STUDIA MATHEMATICA 169 (2) (2005)

Optimal LP-properties of Green’s functions for non-divergence
elliptic equations in two dimensions

by

GIOCONDA MOSCARIELLO and CARLO SBORDONE (Napoli)

Abstract. A sharp integrability result for non-negative adjoint solutions to planar
non-divergence elliptic equations is proved. A uniform estimate is also given for the Green’s
function.

1. Introduction. Given K > 1 and a smooth domain 2 C R?, denote
by E(K) the class of symmetric 2 x 2 matrix-valued functions A = A(x)
defined on {2 which satisfy the ellipticity bounds

€I 2
(1.1) VS (A(2)€,€) < VK [¢]

for a.e. z € 2 and for all £ € R2. For w € W22(£2), set

loc
Mw] = Tr(A(z)D*w)
and for v € L2 (92),

loc
Nl =" m(aij(y)v(y))a A = [ag].

This operator is nothing other than the formal adjoint of M.

In this paper, following the ideas of [F'S], we study the interior regularity
of non-negative solutions v € L2 (£2) of the adjoint equation Nv] = 0
(ie. v € LY (£2), v > 0, and §,vM|p]dz = 0 for any ¢ € W2(£2) with
compact support). It is known [B] that such “adjoint solutions” need not be
locally bounded, even if the a;; are continuous. Here we determine the best
integrability exponent of v, in terms of the ellipticity constant K.

Namely, we prove that for 2 < p < 2K /(K — 1) the reverse Hélder
nequality

(§omyrdy)”” < e(.p) § olw) dy
B B

holds for all balls B = B(a,r) C B(a,2r) C {2.
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The same estimate holds for v(y) = G(z,y) where G(z,y) is the Green’s
function of M in (2, with the constant ¢ = ¢(K, p) independent of x.

The aforesaid results are optimal.

The main tool for our proof is a generalization of the Aleksandrov—
Bakelman—Pucci inequality (see [P], [FM]) recently obtained by Astala—
Iwaniec-Martin [AIM].

2. The Li-version of the Aleksandrov—Bakelman—Pucci inequal-
ity. Our discussion here is focused on the second order elliptic equation
0%w 0%w 0w
M[w] = Tr(AD*w) = — +2 —=h
[w] (ADw) = a11(z) 27 + 2a12(x) 92102, + a2 () o2
with given h € LY(B), ¢ > 1, defined on the ball B = B(0,r). If ¢ = 2 the
Dirichlet problem

21 {M[w] —h inB,

u=20 on 0B,
admits a unique solution w € W22(B) N W01’2(B) (see [C]).

Let us formulate the second order equations in terms of the complex
derivatives

o_1(9 ;9 9 _1/0 .0
0z 2\ 0r; Oxs )’ 0z 2\ 0x; 0xa )

Upon a few elementary algebraic computations, we arrive at the formula
Tr(ADzw) = (Wyz — pw,, —AW,,) Tr A

where
agz — a1l — 21612
2.2 = zZ) =
(2.2) m=p(2) (e T )
The ellipticity bounds at (1.1) imply
K-1
2.3 — < <1
(23 0(2)] + ()] < T
for a.e. z € B.
Using the complex gradient
1 .
f(z) =w, = ) (Wg, — 1wg,)
we are reduced to the Beltrami equation
— = h(z
fo = ()~ W T = )

in B. Optimal L?-properties for its solutions have recently been established
[AIS], [PV]. Precisely, given H defined on B, we set H = 0 for 2 € R?\ B and
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w(z) =0 for z € R?\ B. Then the equation extends to the entire space R?,
Fr — u(2)F, — u(z) F, = H.

It has a unique solution F' such that
1F2 )l w2y < c(q, K| H || La(re)

for 2K/(K+1) < q < 2K/(K —1). With the aid of this estimate the
following result has been established in [AIM].

THEOREM 2.1. Suppose 2K /(K +1) < ¢ <2, and weri’Cq(BT) satisfies
Mw]=h a.e. in B, = B(0,r),
{w =0 on 0B,.
Then
(2.4) [wll oo,y < (K, @)r* > hl| Lo, )-
The estimate no longer holds if ¢ < 2K /(K +1).

3. A reverse Hoélder inequality for non-negative adjoint solu-
tions. In this section the letter ¢ will denote a constant depending on K
and p. It may vary at each occurrence.

We are now ready to prove the following

THEOREM 3.1. Assume A = [a;;] satisfies (1.1). Let v € L?(£2), v > 0
i §2, satisfy the adjoint equation

82
Npl=) Fog0. @ii(y)v(y) =0.

i yiay]
Then, for all balls B, C Bs, C {2, we have
1/p
(3.1) (§owray) " <ep) § o) dy,
r B,

where 2 <p < 2K /(K —1).

Proof. We closely follow the arguments in [F'S]. Note that here we dis-
pense with the smoothness assumption on the coefficients. For n = 2 this
assumption is redundant.

We make use of the dual expression of the LP-norm,

32 (| Up)l/” —sup{ § vh:h >0, he OY(B). bl ey <1}

Fix h € C}(B,), ||hllre <1, h > 0. Applying (2.1) we solve the Dirichlet
problem

./\/l[w] =h in BQT,

w=0 on 0By,.
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Next, for w € W?22(By,) fix ¢, € Cy(Bj3,/2) such that ¢, = 1 on B, and
0%, /02| < Cy/rlel.
Then we have
(3.3) Svhg S vMlw]e, = — S vwM|py] — 2 S v(AVw, V)
BT Bzr B2r B2r

VK

c
§r—2||w||L°°(Bzr) S v+ " S v|Vuwl.
B37‘/2 B37‘/2

By (2.4), [w]|zee(B,,) < (K, q)r%/?, hence (3.3) implies

b Jorsger §oeg( o) (] )

By 3r/2 B3, )2 Bar

1/2

We now estimate the last integral in the right hand side, by using the Cac-
cioppoli inequality. By (1.1) we have

X v|Vuw|? < VK S v(AVw, Vu) = VK S v[M[w?] — 2wh).
Boy Boy Bay
Since w? = 0 on OBy, and V(w?) = 0 on 0By, we deduce
S vM[w?] =0 whenever NTv] = 0.
Ba,

Using again (2.4) yields

(3.5) | oIVl <2VK | vjwlh < 2VE |[w s, | vk
B27‘ B2'r BT‘
< VK cr?/? S vh.
Br

By (3.4) and (3.5) it follows that
1/2 1/2
Jon< i §ovr (o) (Fen)
B, B3,./2 B3, /2 By

By the elementary inequality /avb < a/2 + b/2, we arrive at

c c 1
Vvh < amm Vvt e § vt bk
B B2 Bs /2 By
Rearranging yields
c

B B3y /2
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Since h is arbitrary, by (3.2), (3.6) we obtain

(&vp)l/pgc | oo

By B3?"/2
An application of the following lemma (Lemma 2.0 in [FS]) concludes the

proof.

LEMMA 3.1. There exists a constant c, depending only on K, such that
for all non-negative weak solutions v of N'lv] = 0 and for all balls B, with
By, C 2 we have

Vowdy<e | v(y)dy. =
B B'r/2

4. A reverse Holder inequality for the Green’s function. Recall
that the Green’s function for M on a smooth domain (2 is non-negative and
Go(z,-) € LY(92) for every x € £2. We have the identity

p(z) = — | Go(z,y) Me(y) dy
2
for any ¢ € C?(£2) such that ¢ = 0 on 942.

THEOREM 4.1. For every 2 < p < 2K /(K — 1) and for all balls B, C
By, C §2, we have

(4.1) [§ Golwyray] " < c(K.p) § Gole.y) dy
B, B

/p

forx € (2.

Let us first recall some well known properties of Green’s functions. The
Aleksandrov—Bakelman—Pucci theorem for n = 2 reads

THEOREM 4.2. Let w € W22(02) satisfy
(4.2) {M[w] =h with given h € L*(12),
w=0 on 0f2.
Then
[wl| oo () < c(K)d(2)[[h]l12(2)
with d(£2) = diam({2).

The solution is unique. In what follows we write it as w = wy, to indi-
cate the dependence on h € L?({2). The following result is a well known
consequence of Theorem 4.2.
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COROLLARY 4.1. There exists a unique function G(x,-) € L?(£2) such
that G(z,y) > 0 in 2 x (2,

wp(x) = — | Gz, y)h(y) dy
2

and
(4.3) sup |G (2, )| 22(2) < c(K)d(2).

We need another preliminary fact:

LemmA 4.1 ([K, Lemma 3.3]). Let G,(z,y) denote the Green’s function
for M in Bs,. Then there exist two positive constants c1(K), ca(K) such

that
c1 < § Gr(xz,y)dy < ca  for x € By,.

B

Proof of Theorem 4.1. If x ¢ Bs, then G(z,-) is an adjoint solution of
M in By, and then the estimate follows from Theorem 3.1.

Assume now that « € Ba,. Let G, (z,y) be the Green’s function for M in
Bs,.. By the maximum principle we know that G(z,y) > G, (x,y) and thus
the function v(y) = G(z,y) — G,(x,y) is a non-negative solution to N'[v] = 0
in Bs,. Hence, using Theorem 3.1, we have

(4.4) § G(z,y)Pdy <c § G(z,y) — Gr(z,y)]P dy + ¢ § Gr(z,y)P dy
By Br B

S C{BS' [G(ﬂj‘,y) - Gr(:r,y)] dy}p + CBS Gr(ﬂl’,y)p dy.

To estimate the last term we invoke the inequality
1/p
(45) [ § Grlwyyay] ™ < e(r .
Br

which comes from Theorem 3.1 in the following way. First observe that the
solution w to the Dirichlet problem

/\/l[w] =h in Bgr,
{w =0 on JBs;,
for h € LY (1/q+ 1/p = 1) can be represented as
w(z) =— | Gr(z,y)h(y)dy.
B3
Then (4.5) follows by duality arguments:

1/
[§ Gaara]™ = s o) < cK.gr = oK. oy
Bs, Ikl La(B,,) <1
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In view of Lemma 4.1 inequality (4.5) implies

[§ Gy an] " < e(p) § Gty dy

T T

which, together with (4.4), concludes the proof. =

The following result parallels Corollary 2.4 in [F'S] and can be proved in
the same way.

COROLLARY 4.2. Let G(x,y) denote the Green’s function corresponding
to M on 2. Then for every 2 < p < 2K /(K — 1) there exists a constant
Ay, = Ay(K,d), d =diam(£2), such that

sup S G(z,y)Pdy < Ap.
zell ()

The optimality of the exponent p in Theorem 3.1 and in Theorem 4.1
follows again by duality arguments. Assume that inequality (4.1) holds for
po=2K/(K —1).

As in [AIM, Sect. 7], for x € B = B(0,1) let

(4.6) M = Tr(A(x)D?),
1 TR I 2 x1x9
4.7 Alx) = (VK - > +—=, z®z= ! :
x ToX1 x
w7 a0 = (VK- ) 37 + 7 %
(4.8) wn(x) =¢n(|z]) for N >1,
where
(4.9)  on(r)
K
(log r)r! =YK 4 (10gN - H)(rl_l/l( —-1) if1/N <,
- K

—1ogN+ﬁ(1—N*1“/K) if 0 <r<1/N,

and define

1
hy(z) = K — —— ||z| VK zl<1 ().
v() = (VE = 2 )lal ¥ g0
It is easy to check that wy(z) is the solution to the Dirichlet problem

./\/l[wN] = hN in B,
wy =0 on 0B,
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and therefore wy (x) can be represented as
(4.10) wy(z) = = | G(z.y)hn(y)dy, =€ B,
B

for G the Green’s function of M with respect to B. An elementary calcula-
tion reveals that

1
(4.11) 1]l pao () = (x/E — \/—E> (2 log N)PE+1D/2K

where
o 2K . Po
=K1 po—1
and
(4.12) lwnlpoe () > e(K)(log N)HHETD/2E

By (4.11) and (4.12) it follows that

lwn|| Lo

(4.13) — 00 as N —

|An || Lao
An application of Holder’s inequality and Corollary 4.2 yield the estimates
lwn (@) < 1G(, )l zro () - [l Lo (5) < Apo (K) AN | Lao (),

which are not consistent with (4.13).
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