-paranormal then a-Weyl’s theorem holds for f(T )
[22, Theorem 2.10].

A bounded operator T ∈ L(X) on a Banach space X is said to be
paranormal if

‖Tx‖2 ≤ ‖T 2x‖ ‖x‖ for all x ∈ X.
T ∈ L(X) is called totally paranormal if λI −T is paranormal for all λ ∈ C.
Every totally paranormal T operator satisfies condition (H1) (see [7]), and
hence Weyl’s theorem holds for T . By Theorem 4.1 we also have

(iv) If T ′ ∈ L(H) is totally paranormal then a-Weyl’s theorem holds for
f(T ).

Theorem 3.4 and Theorem 4.1 do not work for paranormal operators.
In fact, these operators do not have property (Hp) (see Remark following
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Lemma 3 in [18]). However, we shall see that Weyl’s theorem for paranormal
operators may be deduced from Theorem 3.1.

Every paranormal operator on a Hilbert space has SVEP. To see this note
first that for these operators we have ker (λI−T ) ⊆ ker (λI−T ′) for all λ ∈ C
and from this it easily follows that p(λI−T ) ≤ 1 for all λ ∈ C, so T has SVEP
(see also [18]). Observe that every paranormal operator T is normaloid (i.e.
‖T‖ = r(T ), the spectral radius of T , see [24, Proposition 54.6]), so if T is
quasi-nilpotent then T = 0.

An operator T ∈ L(X) for which there exists a complex nonconstant
polynomial h such that h(T ) is paranormal is said to be algebraically para-
normal. Note that algebraic paranormality is preserved under translation by
scalars and under restriction to closed invariant subspaces.

Lemma 4.3. If T ∈ L(H) is algebraically paranormal then T has SVEP
and every isolated point of the spectrum is a pole of the resolvent. In partic-
ular , both T and T ′ are isoloid.

Proof. Let h be a nonconstant complex polynomial such that h(T ) is
paranormal. Then h(T ) has SVEP and hence by Theorem 3.3.9 of [26] also T
has SVEP. To prove the second assertion note first that every quasi-nilpotent
algebraically paranormal operator T is nilpotent. In fact, σ(h(T )) = h(σ(T ))
= {h(0)}, so h(0)I−h(T ) is quasi-nilpotent. Since h(0)I−T is paranormal,
there is some n ∈ N such that

0 = h(0)I − h(T ) = aTm
n∏

i=1

(λiI − T ) with λi 6= 0.

Since all λiI − T are invertible it follows that Tm = 0.
Now, if λ ∈ isoσ(T ), M := K(λI−T ) and N := H0(λI−T ) then (M,N)

is a GKD for λI − T . Since λI − T |N is quasi-nilpotent and algebraically
paranormal it follows that λI−T |N is nilpotent and hence λI−T is of Kato
type. The SVEP for T and T ′ at λ then implies, by Theorem 2.3, that both
p(λI − T ) and q(λI − T ) are finite. Hence λ is a pole of the resolvent of T .
This implies that T is isoloid.

Analogously, to prove that T ′ is isoloid we prove that every isolated
point of σ(T ′) is a pole of the resolvent of T ′. Let λ be an isolated point in
σ(T ′) = σ(T ). Then λ is isolated in σ(T ), and hence by the first part of the
proof the point λ is a pole of the resolvent of T , hence p := p(λI − T ) =
q(λI − T ) < ∞. Consequently, H = ker (λI − T )p ⊕ (λI − T )p(X) and the
range (λI − T )p(X) is closed. From this it follows that

H = (ker (λI − T )p)⊥ ⊕ ((λI − T )p(H))⊥ = (λI − T ′)p(H)⊕ ker (λI − T ′)p,
where now N⊥ denotes the orthogonal of N ⊆ H. Therefore p(λI − T ′) =
q(λI − T ′) <∞, or equivalently λ is a pole of the resolvent of T ′.
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The next result improves Corollary 4 of [23] and Theorem 2.4 of [12].

Theorem 4.4. Let T ∈ L(H). Then the following statements hold :

(i) If T ∈ L(H) is algebraically paranormal then Weyl’s theorem holds
for f(T ) for all f ∈ H(σ(T )).

(ii) If T ′ is algebraically paranormal then a-Weyl’s theorem holds for
f(T ) for all f ∈ H(σ(T )).

Proof. (i) Suppose that T is algebraically paranormal. We show first that
Weyl’s theorem holds for T . Since T has SVEP it suffices by Theorem 3.1
to show that p00(T ) = π00(T ). Suppose that λ ∈ π00(T ). By assumption
α(λI − T ) < ∞ and λ is isolated in σ(T ), so, by Lemma 4.3, λ is a pole
and hence p(λI − T ) = q(λI − T ) <∞. From [24, Proposition 38.6] it then
follows that β(λI−T ) <∞, i.e. λ ∈ p00(T ). Therefore Weyl’s theorem holds
for T .

To show that Weyl’s theorem holds for f(T ) note that, T being isoloid,
by [27, Lemma] we have

σ(f(T )) \ π00(f(T )) = f(σ(T ) \ π00(T )) = f(σw(T )),

where the last equality holds since T satisfies Weyl’s theorem. By Corollary
2.6 the SVEP for T implies that f(σw(T )) = σw(f(T )), and consequently

σ(f(T )) \ π00(f(T )) = σw(f(T )),

so Weyl’s theorem holds for f(T ).
(ii) Suppose now that T ′ is algebraically paranormal. We show first that

Weyl’s theorem holds for T . Since T ′ is algebraically paranormal it follows
that T ′, and hence also T ∗, has SVEP. In order to show that T satisfies
Weyl’s theorem it then suffices, by Theorem 3.1, to prove that π00(T ) =
p00(T ).

Let λ ∈ π00(T ). Then λ is an isolated point in σ(T ) = σ(T ′), and hence
by Lemma 4.3, λ is a pole of the resolvent of T ′, i.e. p := p(λI − T ′) =
q(λI − T ′) < ∞. We have H = ker (λI − T ′)p ⊕ (λI − T ′)p(H) and since
(λI − T ′)p(H) is closed it follows that (λI − T )p(H) is closed. We also have

H = (ker (λI − T ′)p)⊥ ⊕ ((λI − T ′)p(H))⊥ = (λI − T )p(H)⊕ ker (λI − T )p,

and again by Proposition 38.4 of [24] we conclude that p(λI−T ) = q(λI−T )
<∞, i.e. λ is a pole of the resolvent of T .

Finally, α(λI−T ) <∞ by assumption and consequently β(λI−T ) <∞,
from which we conclude that λ ∈ p00(T ). Hence Weyl’s theorem holds for T .

The argument above also proves that if T ′ is algebraically paranormal
then T is isoloid. Since the SVEP for T ′ implies f(σw(T )) = σw(f(T )),
arguing as in the proof of part (i) it readily follows that Weyl’s theorem
holds for f(T ) for all f ∈ H(σ(T )).
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Finally, since T ′ has SVEP, so does f(T ′), and hence also f(T ∗). By
Theorem 3.6 it follows that a-Weyl’s theorem holds for f(T ).

Notice that Theorem 4.4 implies Weyl’s theorem for paranormal oper-
ators. Weyl’s theorem for an algebraically paranormal operator has been
established by Curto and Han [12] by using different methods. Since every
p-hyponormal operator is paranormal, Weyl’s theorem for p-hyponormal
operators ([8]) and algebraically hyponormal operators ([23]) may also be
deduced from Theorem 4.4.

The operator defined in Remark 3.9 shows that, in general, we cannot
expect that a-Weyl’s theorem holds for any algebraically paranormal oper-
ator.

A bounded operator T ∈ L(H) is said to be quasi-hyponormal if ‖T ∗Tx‖
≤ ‖T 2x‖ for all x ∈ H. Every quasi-hyponormal operator is paranormal [21],
so part (ii) of Theorem 4.4 subsumes the following result of S. V. Djord-
jević and D. S. Djordjević [14, Theorem 3.4] and improves Corollary 5.7 of
D. S. Djordjević [13].

Corollary 4.5. If T ′ ∈ L(H) is quasi-hyponormal then a-Weyl’s the-
orem holds for f(T ) for every f ∈ H(σ(T )).
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