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Functions of bounded variation on
compact subsets of the plane

by

Brenden Ashton (Sydney and North Ryde) and Ian Doust (Sydney)

Abstract. A major obstacle in extending the theory of well-bounded operators
to cover operators whose spectrum is not necessarily real has been the lack of a suit-
able variation norm applicable to functions defined on an arbitrary nonempty compact
subset σ of the plane. In this paper we define a new Banach algebra BV(σ) of func-
tions of bounded variation on such a set and show that the function-theoretic properties
of this algebra make it better suited to applications in spectral theory than those used
previously.

1. Introduction. The motivation for this work lies in the spectral the-
ory of linear operators on Banach spaces. It has long been known that the
possession of a suitable functional calculus for an operator T on a Banach
space X is often enough to ensure that T has some sort of integral or sum
representation with respect to a family of projections on X.

In 1960, Smart [15] introduced the class of well-bounded operators in
order to give a representation theory for operators whose integral represen-
tations were of a conditional, rather than unconditional, nature. A bounded
operator was said to be well-bounded if it has an AC([a, b]) functional cal-
culus (where AC([a, b]) denotes the absolutely continuous functions on the
compact interval [a, b]). On reflexive spaces, all well-bounded operators have
an integral representation with respect to a family of projections known as
a spectral family. An account of the theory of well-bounded operators can
be found in [10].

A serious restriction of this theory is that it only handles operators whose
spectrum is a subset of the real line. Attempts to address this problem were
made in even the earliest papers on well-bounded operators (see [13]). Over
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the past 40 years a number of authors have examined classes of operators
which generalize the well-bounded theory to operators with complex spec-
trum ([5], [7], [8], [17]). Although these theories have proved rather impor-
tant in applications (especially the theory of trigonometrically well-bounded
operators developed in [8]), each has contained either restrictions on the al-
lowable spectrum, or else an unsatisfactory matching between the function
algebras used and the spectrum of the operator.

A first step in trying to develop a suitable theory is to find an appropriate
analogue for the functions of bounded variation on an interval for functions
whose domain is now a subset of C. There have been, of course, many
definitions of the variation of a function of two or more variables. As early
as 1933 Clarkson and Adams [9] had collected 7 variants. New definitions
continue to be introduced for various applications (see, for example, [1] for
a more recent definition from the theory of partial differential equations).
Berkson and Gillespie [7] used a definition ascribed to Hardy and Krause to
define a Banach algebra BVHK(R) where R is a rectangle in the plane. (Here
and throughout the paper, rectangles will be assumed to have sides parallel
to the coordinate axes.) The closure of the polynomials in two variables in
this algebra is denoted ACHK(R). They defined an operator T ∈ B(X) to
be an AC operator if T admits an ACHK(R) functional calculus for some
rectangle R.

The theory of AC operators has some appealing features. For example,
T is an AC operator if and only if there exist commuting well-bounded
operators A and B such that T = A+ iB. Since their introduction however,
a number of less desirable properties have become apparent.

As was shown in [6], the class of AC operators is not closed under scalar
multiplication. From an operator theorist’s point of view this is unsatisfac-
tory since if one’s theory provides a structure theorem for T , then it should
also provide a structure theorem for αT + βI for any α, β ∈ C. In any case,
a more natural domain for the functions for which a functional calculus for
an operator T might be defined is usually the spectrum of T (or at least
some small neighbourhood of σ(T )) rather than a rectangle.

We shall show in this paper that it is possible to define functions of
bounded variation on arbitrary nonempty compact subsets of the plane in
a way which is much better suited for spectral-theoretic purposes. Even
for well-bounded operators it would actually be more natural to write the
theory in terms of functions defined on σ(T ) rather than an interval [a, b].
Defining BV(σ) and AC(σ) for a compact subset σ ⊂ R is of course a
relatively straightforward extension of the usual interval definitions, but as
these definitions will be important when we extend to complex domains, we
quickly summarize the main results in Section 2.
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From a spectral-theoretic point of view, a new definition for BV(σ), the
Banach algebra of functions of bounded variation on a nonempty compact
set σ ⊂ C (or σ ⊂ R2), should have at least the following properties:

(i) it should agree with the “usual definition” if σ ⊂ R;
(ii) it should contain all sufficiently well-behaved functions (polynomials,

C∞ functions, characteristic functions of polygons and so forth);
(iii) for all α, β ∈ C, α 6= 0, we should have BV(ασ + β) ∼= BV(σ).

The main part of this paper (Section 3) goes to giving a definition which
satisfies these properties.

Our new definition agrees with the standard one when σ ⊂ R, and, up
to an equivalent norm, with the natural definition given in [8] for the case
that σ is the unit circle. We show in [4] that if σ is a rectangle, the new
definition gives a strictly larger algebra of functions than the one that arises
from the Hardy–Krause definition used by Berkson and Gillespie.

For the applications to operator theory, one is interested in working
with a smaller algebra of “absolutely continuous” functions. In Section 4
we define a subalgebra AC(σ) ⊂ BV(σ) and examine its properties. An
AC(σ) operator is then defined to be one which admits an AC(σ) functional
calculus.

As was shown in [2], one can develop generalizations of the well-bounded
theory to cover these AC(σ) operators. For example, whereas well-bounded
operators admit projection-valued decompositions for projections associated
with half-lines, AC(σ) operators have decompositions involving projections
associated to half-planes. The main direction of this paper however is to
develop an appropriate function theory and so, although we shall comment
on the operator theory throughout, most of the details will appear in [3].

2. BV(σ) for σ ⊂ R compact. Let σ be a nonempty compact subset
of R. Since σ inherits an order from R, one may define the variation of a
function f : σ → C in exactly the same way as one does for functions defined
on intervals. This concept of variation will be important when we go on to
consider functions of bounded variation in two real variables so we shall give
here a summary of the important similarities and differences between BV(σ)
and BV([a, b]). Since most of the proofs in this section are exact analogs of
the more classical situation we shall generally refer the reader to references
such as [14] for the details.

Let J = [a, b] be the smallest interval which contains σ. We say {si}ni=1 is
a partition of σ if s1 ≤ · · · ≤ sn and si ∈ σ for all i. The set of partitions of σ
is denoted by Λ(σ). Let S = {si}ni=1, T = {ti}mi=1 ∈ Λ(σ). The set T is said
to be a refinement of S if S ⊂ T . Then Λ(σ) is a lattice using refinement as
a partial ordering.
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For f : σ → C we define the variation of f by

var(f, σ) = sup
{si}ni=1∈Λ(σ)

n−1∑

i=1

|f(si+1)− f(si)|.

Since Λ(σ) is a lattice and because of the triangle inequality one deduces
that var(f, σ) can equivalently be defined by replacing the supremum in the
above expression with a limit. Set

‖f‖BV(σ) = ‖f‖∞ + var(f, σ).

The set of functions of bounded variation is

BV(σ) = {f : σ → C : ‖f‖BV(σ) <∞}.
We shall show below that BV(σ) is a Banach algebra.

Many of the following properties of variation will be generalized to the
two-variable situation.

Proposition 2.1. Let f, g ∈ BV(σ), k ∈ C and σ = σ1∪σ2 where σ1, σ2

are nonempty compact subsets of R. Then

(i) var(f + g, σ) ≤ var(f, σ) + var(g, σ),
(ii) var(kf, σ) = |k| var(f, σ),
(iii) var(fg, σ) ≤ ‖f‖∞ var(g, σ) + ‖g‖∞ var(f, σ),
(iv) var(f, σ) ≥ |f(b)− f(a)|,
(v) if f is nondecreasing or nonincreasing then var(f, σ)= |f(b)−f(a)|,
(vi) var(f, σ1) ≤ var(f, σ),

(vii) if σ1 ⊂ [a, c], σ2 ⊂ [c, b] and σ1 ∩ σ2 = {c} then

var(f, σ) = var(f, σ1) + var(f, σ2).

Proof. The proofs of (i) through (v) are the same as in the case σ = [a, b].
Since Λ(σ1) ⊂ Λ(σ), (vi) follows. We now prove (vii). Let {si}ni=1 ∈ Λ(σ). By

refining if necessary we may assume that c = sj for some j. Then {si}ji=1 ∈
Λ(σ1) and {si}ni=j ∈ Λ(σ2). Hence

n−1∑

i=1

|f(si+1)− f(si)| =
j−1∑

i=1

|f(si+1)− f(si)|+
n−1∑

i=j

|f(si+1)− f(si)|

≤ var(f, σ1) + var(f, σ2).

Taking the supremum over partitions shows that var(f, σ) ≤ var(f, σ1) +
var(f, σ2). The reverse inequality follows from noting that any partitions of
σ1 and σ2 generate a partition of σ.

It is easy to use Proposition 2.1 to show that ‖ · ‖BV(σ) is an algebra
norm on BV(σ).
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For many of the properties of BV(σ) it is easier to embed BV(σ) into
BV(J) and then use the classical theory. For t ∈ J \ σ define

α(t) = sup{x : [t, x] ⊂ J \ σ}, β(t) = inf{x : [x, t] ⊂ J \ σ}.
Given f : σ → C define the function ι(f) : J → C by

(1) ι(f)(t) =





f(t) if t ∈ σ,(
f(α(t))− f(β(t))

α(t)− β(t)

)
(t− β(t)) + f(β(t)) if t ∈ J \ σ.

In other words, ι(f) is defined so that it is linear on the gaps in σ. The
following results are readily verified.

Proposition 2.2. Let σ1 ⊂ σ2 be compact subsets of R and let f ∈
BV(σ2). Then ‖f |σ1‖BV(σ1) ≤ ‖f‖BV(σ2) and so f |σ1 ∈ BV(σ1).

Proposition 2.3. Let f ∈ BV(σ). Then var(f, σ) = var(ι(f), J).

Proposition 2.4. Let f : σ → C. Then f ∈ BV(σ) if and only if
ι(f) ∈ BV(J).

Proposition 2.5. The map ι : BV(σ)→ BV(J) is a linear isometry.

Note that BV(J) → BV(σ) : F 7→ F |σ is a left inverse of ι. That is, if
f : σ → C then ι(f)|σ = f .

Lemma 2.6. Suppose that {fn}∞n=1 is a Cauchy sequence in BV(σ). Then
F = limn→∞ ι(fn) ∈ BV(J) exists and F = ι(F |σ).

Proof. From Proposition 2.3, {ι(fn)}∞n=1 is a Cauchy sequence in BV(J)
and so converges as claimed to some F ∈ BV(J). To complete the proof we
need to show that if t ∈ J \ σ then

F (t) =

(
F (α(t))− F (β(t))

α(t)− β(t)

)
(t− β(t)) + F (β(t)).

First we notice that we must have pointwise convergence of both {fn}∞n=1

and {ι(fn)}∞n=1. Hence

F (t) = lim
n→∞

ι(fn(t))

= lim
n→∞

((
fn(α(t))− fn(β(t))

α(t)− β(t)

)
(t− β(t)) + fn(β(t))

)

=

(
limn→∞ fn(α(t))− limn→∞ fn(β(t))

α(t)− β(t)

)
(t− β(t)) + lim

n→∞
fn(β(t))

=

(
F (α(t))− F (β(t))

α(t)− β(t)

)
(t− β(t)) + F (β(t)).

Theorem 2.7. (BV(σ), ‖ · ‖BV(σ)) is a Banach algebra.
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Proof. The only thing to show is completeness. Let {fn}∞n=1 be a Cauchy
sequence in BV(σ). Then by Proposition 2.5, {ι(fn)}∞n=1 is a Cauchy se-
quence in BV(J), and so converges say to F . By Proposition 2.2, f = F |σ ∈
BV(σ) and by Lemma 2.6, F = ι(f). Finally, we note that

lim
n→∞

‖fn − f‖BV(σ) = lim
n→∞

‖ι(fn − f)‖BV(J)

= lim
n→∞

‖ι(fn)− F‖BV(J) = 0.

It is easy to check that (the restrictions of) any C∞ functions (in particu-
lar polynomials), or any Lipschitz functions sit inside BV(σ), as do piecewise
polynomial functions.

In the theory of well-bounded operators, the most important subalge-
bra of BV([a, b]) is the algebra of absolutely continuous functions on [a, b].
In dealing with more general domain sets, one has to decide which of the
characterizations of absolute continuity one wishes to work with.

Definition 2.8. Let f : σ → C. We say that f is absolutely continuous
if given ε > 0 there exists δ > 0 such that for any finite number of non-
overlapping intervals {[si, ti]}ni=1 with si, ti ∈ σ for all i and

∑n
i=1 |ti−si| < δ

we have
∑n

i=1 |f(ti) − f(si)| < ε. We let the set of absolutely continuous
functions with domain σ be denoted AC(σ).

If σ = [a, b] then this is the usual definition of absolute continuity. See
[11] and [12] for more information on AC(J). An equivalent definition of
AC(σ) is the following.

Proposition 2.9. Let f : σ → C. Then f ∈ AC(σ) if and only if for
every ε > 0 there exists a δ > 0 such that for every finite sequence of
non-overlapping intervals {[si, ti]}ni=1 with

∑n
i=1 |ti − si| < δ we have

n∑

i=1

var(f, [si, ti] ∩ σ) < ε.

Proof. We first show the “if” part of the statement. Suppose f : σ → C
has the properties on the right hand side of the “if and only if” statement
above. Fix ε > 0 and choose δ accordingly. Let {[si, ti]}ni=1 be a set of
nonoverlapping intervals with si, ti ∈ σ for all i and

∑n
i=1 |ti− si| < δ. Then

n∑

i=1

|f(ti)− f(si)| ≤
n∑

i=1

var(f, [si, ti] ∩ σ) < ε.

Hence f ∈ AC(σ).

Suppose f ∈ AC(σ). Fix ε > 0 and choose δ as in Definition 2.8 using
ε/2 instead of ε. Let {[si, ti]}ni=1 be a set of nonoverlapping intervals with∑n

i=1 |ti − si| < δ. For each i there exists a sequence of nonoverlapping
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intervals {[ui,j , vi,j ]}mij=1 such that ui,j , vi,j ∈ σ ∩ [si, ti] for all j and

var(f, [si, ti] ∩ σ) ≤
mi∑

j=1

|f(vi,j)− f(ui,j)|+
ε

2n
.

Then {[ui,j , vi,j ]}j=mi, i=ni,j=1 is a set of nonoverlapping intervals satisfying∑n
i=1

∑mi
j=1 |vi,j − ui,j | < δ, and so

∑n
i=1

∑mi
j=1 |f(vi,j) − f(ui,j)| < ε/2.

Hence
n∑

i=1

var(f, [si, ti] ∩ σ) ≤
n∑

i=1

( mi∑

j=1

|f(vi,j)− f(ui,j)|+
ε

2n

)
≤ ε.

This shows the “only if” portion of the statement.

Lemma 2.10. Let σ1 ⊂ σ2 both be compact and let f ∈ AC(σ2). Then
f |σ1 ∈ AC(σ1).

Proof. Fix ε > 0 and choose δ > 0 as in the definition of f ∈ AC(σ2).
Then for any sequence of intervals {[si, ti]}ni=1 with

∑n
i=1 |ti − si| < δ, we

have by Proposition 2.1(vi),
n∑

i=1

var(f, [si, ti] ∩ σ1) ≤
n∑

i=1

var(f, [si, ti] ∩ σ2) < ε.

The following is an easy consequence of the characterization of AC func-
tions on intervals as the integrals of L1 functions (see [14, Corollary 5.4.14]).

Lemma 2.11. Let a = s1 ≤ · · · ≤ sn = b and let f ∈ C([a, b]) where
f |[si, si+1] ∈ AC([si, si+1]) for all i. Then f ∈ AC([a, b]).

Corollary 2.12. Let a1 < b1 ≤ a2 < b2 ≤ · · · ≤ an < bn. Suppose
σ =

⋃n
i=1[ai, bi], f : σ → C is continuous and f |[ai, bi] ∈ AC([ai, bi]) for

each i. Then f ∈ AC(σ).

Proof. Let [a, b] be the smallest interval containing σ. Then ι(f) ∈
C([a, b]) and ι(f)|[ai, bi] = f |[ai, bi] ∈ AC([ai, bi]) for each i. Now ι(f) is
linear on [bi, ai+1] for each i and so ι(f)|[bi, ai+1] ∈ AC([bi, ai+1]). We now
apply Lemma 2.11 to conclude ι(f) ∈ AC([a, b]). Finally, we conclude from
Lemma 2.10 that f = ι(f)|σ ∈ AC(σ).

We now have a version of Proposition 2.4 for AC(σ).

Theorem 2.13. Let f : σ → C. Then f ∈ AC(σ) if and only if ι(f) ∈
AC(J).

Proof. If ι(f) ∈ AC(J) then by Lemma 2.10, f ∈ AC(σ).
Suppose then that f ∈ AC(σ). Since σ is compact, J \σ can be written as

a countable union of disjoint open intervals
⋃
On. For each n let In denote

the largest closed interval satisfying On ⊂ In ⊂ On∪σ. Let σn = I1∪· · ·∪In.
Clearly σn can be written as a finite union of disjoint closed intervals. Let
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J ′ be one of these intervals. If we set V1 = σ∩J ′ and V2 = J ′ \ σ, then both
V1 and V2 are disjoint unions of closed intervals. Now ι(f)|V1 = f |V1, so by
Lemma 2.10, ι(f)|V1 ∈ AC(V1). On the other hand, ι(f) is linear on each
of the components of V2, so ι(f)|V2 ∈ AC(V2). It follows from Lemma 2.11
and Corollary 2.12 that ι(f)|σn ∈ AC(σn).

For each n, let τn = J \ σn. Again τn is a finite union of disjoint closed
intervals. Since J =

⋃
σn, for any δ > 0, there exists N such that for all

n ≥ N , the measure of τn is less than δ.
Fix ε > 0. By definition, there exists δ1 > 0 such that if {[si, ti]}mi=1 is a

finite set of nonoverlapping intervals with si, ti∈σ for all i and
∑m

i=1 |ti − si|
< δ1, then

∑m
i=1 |f(ti)− f(si)| < ε/2. Choose n such that the measure of τn

is less than δ1, and write τn as the disjoint union of closed intervals J1, . . . , Jl.
Since ι(f)|σn ∈ AC(σn), we can find δ2 > 0 such that if {[si, ti]}mi=1 is a

finite set of nonoverlapping intervals with si, ti ∈ σn for all i and
∑m

i=1 |ti−
si| < δ2, then

∑m
i=1 |ι(f)(ti)− ι(f)(si)| < ε/2.

Let δ = min{δ1, δ2}. Suppose that {[ci, di]}mi=1 is a finite set of nonover-
lapping subintervals of J with

∑m
i=1 |di − ci| < δ. Since σn has only finitely

many components, the set (
⋃m
i=1[ci, di])∩σn can be written as a finite union

of disjoint closed intervals
⋃m1
i=1[c1

i , d
1
i ]. Similarly we write (

⋃m
i=1[ci, di])∩τn =⋃m2

i=1[c2
i , d

2
i ]. Now, by Propositions 2.2 and 2.3,

m1∑

i=1

var(ι(f), [c1
i , d

1
i ]) ≤

l∑

i=1

var(ι(f), Ji) =
l∑

i=1

var(f, Ji) < ε/2.

On the other hand,
∑m2

i=1 var(ι(f), [c2
i , d

2
i ]) < ε/2 and so

m∑

i=1

var(ι(f), [ci, di]) =

m1∑

i=1

var(ι(f), [c1
i , d

1
i ]) +

m2∑

i=1

var(ι(f), [c2
i , d

2
i ]) < ε.

Thus ι(f) ∈ AC(J).

Corollary 2.14. The map ι|AC(σ) is a linear isometry from AC(σ)
into AC(J).

Corollary 2.15. If f ∈ AC(σ) then f ∈ BV(σ).

Proof. If f ∈ AC(σ) then by Theorem 2.13, ι(f) ∈ AC(J). Hence ι(f) ∈
BV(J). By Proposition 2.2, f = ι(f)|σ ∈ BV(σ).

Theorem 2.16. Let σ ⊂ R be compact. Then AC(σ) is a Banach subal-
gebra of BV(σ).

Proof. Let f, g ∈ AC(σ) and k ∈ C. Then for s, t ∈ σ the following hold:

|(f + g)(t)− (f + g)(s)| ≤ |f(t)− f(s)|+ |g(t)− g(s)|,
|(fg)(t)− (fg)(s)| ≤ ‖f‖∞|g(t)− g(s)|+ ‖g‖∞|f(t)− f(s)|,
|kf(t)− kf(s)| = |k| |f(t)− f(s)|.
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From these and the ε, δ definition of AC(σ) we deduce AC(σ) is a subalgebra
of BV(σ).

It remains to show completeness. Let {fn}∞n=1 be a Cauchy sequence in
AC(σ). Then {ι(fn)}∞n=1 is a Cauchy sequence in AC(J) and so converges,
say to F ∈ AC(J). By Lemma 2.10, F |σ ∈ AC(σ). Also, by Lemma 2.6,
ι(F |σ) = F . Then

lim
n→∞

‖fn − F |σ‖BV(σ) ≤ lim
n→∞

‖ι(fn − F |σ)‖BV(J)

= lim
n→∞

‖ι(fn)− F‖BV(J) = 0.

Theorem 2.17. The set P of polynomials is dense in AC(σ).

Proof. Let f ∈ AC(σ). Fix ε > 0. By the density of P in AC(J) there
exists p ∈ P such that ‖ι(f)− p‖BV(J) < ε. Then

‖f − p‖BV(σ) = ‖(ι(f)− p)|σ‖BV(σ) ≤ ‖ι(f)− p‖BV(J) < ε.

It is an easy consequence of the results in this section that if T ∈ B(X)
has an AC(σ(T )) functional calculus then it also admits an AC(J) functional
calculus and hence is well-bounded. The converse is also true. Details can
be found in [2] or [3].

3. BV(σ) for σ ⊂ C compact. Suppose now that σ is a nonempty
compact subset of C. (Throughout we shall identify C and R2.) A first step
in defining BV(σ) is to make a sensible definition for var(f, σ) for a function
f : σ → C. The idea behind our construction is to consider the variation,
denoted cvar(f, γ), along finite length curves γ in the plane. One is then left
with the problem of how to separate the variation that is due to the function
from the variation which is due to the geometry of the curve. This is done
by assigning a weight factor %(γ) ∈ [0, 1] to each curve γ. The weight factor
is large for straight lines and low for very sinuous ones. The two-dimensional
variation is then defined as the supremum of %(γ) cvar(f, γ) over all curves γ.
In this way the affine invariance properties are more or less built into the
definition. The first difficulty lies in showing that this definition has the
appropriate multiplicativity properties to enable it to be used to define a
Banach algebra norm. One also needs to show that all sufficiently well-
behaved functions (such as polynomials and Lipschitz functions) will have
bounded variation under this definition and that this definition reduces to
that of the previous section if σ ⊂ R.

3.1. Weight factors. By a curve in the plane we shall mean an element of
the set Γ = C([0, 1]). Note that it will sometimes be important to distinguish
between a curve (which includes its parameterization) and its image in C.
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If γ1, γ2 ∈ Γ and γ1(1) = γ2(0) let γ1 ◦ γ2 ∈ Γ be defined by

(γ1 ◦ γ2)(t) =

{
γ1(2t) if 0 ≤ t ≤ 1/2,

γ2(2t− 1) if 1/2 < t ≤ 1.

If γ1, γ2 ∈ Γ and if there exists h : [0, 1]→ [0, 1] where h is a continuous non-
decreasing or nonincreasing surjective function such that γ1(t) = γ2(h(t))
for all t ∈ [0, 1] then we write γ1

∼= γ2.
Let γ ∈ Γ . Then t ∈ [0, 1] is said to be an entry point of γ on a line l if

either

(i) t = 0 and γ(0) ∈ l, or
(ii) γ(t) ∈ l and for all ε > 0 there exists s ∈ (t− ε, t) ∩ [0, 1] such that

γ(s) 6∈ l.
Similarly t ∈ [0, 1] is said to be an exit point of γ on a line l if either

(i) t = 1 and γ(1) ∈ l, or
(ii) γ(t) ∈ l and for all ε > 0 there exists s ∈ (t, t+ ε) ∩ [0, 1] such that

γ(s) 6∈ l.
There are similar definitions for entry and exit points of γ on a line segment
or for γ ∈ C([a, b]) rather than γ ∈ C([0, 1]). Figure 1 illustrates a curve
γ ∈ Γ with four entry points t1, t2, t3 and t4 on a line l.

PSfrag replacements

l

γ

t1 t2 t3 t4

Fig. 1. Entry points t1, . . . , t4 of γ along l

Suppose γ ∈ Γ and {γi}ni=1 ⊂ Γ . Set vf(γ, l) to be the number of entry
points of γ on l and set vf(

⋃n
i=1 γi, l) =

∑n
i=1 vf(γi, l). Clearly if γ1

∼= γ2

then vf(γ1, l) = vf(γ2, l). We set vf(γ) and vf(
⋃n
i=1 γi) to be the supremum of

vf(γ, l) and vf(
⋃n
i=1 γi, l) over all lines l. We write vfH(γ) for the supremum

of vf(γ, l) over all horizontal lines l, vfV for the supremum of vf(γ, l) over all
vertical lines, and so on. Clearly vf ≥ vfH and vf ≥ vfV. We write % for 1/vf.
For example %V(

⋃n
i=1 γi) = 1/vfV(

⋃n
i=1 γi). If, for example, vf(γ) =∞ then

we take the convention that %(γ) = 0. It is also clear that % ≤ %H, % ≤ %V

and that if γ1
∼= γ2 then %(γ1) = %(γ2). We can extend the notion of %, %V

and so on to include curves in C([a, b]) in the obvious way.
In Figure 2 there are three curves γ1, γ2, γ3 ∈ Γ . From the diagram one

can see that vf(
⋃3
i=1 γi, l) = 6. No line has more entry points on each curve
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Fig. 2. %(γ1) = 1, %(γ2) = 1/2 and %(γ3) = 1/3.

than l does. Hence %(γ1) = 1, %(γ2) = 1/2 and %(γ3) = 1/3. It is easy
to see that %H(γi) = %(γi) for each i and that %V(γ1) = %V(γ3) = 1 and
%V(γ2) = 1/2.

Let σ ⊂ C be compact and let l be a line parameterized by R. Then
t ∈ R is said to be an entry point of l on σ if l(t) ∈ σ and for all ε > 0 there
exists s ∈ (t − ε, t) such that l(s) 6∈ σ. Again set vf(σ, l) to be the number
of entry points of l on σ and vf(σ) to be the supremum of vf(σ, l) over all
lines l. Clearly vf(σ, l) does not depend on the choice of parameterization of
the line l.

Note that if γ ∈ Γ then it does not follow that vf(γ) = vf(γ([0, 1])). For
example if γ is given by

γ(t) =

{
2t if 0 ≤ t ≤ 1/2,

2− 2t if 1/2 < t ≤ 1.

Then vf(γ([0, 1])) = vf([0, 1]) = 1 but vf(γ) = vf(γ,R) = 2.

We now define a set of curves ΓL which we later show allows us to
approximate any γ ∈ Γ by a curve consisting of line segments. Let j, n ∈ Z+

and suppose that j < n. For t ∈
[ j−1
n−1 ,

j
n−1

]
define

αj,n(t) = (n− 1)t− (j − 1).

Hence αj,n maps
[ j−1
n−1 ,

j
n−1

]
homeomorphically onto [0, 1]. Let z1, . . . , zn

∈ C. Write Π(z1, . . . , zn) for the function [0, 1]→ C defined on each interval[ j−1
n−1 ,

j
n−1

]
for 1 ≤ j ≤ n− 1 by

Π(z1, . . . , zn)(t) = (1− αj,n(t))zj + αj,n(t)zj+1.

Hence Π(z1, . . . , zn) ∈ Γ and is a curve consisting of line segments whose
endpoints are z1, . . . , zn and which is parameterized by [0, 1].

Set

ΓL = {γ ∈ Γ : γ ∼= Π(z1, . . . , zn) for some zi ∈ C and n ∈ N}.
Let γ ∈ Γ . Let S = {si}ni=1 ∈ Λ([0, 1]). Set

γS = Π(γ(s1), . . . , γ(sn)) ∈ ΓL.
The curve γS is said to be the S approximation of γ.
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Lemma 3.1. Let γ ∈ Γ and suppose vf(γ) <∞. Then

lim
S∈Λ([0,1])

%(γS) = %(γ).

Proof. Fix S = {si}ni=1 ∈ Λ([0, 1]). Let l be a line. If t ∈ [0, 1] is an entry

point of γS on l then there exist 1 ≤ j ≤ n − 1 such that t ∈
[ j−1
n−1 ,

j
n−1

]
.

Since l is a line and γS
([ j−1
n−1 ,

j
n−1

])
is a line segment, there is no other entry

point t′ of γS on l such that t′ ∈
[ j−1
n−1 ,

j
n−1

]
. But since γ is continuous and

γ(sj) = γS
( j−1
n−1

)
and γ(sj+1) = γS

( j
n−1

)
, it follows there is at least one

entry point s of γ on l such that sj ≤ s ≤ sj+1. Hence vf(γS, l) ≤ vf(γ, l)
and so %(γS) ≥ %(γ).

To conclude the proof we show that there exists S ∈ Λ([0, 1]) such that
%(γS) ≤ %(γ) and %(γS′) ≤ %(γ) for any refinement S ′ of S. Since vf(γ) <∞
there exists a line l such that vf(γ, l) = vf(γ) := m. Let {ti}mi=1 ∈ Λ([0, 1])
be the entry points of γ on l, ordered so that t1 < t2 < · · · < tm. Assume for
the moment that t1 6= 0 and tm 6= 1. Let {si}m+1

i=1 ∈ Λ([0, 1]) be such that
s1 < t1 < s2 < t2 < · · · < sm < tm < sm+1. Then for all i, γ(si) 6∈ l. Set
S = {s1, t1, s2, t2, . . . , sm, tm, sm+1}. Then for each 1 ≤ j ≤ m, (2j − 1)/2m
is an entry point of γS on l which corresponds to the entry point tj of γ on l.
Furthermore, every entrance point of γS on l is of the form (2j − 1)/(2m).
Hence vf(γS) ≥ vf(γS, l) = vf(γ, l) = vf(γ) and so %(γS) ≤ %(γ). A similar
proof holds if t1 = 0 or tm = 1. Finally, note we can apply the above
procedure by adding more points to S between each of the ti and not change
%(γS).

3.2. Variation in two variables. Here we define the variation of a func-
tion defined on a nonempty compact set σ in the complex plane. We show
in Proposition 3.6 that this definition reduces to the usual definition when
σ = J and the definition in Section 2 when σ ⊂ R.

Let γ ∈ Γ and let ∅ 6= σ ⊂ C be compact. We say that {zi}ni=1 is a
partition of γ over σ if zi ∈ σ for all i and if there exists {si}ni=1 ∈ Λ([0, 1])
such that zi = γ(si) for all i. Let Λ(σ, γ) be the set of partitions of γ over σ.
Clearly Λ(σ, γ) inherits the lattice structure of Λ([0, 1]).

Let f : σ → C and γ ∈ Γ . We define the variation along the curve γ by

cvar(f, γ, σ) = cvar(f, γ) = sup
{zi}ni=1∈Λ(σ,γ)

n−1∑

i=1

|f(zi+1)− f(zi)|.

Clearly cvar(f, γ) = var(ι(f ◦ γ), [0, 1]) where ι is the map described by
equation (1) in Section 2. Again, since Λ(σ, γ) is a lattice one can use the
triangle inequality and replace the supremum in the above expression by a
limit. There is a version of Proposition 2.1 for cvar.
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Proposition 3.2. Let σ1 ⊂ σ ⊂ C both be compact. Let f, g : σ → C
and k ∈ C. Suppose γ = γ1 ◦ γ2 ∈ Γ with γ1(1) ∈ σ. Then

(i) cvar(f + g, γ) ≤ cvar(f, γ) + cvar(g, γ),
(ii) cvar(fg, γ) ≤ ‖f‖∞ cvar(g, γ) + ‖g‖∞ cvar(f, γ),
(iii) cvar(kf, γ) = |k| cvar(f, γ),
(iv) cvar(f, γ) = cvar(f, γ1) + cvar(f, γ2),
(v) cvar(f, γ1) ≤ cvar(f, γ),
(vi) cvar(f, γ, σ1) ≤ cvar(f, γ, σ).

Proof. The proofs are the same as for Proposition 2.1.

Note that the variation along a curve does not depend on the parame-
terization.

Lemma 3.3. Let f : σ → C. Let γ1, γ2 ∈ Γ and suppose that γ1
∼= γ2.

Then cvar(f, γ1) = cvar(f, γ2).

Definition 3.4. Let f : σ → C. Then the variation of f on σ is defined
to be

(2) var(f, σ) = sup
γ∈Γ

%(γ) cvar(f, γ).

Here we take the convention that if γ ∈ Γ is such that %(γ) = 0 and if
cvar(f, γ) =∞ then %(γ) cvar(f, γ) = 0. As we shall show in Proposition 3.6
this notation is not ambiguous since it agrees with the notation given in
Section 2 if σ ⊂ R.

In practice, Γ is usually too large a set to work with. As the next lemma
shows, one can replace Γ with ΓL (or indeed any of a number of sets of
simpler curves) and obtain the same definition of variation over σ.

Lemma 3.5. Let f : σ → C. Then

sup
γ∈ΓL

%(γ) cvar(f, γ) = sup
γ∈Γ

%(γ) cvar(f, γ).

Proof. Clearly supγ∈ΓL %(γ) cvar(f, γ)≤supγ∈Γ %(γ) cvar(f, γ). Let γ∈Γ .
We may assume that %(γ) > 0. Let S = {si}ni=1 ∈ Λ(σ, γ). Then

n−1∑

i=1

|f(si+1)− f(si)| ≤ cvar(f, γS).

Hence by Lemma 3.1,

%(γ) cvar(f, γ) = lim
S={si}ni=1∈Λ(σ,γ)

%(γ)

n−1∑

i=1

|f(si+1)− f(si)|

≤ lim
S∈Λ(σ,γ)

%(γ) cvar(f, γS) = lim
S∈Λ(σ,γ)

%(γS) cvar(f, γS)

≤ sup
γ′∈ΓL

%(γ′) cvar(f, γ′).
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We shall show now that the new definition of variation agrees with the
previous one if σ ⊂ R. It suffices to consider the case where σ = [0, 1]. One
can use the function ι when σ is an arbitrary compact subset of R.

Proposition 3.6. Let f ∈ BV([0, 1]). Then

cvar(f,Π(0, 1)) = sup
γ∈Γ

%(γ) cvar(f, γ).

Proof. Let γ=Π(0, 1)∈ΓL. Then %(γ) = 1 and cvar(f, γ) = var(f, [0, 1])
and so supγ∈ΓL %(γ) cvar(f, γ) ≥ cvar(f,Π(0, 1)).

Let γ ∈ ΓL. Suppose that S = {s1, . . . , sn} are the entry and exit points
of γ on [0, 1], ordered so that s1 < · · · < sn. Then cvar(f, γ) ≤ cvar(f, γS).
Also %(γ) ≤ %V(γ) = %V(γS). Let {xi}mi=1 = {γ(si)}ni=1 be ordered so that
x1 < · · · < xm. Then

cvar(f, γS) = α1 cvar(f,Π(x1, x2)) + · · ·+ αm−1 cvar(f,Π(xm−1, xm))

where αi = vf(γS,Π(xi, xi+1)) for all i. But αi ≤ vf(γS , [0, 1]) ≤ vfV(γS).
Therefore

cvar(f, γS) ≤ vfV(γS)(cvar(f,Π(x1, x2)) + · · ·+ cvar(f,Π(xm−1, xm))).

Hence

%(γ) cvar(f, γ) ≤ %(γ) cvar(f, γS)

≤ %(γS) vfV(γS)(cvar(f,Π(x1, x2)) + · · ·+ cvar(f,Π(xm−1, xm)))

≤ %V(γS) vfV(γS)(cvar(f,Π(x1, x2)) + · · ·+ cvar(f,Π(xm−1, xm)))

= cvar(f,Π(x1, xm)) ≤ cvar(f,Π(0, 1)).

.

PSfrag replacements
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Fig. 3. Idea of the proof of Proposition 3.6

The proof now follows from Lemma 3.5. Figure 3 illustrates the idea
of the proof for a curve γ ∈ ΓL. The curve γ has entry points {s1, s2, s3}
on [0, 1]. Then x1 = s1, x2 = s3 and x3 = s2. Clearly vfV(γ) = 2 and
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cvar(f, γS) ≤ 2(cvar(f, [t1, t2]) + cvar(f, [t2, t3])). Hence %(γ) cvar(f, γ) ≤
cvar(f,Π(0, 1)).

The next proposition follows easily from Proposition 3.2.

Proposition 3.7. Let σ1 ⊂ σ ⊂ C both be compact. Let f, g : σ → C
and k ∈ C. Then

(i) var(f + g, σ) ≤ var(f, σ) + var(g, σ),
(ii) var(fg, σ) ≤ ‖f‖∞ var(g, σ) + ‖g‖∞ var(f, σ),
(iii) var(kf, σ) = |k| var(f, σ),
(iv) var(f, σ1) ≤ var(f, σ).

3.3. The Banach algebra BV(σ). For f : σ → C, set ‖f‖BV(σ) = ‖f‖∞+
var(f, σ). The functions of bounded variation with domain σ are defined
to be

BV(σ) = {f : σ → C : ‖f‖BV(σ) <∞}.

Theorem 3.8. (BV(σ), ‖ · ‖BV(σ)) is a Banach algebra.

Proof. Checking that ‖ · ‖BV(σ) has the properties of an algebra norm is
straightforward. For example using Proposition 3.7 we have

‖fg‖BV(σ) = ‖fg‖∞ + var(fg, γ)

≤ ‖f‖∞‖g‖∞ + ‖f‖∞var(g, σ) + ‖g‖∞var(f, σ)

≤ ‖f‖∞‖g‖∞ + ‖f‖∞var(g, σ) + ‖g‖∞var(f, σ) + var(f, σ) var(g, σ)

= (‖f‖∞ + var(f, σ))(‖g‖∞ + var(g, σ)) = ‖f‖BV(σ)‖g‖BV(σ).

It remains to show that BV(σ) is complete. Let {fn}∞n=1 be a Cauchy
sequence in BV(σ). Fix ε > 0. By the definition of ‖ · ‖BV(σ), {fn}∞n=1

converges uniformly to a function f . Choose N1 so that n ≥ N1 implies
‖f − fn‖∞ < ε/2. Being a Cauchy sequence in BV(σ) means there exists an
N2 so that m,n > N2 implies that for all γ ∈ Γ and all {zi}ni=1 ∈ Λ(σ, γ)
we have

%(γ)
n−1∑

i=1

|(fn − fm)(zi+1)− (fn − fm)(zi)| <
ε

2
.

Let N = max{N1, N2}. Let n > N , γ ∈ Γ and {zi}ni=1 ∈ Λ(σ, γ). Then

%(γ)

n−1∑

i=1

|(fn − f)(zi+1)− (fn − f)(zi)|

= lim
m
%(γ)

n−1∑

i=1

|(fn − fm)(zi+1)− (fn − fm)(zi)| <
ε

2
.
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Hence

var(f−fn, σ) = sup
γ∈ΓL

%(γ) cvar(f − fn, γ)

= sup
γ∈ΓL

sup
{zi}ni=1∈Λ(σ,γ)

%(γ)
n−1∑

i=1

|(fn−f)(zi+1)−(fn−f)(zi)| ≤
ε

2
.

Finally, ‖f − fn‖BV(σ) = ‖f − fn‖∞ + var(f − fn, σ) ≤ ε/2 + ε/2 = ε.

These algebras respect domain inclusion in the expected manner.

Lemma 3.9. Suppose that σ1 ⊂ σ2 ⊂ C are both compact and f ∈
BV(σ2). Then ‖f |σ1‖BV(σ1) ≤ ‖f‖BV(σ2) and so f |σ1 ∈ BV(σ1).

Proof. By Proposition 3.7(iv),

‖f |σ1‖BV(σ1) = ‖f |σ1‖∞ + var(f |σ1, σ1) ≤ ‖f‖∞+ var(f, σ2) = ‖f‖BV(σ2).

3.4. Affine invariance. One of the objectives in this paper was to have
an algebra which has the same sort of affine invariance properties as C(σ).
Let f ∈ BV(σ). Define θα,β(f) : ασ + β → C by

θα,β(f)(z) = f(α−1(z − β)).

Proposition 3.10. For any α, β ∈ C, α 6= 0, the map θα,β is an iso-
metric isomorphism from BV(σ) onto BV(ασ + β).

Proof. Clearly θα,β is a linear homomorphism. Let f ∈ BV(σ) and γ ∈ Γ .
Then αγ + β ∈ Γ . Hence

cvar(f, γ, σ) = sup
{zi}ni=1∈Λ(σ,γ)

n−1∑

i=1

|f(zi+1)− f(zi)|

= sup
{wi}ni=1∈Λ(ασ+β,αγ+β)

n−1∑

i=1

|f(α−1(wi+1− β))−f(α−1(wi−β))|

= sup
{wi}ni=1∈Λ(ασ+β,αγ+β)

n−1∑

i=1

|θα,β(f)(wi+1)− θα,β(f)(wi)|

= cvar(θα,β(f), αγ + β, ασ + β).

Since %(γ) = %(αγ + β) it follows that var(θα,β(f), ασ + β) = var(f, σ).
It is clear that ‖θα,β(f)‖∞ = ‖f‖∞. Hence ‖θα,β(f)‖BV(ασ+β) = ‖f‖BV(σ).

Finally, note that (θα,β)−1 = θα−1,−α−1β.

3.5. Compositions of functions. It is possible to generalize Proposition
3.6 to the following proposition. This result allows us to conclude that many
important AC operators (such as the trigonometrically well-bounded oper-
ators) are also AC(σ) operators for some σ.
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Proposition 3.11. Let σ ⊂ R be compact. Let g ∈ BV(σ) ∩ C(σ).
Suppose that %(ι(g)) > 0. Then

‖f ◦ g‖BV(σ) ≤
1

%(ι(g))
‖f‖BV(g(σ))

for all f ∈ BV(g(σ)).

Proof. Since g ∈ C(σ) it is clear that ι(g) ∈ C(J) where J is the smallest
interval which contains σ and so %(ι(g)) makes sense. For S = {zi}ni=1 ∈
Λ(σ), set gS = Π(g(z1), . . . , g(zn)) ∈ Γ . For such S,

n−1∑

i=1

|(f ◦ g)(zi+1)− (f ◦ g)(zi)| ≤ cvar(f, gS) =
%(gS) cvar(f, gS)

%(gS)

≤ var(f, g(σ))

%(gS)
.

By Lemma 3.1 it follows that limS∈Λ(σ) %(gS) = %(ι(g)), so taking the limit
over S ∈ Λ(σ) shows that

var(f ◦ g, σ) ≤ 1

%(ι(g))
var(f, σ).

Since 0 < %(ι(g)) ≤ 1 it follows that

‖f ◦ g‖∞ = ‖f‖∞ ≤
1

%(ι(g))
‖f‖∞

and so the result follows.

3.6. Subsets of BV(σ). The above definition of BV(σ) is obviously of
limited use unless this set contains a sufficiently rich collection of functions.
We shall now look at some classes of functions which lie in BV(σ). In partic-
ular we shall see that polynomials, C∞(σ) functions and Lipschitz functions
are of bounded variation, as are characteristic functions of polygonal regions.

Given f ∈ BV(Re(σ)) define u(f) : σ → C by u(f)(x + iy) = f(x).
Similarly if g ∈ BV(Im(σ)) define v(g) : σ → C by v(g)(x+ iy) = g(y).

Lemma 3.12. The map u is a unital norm-decreasing linear homomor-
phism from BV(Re(σ)) into BV(σ). Similarly v is a unital norm-decreasing
linear homomorphism from BV(Im(σ)) into BV(σ).

Proof. The only thing not clear is that u and v are norm-decreasing. Let
f ∈ BV(Re(σ)) and let γ ∈ ΓL. Recall that Re(γ) is defined by Re(γ)(t) =
Re(γ(t)). Clearly Re(γ) ∈ ΓL. From

|u(f)(t)− u(f)(s)| = |f(Re(t))− f(Re(s))|
it follows that cvar(u(f), γ, σ) = cvar(f,Re(γ),Re(σ)). Also, using a similar
argument to that used in Proposition 3.6, we find that cvar(f,Re(γ),Re(σ))
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≤ vfV(γ) var(f,Re(γ)). Then

%(γ) cvar(u(f), γ, σ)

= %(γ) cvar(f,Re(γ),Re(σ)) ≤ %V(γ) cvar(f,Re(γ),Re(σ))

≤ %V(γ) vfV(γ) var(f,Re(γ)) = var(f,Re(γ)) ≤ var(f,Re(σ)).

Taking the supremum over all γ ∈ ΓL and using Lemma 3.5 gives the result.
The proof for v is very similar.

To show that all the polynomials are in BV(σ), it suffices to show that
the function λσ : σ → C, λσ(z) = z, lies in BV(σ). Where there is little
chance of confusion we shall write λ rather than λσ. Let P2 denote the
polynomials in z and z.

Corollary 3.13. λ, λ ∈ BV(σ).

Proof. λ = u(λRe(σ)) + iv(λIm(σ)).

Corollary 3.14. P2 ⊂ BV(σ).

Given a compact set σ ⊂ C let

Cσ = var(λ, σ).

Given γ = Π(z1, . . . , zn) ∈ ΓL we write l(γ) for the length of γ. That is,
l(γ) =

∑n−1
i=1 |zi+1 − zi|. Then l(γ) = cvar(λ, γ) and so %(γ)l(γ) ≤ Cσ. Since

σ is compact there exist z, w ∈ σ such that diam(σ) = |z − w|. In this case
diam(σ) = |z −w| = cvar(λ,Π(z, w)) ≤ var(λ, σ). In general this inequality
is strict. For example let σ = [0, 1]× [0, 1]. If γ = Π(0, 1, 1+i, i, 0) ∈ ΓL then
%(γ) = 1/2 and cvar(λ, γ) = 4. Hence diam(σ) =

√
2 < 2 = %(γ) cvar(λ, γ) ≤

var(λ, σ).
Recall that we write Lip(σ) for the Lipschitz functions with domain σ

and L(f) for the Lipschitz constant of f ∈ Lip(σ).

Lemma 3.15. Let f ∈ Lip(σ). Then var(f, σ) ≤ L(f)Cσ.

Proof. Suppose that γ ∈ Γ . Then

cvar(f, γ) = sup
{si}ni=1∈Λ(σ,γ)

n−1∑

i=1

|f(si+1)− f(si)|

≤ sup
{si}ni=1∈Λ(σ,γ)

L(f)
n−1∑

i=1

|si+1 − si| = L(f)l(γ)

and so %(γ) cvar(f, γ) ≤ L(f)%(γ)l(γ) ≤ L(f)Cσ.

Corollary 3.16. If f ∈ Lip(σ) then f ∈ BV(σ).

Corollary 3.17. Let {fn}∞n=1 ⊂ Lip(σ) and f ∈ Lip(σ). Then

lim
n→∞

‖f − fn‖Lip(σ) = 0 implies lim
n→∞

‖f − fn‖BV(σ) = 0.
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Proposition 3.18. If f ∈ BV(σ) then Re(f), Im(f) ∈ BV(σ).

Proof. For Re(f) it suffices to prove that var(Re(f), σ) ≤ var(f, σ).
This follows from the identity |Re(f)(z)−Re(f)(w)| ≤ |f(z)− f(w)|. That
Im(f) ∈ BV(σ) follows similarly.

The following shows BV(σ) is inverse closed.

Proposition 3.19. Let f ∈ BV(σ) and suppose M = infz∈σ |f(z)| > 0.
Then 1/f ∈ BV(σ).

Proof. Since
∣∣∣∣

1

f(z)
− 1

f(w)

∣∣∣∣ =

∣∣∣∣
f(w)− f(z)

f(w)f(z)

∣∣∣∣ ≤M2|f(z)− f(w)|,

we have var (1/f, σ) ≤M2 var(f, σ).

Characteristic functions of polygons are of bounded variation.

Proposition 3.20. Let A ⊂ C be a closed convex n-sided polygonal
region. Then χA∩σ ∈ BV(σ) and ‖χA∩σ‖BV(σ) ≤ n+ 1.

Proof. Clearly χA can be written as
∏n
j=1 χAj where each Ai is a half-

plane. It follows from Proposition 3.2(ii) that var(χA, σ) ≤∑n
j=1var(χAj , σ).

Lemma 3.12 and Propositions 3.10 and 3.2(iv) show that var(χAj , σ) ≤ 1
for all j and so var(χA, σ) ≤ n. The result follows.

There is, just as in the one-variable case, a severe restriction on the form
of idempotent functions in BV(σ). It is not too hard to show that if the
polygon A sits within the interior of σ then the above estimate is sharp.
Indeed, sets formed by taking a finite number of set operations involving
polygons are essentially the only sets whose characteristic functions are in
BV(σ). Making this precise is slightly delicate, since what really matters is
how the set A intersects with σ. These questions will be pursued in more
detail in [3].

If σ = J ×K is a rectangle (with sides parallel to the axes), it is natural
to ask how this new definition compares to the more classical notion (due
to Hardy and Krause) which was used by Berkson and Gillespie in their
definition of AC-operators [7]. We shall denote by BVHK(J×K) the Banach
algebra of functions on J×K which are of bounded variation in the Hardy–
Krause sense. We show in [4] that

(i) BVHK(J ×K) ⊂ BV(J ×K).
(ii) The inclusion map BVHK(J ×K) ↪→ BV(J ×K) is continuous.

(iii) If J and K are nondegenerate, then BVHK(J ×K) 6= BV(J ×K).
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4. AC(σ) for σ ⊂ C compact. From an operator-theoretic point of
view, one would like to be able to deduce structural information about an
operator T from bounds on ‖p(T )‖ for p in some small algebra of functions.
If X is reflexive and σ(T ) ⊂ R, then a bound of the form ‖p(T )‖ ≤ C‖p‖∞
is sufficient to show that T can be written as an integral with respect to a
countably additive spectral measure, whereas a weaker bound of the form
‖p(T )‖ ≤ C‖p‖AC implies that T has an integral representation with respect
to a spectral family of projections. If the spectrum is not real then it is
unrealistic to expect to be able to prove much unless the algebra contains
at least P2, the polynomials in two variables. This leads to our definition of
the absolutely continuous functions defined on a nonempty compact subset
σ of C. These form a Banach subalgebra AC(σ) of BV(σ).

In this section we look at some classes of functions in AC(σ). We show, for
example, that C∞(σ) ⊂ AC(σ). Rather surprisingly however, Example 4.13
shows that unlike the situation when σ ⊂ R, Lipschitz functions are not
necessarily absolutely continuous.

As before let σ be a nonempty compact set in the complex plane and let
J ×K be the smallest rectangle containing σ. Let AC(σ) = P2, where the
closure is taken in BV(σ) norm. By Corollary 3.14 these polynomials are all
functions of bounded variation and so this makes sense. The set AC(σ) is
then a Banach subalgebra of BV(σ). If σ = [a, b] ⊂ R then AC(σ) coincides
with the usual notion of absolute continuity. Furthermore, by Theorem 2.17,
if σ ⊂ R then this definition coincides with that in Section 2. We also get the
affine invariance properties that one would hope for. In the next theorem
θα,β is the map defined in Section 3.4.

Theorem 4.1. Let α, β ∈ C where α 6= 0. Then θα,β |AC(σ) is an iso-
metric isomorphism from AC(σ) onto AC(ασ + β).

Proof. All we need show is that if f ∈ AC(σ) then θα,β(f) ∈ AC(ασ+β).
Let {pn}∞n=1 be a sequence of polynomials approximating f in BV(σ) norm.
Then since θα,β is isometric, {θα,β ◦pn}∞n=1 is a sequence of polynomials that
approximates θα,β(f).

As one might hope, absolutely continuous functions are continuous.

Lemma 4.2. Let σ ⊂ C be compact. Then AC(σ) ⊂ C(σ).

Proof. Let f ∈ AC(σ) and let {pn}∞n=1 ⊂ P2 with limn→∞ ‖f − pn‖BV(σ)

= 0. Then by definition of the norm on BV(σ), limn→∞ ‖f − pn‖∞ = 0 and
so f ∈ C(σ)

If σ is simple enough (for example σ = {0, 1, 1/2, 1/3, . . .}) then AC(σ) =
C(σ) ∩ BV(σ), but clearly this is not the case in general.

Cross sections of absolutely continuous functions are absolutely contin-
uous functions of one variable.



Functions of bounded variation 183

Lemma 4.3. Let f ∈ AC(σ) and let γ ∈ ΓL where γ(0), γ(1) ∈ σ. Then
ι(f ◦ γ) ∈ AC([0, 1]).

Proof. There exists {pn}∞n=1 ⊂ P2 with limn→∞ ‖f−pn‖BV(σ) = 0. Then

lim
n→∞

var(ι((f − pn) ◦ γ), [0, 1]) = lim
n→∞

cvar(f − pn, γ) = 0.

But ι(pn ◦ γ) is continuous piecewise C∞([0, 1]) and hence in AC([0, 1]).
Therefore ι(f ◦ γ) ∈ AC([0, 1]).

The previous lemma does not characterize functions in AC(σ), as we
shall see in Example 4.13.

Absolutely continuous functions of one variable extend naturally to ab-
solutely continuous functions on σ. Recall that if f ∈ BV(Re(σ)) and
g ∈ BV(Im(σ)) then u(f) : σ → C is defined by u(f)(x + iy) = f(x)
and v(g) : σ → C is defined by v(g)(x+ iy) = g(y).

Proposition 4.4. The map u|AC(Re(σ)) is a norm-decreasing linear
homomorphism from AC(Re(σ)) into AC(σ). The map v|AC(Im(σ)) is a
norm-decreasing linear homomorphism from AC(Im(σ)) into AC(σ).

Proof. Consider the map u. By Lemma 3.12, u is a norm-decreasing
linear homomorphism and so it remains to show that u maps AC(Re(σ))
into AC(σ). Let f ∈ AC(Re(σ)). Then there exists {pn}∞n=1 ∈ P2 such that
limn→∞ ‖f − pn‖BV(Re(σ)) = 0. Then u(pn) ∈ P2 for all n, and

lim
n→∞

‖u(f)− u(pn)‖BV(σ) ≤ lim
n→∞

‖u(f − pn)‖BV(σ)

≤ lim
n→∞

‖f − pn‖BV(Re(σ)) = 0.

Hence u(f) ∈ AC(σ). A similar proof holds for v.

Lemma 4.5. Let σ1 ⊂ σ2 ⊂ C both be compact. If f ∈ AC(σ2) then
f |σ1 ∈ AC(σ1).

Proof. Let {pn}∞n=1 ⊂ P2 and suppose that limn→∞ ‖f − pn‖BV(σ2) = 0.
Then by Lemma 3.9, limn→∞ ‖f − pn‖BV(σ1) ≤ limn→∞ ‖f − pn‖BV(σ2) = 0.
Hence f |σ1 ∈ AC(σ1).

Since the absolutely continuous functions have been defined as the clo-
sure of the polynomials, one usually has to employ approximation arguments
to prove things about them. Often it turns out to be more convenient to use
some other dense set instead of the polynomials. Let C∞(σ) be the set of
all f :σ→C which have a C∞ extension to an open neighbourhood of σ.

Lemma 4.6. Let σ = J × K be a rectangle. If f ∈ C2(J × K) has
continuous second order derivatives then f ∈ AC(J ×K).

Proof. By the two-dimensional mean value theorem there exists {pn}∞n=1

⊂ P2 such that limn→∞ ‖f − pn‖Lip(J×K) = 0. The result now follows from
Corollary 3.17.
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Proposition 4.7. C∞(σ) is a dense subset of AC(σ).

Proof. Let f ∈ C∞(σ). By definition there exists F ∈ C∞(U), an exten-
sion of f defined on an open neighbourhood U of σ. We can then choose V
open with minimally smooth boundary (see [16, Sect. 6.3.3]) and σ⊂ V ⊂U .
Then F |V can be extended to a function, also denoted F , in C∞(J ×K).
Hence by Lemma 4.6, F ∈ AC(J ×K), and so by Lemma 4.5, f = F |σ ∈
AC(σ). The density follows from the fact that polynomials are in C∞(σ).

Proposition 4.7 enables simple proofs that absolutely continuous func-
tions are stable under simple operations.

Corollary 4.8. If f ∈ AC(σ) then Re(f), Im(f) ∈ AC(σ).

Proof. Let {pn}∞n=1 be a sequence of polynomials with the property
that limn→∞ ‖f − pn‖BV(σ) = 0. Then {Re(pn)}∞n=1 ⊂ C∞(σ). By Propo-
sition 3.18, limn→∞ ‖Re(f) − Re(pn)‖BV(σ) ≤ limn→∞ ‖f − pn‖BV(σ) = 0.
Hence Re(f) ∈ AC(σ). Similarly Im(f) ∈ AC(σ).

Corollary 4.9. If f ∈ AC(σ) and f(z) 6= 0 on σ then 1/f ∈ AC(σ).

Proof. Let {pn}∞n=1 be a sequence of polynomials approximating f in
BV(σ) norm. Let M = infz∈σ |f(z)| and Mn = infz∈σ |f(z)pn(z)|. Since σ is
closed and f is continuous it follows that M > 0. Clearly limn→∞Mn = M2.
For large enough n we have 1/pn ∈ C∞(σ). Then

lim
n→∞

∥∥∥∥
1

fpn

∥∥∥∥
∞

= lim
n→∞

M−1
n = M−2.

Also, by Proposition 3.19,

lim
n→∞

var

(
1

fpn
, σ

)
≤ lim

n→∞
M2
n var(pnf, σ) = M4 var(f2, σ) <∞.

Then

lim
n→∞

var

(
1

f
− 1

pn
, σ

)
= lim

n→∞
var

(
pn − f
pnf

, σ

)

≤ lim
n→∞

var(pn − f, σ)

∥∥∥∥
1

pnf

∥∥∥∥
∞

+ lim
n→∞

var

(
1

pnf
, σ

)
‖pn − f‖∞ = 0.

In some cases it is more convenient to work with an appropriate ana-
logue of continuous piecewise linear functions. We shall now define such an
analogue and prove that this class of functions is always dense in AC(σ). We
say that a finite partition {Ai}ni=1 is a triangulation of a rectangle J ×K if

(i) for each i, Ai is a non-degenerate (topologically) closed triangle,
(ii) for all i, j with i 6= j, int(Ai) ∩ int(Aj) = ∅,

(iii)
⋃n
i=1Ai = J ×K.

A function F : J ×K → C is said to be continuous and piecewise trian-
gularly planar if F is continuous and there is a triangulation {Ai}ni=1 such
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that for each i, F |Ai is planar. The set of continuous piecewise triangularly
planar functions with domain J ×K is denoted CTPP(J ×K). It is easy to
see that if F,G ∈ CTPP(J ×K) then there exists a triangulation {Ai}ni=1

such that F +G|Ai is planar for all i. Hence CTPP(J×K) is a vector space.

Lemma 4.10. The set CTPP(J ×K) is dense in AC(J ×K).

Proof. This follows from the two-dimensional mean value theorem. In
particular we can always approximate any polynomial by a continuous piece-
wise planar function in Lipschitz norm and hence in BV(J ×K) norm.

We say that A ⊂ σ is a triangle relative to σ if there exists A′ ⊂ J ×K
such that A′ is a topologically closed triangle and if A = A′ ∩ σ. We say
{Ai}ni=1 is a triangulation of σ if Ai ⊂ σ for all i and there exists a trian-
gulation {A′i}mi=1 of J ×K such that Ai = A′i ∩ σ for all 1 ≤ i ≤ n. We say
a function f is continuous and piecewise triangularly planar relative to σ if
f is continuous and there is some triangulation {Ai}ni=1 of σ such that f |Ai
is planar for all i. The set of continuous and piecewise triangularly planar
functions relative to σ is denoted CTPP(σ). This agrees with the previous
definition of σ = J × K. Clearly f ∈ CTPP(σ) if and only if there exists
F ∈ CTPP(J ×K) such that F |σ = f .

Lemma 4.11. The set CTPP(σ) is dense in AC(σ).

Proof. Suppose that f ∈ AC(σ) and ε > 0. Then there exists a poly-
nomial p such that ‖p − f‖BV(σ) < ε/2. Now, by Lemma 4.10 there exists
G ∈ CTPP(J ×K) such that ‖G−p‖BV(J×K) < ε/2. Thus, if g = G|σ, then
g ∈ CTPP(σ) and

‖f − g‖BV(σ) ≤ ‖f − p‖BV(σ) + ‖p− g‖BV(σ) < ε/2 + ‖G− p‖BV(J×K) < ε.

If σ ⊂ R then all Lipschitz functions are absolutely continuous. However
for σ ⊂ C it is not necessarily true that all Lipschitz functions are in AC(σ).
We show this in Example 4.13. First a technical lemma.

Lemma 4.12. Let f ∈ AC([0, 1]× [0, 1]). For η ∈ [0, 1] set

γη(t) = Π(0 + iη, 1 + iη) ∈ ΓL.
Then limη→0+ cvar(f, γη) = cvar(f, γ0).

Proof. Suppose first that p is a polynomial in two variables. Then by
Lemma 4.3,

cvar(p, γη) =

1�

0

∣∣∣∣
∂p

∂x
(x, η)

∣∣∣∣ dx.

Fix ε > 0. If η is small enough then for all x ∈ [0, 1],
∣∣∣∣
∂p

∂x
(x, η)− ∂p

∂x
(x, 0)− η ∂2p

∂x∂y
(x, 0)

∣∣∣∣ < ε.
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Hence

cvar(p, γη) =

1�

0

∣∣∣∣
∂p

∂x
(x, η)

∣∣∣∣ dx

≤
1�

0

∣∣∣∣
∂p

∂x
(x, 0)

∣∣∣∣ dx+

1�

0

η

∣∣∣∣
∂2p

∂x∂y
(x, 0)

∣∣∣∣dx+

1�

0

ε dx

= cvar(p, γ0) + η

1�

0

∣∣∣∣
∂2p

∂x∂y
(x, 0)

∣∣∣∣ dx+ ε,

so limη→0+ cvar(p, γη) ≤ cvar(p, γ0) + ε. Using a similar argument one can
show that cvar(p, γ0) ≤ limη→0+ cvar(p, γη)+ε. Therefore limη→0+ cvar(p, γη)
= cvar(p, γ0).

For arbitrary f ∈ AC([0, 1] × [0, 1]) fix ε > 0 and choose p ∈ P2 such
that ‖f − p‖BV([0,1]×[0,1]) < ε/2. Then

lim
η→0+

|cvar(f, γη)− cvar(f, γ0)| ≤ lim
η→0+

| cvar(p, γη)− cvar(p, γ0)|+ ε = ε.

We are now able to construct an example which shows that Lipschitz
functions are not necessarily absolutely continuous. This example also shows
that even though all cross sections of a function are absolutely continuous
it does not necessarily follow that the function is absolutely continuous.

Example 4.13. For each n∈N let ln = [0, 1]×{2−n}. Let hn : [0, 1]→ R
be the sawtooth function with n teeth, each of height 1 and such that hn(0)
= 0. For each n define

f

(
x,

1

2n

)
=
hn(x)

2n+1
.

Define f([0, 1]× {0}) = 0. Then f ∈ Lip(
⋃
n ln) with L(f) = 1. Now f can

be extended to a function F : [0, 1]× [0, 1]→ R such that l(F ) = 1. If γ1/n is
defined as in Lemma 4.12 then cvar(F, γ1/n) = L(F ) = 1 for all n ∈ N. But
cvar(F, γ0) = 0. Hence by Lemma 4.12, F 6∈ AC([0, 1] × [0, 1]). Also note
that for all γ ∈ ΓL where γ(0), γ(1) ∈ J×K we have ι(F ◦γ) ∈ Lip([0, 1]) ⊂
AC([0, 1]).

5. Operator theory. We shall say that an operator T ∈ B(X) is an
AC(σ) operator if it admits an AC(σ) functional calculus, that is, if there
exists a continuous Banach algebra homomorphism Ψ : AC(σ)→ B(X) such
that Ψ(1) = I and Ψ(λ) = T . It is easy to see that if T is a normal operator
on a Hilbert space, or more generally, a scalar-type spectral operator, then
T is an AC(σ(T )) operator.

As we noted in the introduction, the theory of AC(σ) operators will be
pursued more fully in [3] and [4]. There are however a few results which are



Functions of bounded variation 187

worth recording here. The first is to confirm that this theory does indeed
generalize the well-bounded theory. The “if” part of the next theorem follows
from Lemmas 3.9 and 4.5. For the converse direction, it is obvious that every
well-bounded operator is an AC(σ) operator. That one can choose σ = σ(T )
is shown in [2] or [3].

Theorem 5.1. An operator T ∈ B(X) is well-bounded if and only if it
is an AC(σ(T )) operator and σ(T ) ⊂ R.

Part of the motivation for our new definitions was to ensure that the class
of AC(σ) operators is closed under affine transformations. The following is
an immediate consequence of Theorem 4.1.

Theorem 5.2. If T ∈ B(X) is an AC(σ) operator then for all α, β ∈ C,
αT + βI is an AC(ασ + β) operator.

Berkson and Gillespie [7] defined an operator to be an AC operator
if it admits a functional calculus for the algebra of functions which are
absolutely continuous in the Hardy–Krause sense. We show in [4] that given
any rectangle J × K we have ACHK(J × K) ⊂ AC(J × K) and that the
inclusion map is continuous. An immediate consequence is the following
theorem.

Theorem 5.3. If T ∈ B(X) is an AC(σ) operator then T is an AC
operator (in the sense of Berkson and Gillespie), and hence there exist com-
muting well-bounded operators A,B ∈ B(X) such that T = A+ iB.

The converse of this theorem is false. The example from [6] of an AC
operator T such that (1 + i)T is not an AC operator is also an example of
an AC operator which is not an AC(σ) operator (for any σ).

One of the most important subclasses of AC operators has been the
family of trigonometrically well-bounded operators. The following result is a
consequence of Proposition 3.11 and the definition of being trigonometrically
well-bounded [8].

Theorem 5.4. Every trigonometrically well-bounded operator is an
AC(T) operator.

It is true, but slightly delicate to prove, that the norm on BV(T) is equiv-
alent to the natural one introduced in [8]. Consequently, on reflexive Banach
spaces, AC(T) operators are precisely trigonometrically well-bounded oper-
ators. Details will appear in [3] and [4].
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