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Approximate weak amenability, derivations
and Arens regularity of Segal algebras

by

Fereidoun Ghahramani (Winnipeg) and
Anthony To-Ming Lau (Edmonton)

Abstract. We continue our study of derivations, multipliers, weak amenability and
Arens regularity of Segal algebras on locally compact groups. We also answer two questions
on Arens regularity of the Lebesgue–Fourier algebra left open in our earlier work.

0. Introduction. In [9] we studied derivations, weak amenability and
Arens regularity of certain classes of Segal algebras on locally compact
groups and in particular we showed that every symmetric Segal algebra
S(G) on an amenable SIN group is approximately weakly amenable, i.e., for
every continuous derivation D : S(G)→ S(G)∗, there is a net (ϕi) ⊂ S(G)∗

such that
D(f) = lim

i→∞
[f · ϕi − ϕi · f ] (f ∈ S(G)).

In this paper we continue our study of derivations, multipliers, weak amen-
ability and Arens regularity of Segal algebras and in particular we show
that a symmetric Segal algebra S(G) is approximately weakly amenable if
one only assumes that G is a SIN group or an amenable group. We show
that if G is amenable and S(G) is a symmetric Segal algebra, then for every
Banach L1(G)-bimodule X, continuous derivations from S(G) into X are
approximately inner. Alternatively, continuous derivations from S(G) into
X∗ are precisely the ones defined by continuous double centralizers.

In [9] we also showed that the Lebesgue–Fourier algebra of a compact
(discrete) group G is Arens regular for the convolution (resp. pointwise)
product. Here we prove the converse to these results, provided that G is
unimodular in the first case, and for all groups in the second case. Thus we
answer two questions left open in [9].

For a compact group G, we determine the space Z1(S(G),X) of continu-
ous derivations from S(G) into X, where S(G) is one of the naturally arising
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Segal algebras (C(G), ∗), (Lp(G), ∗), 1 ≤ p ≤ ∞, or (A(G), ∗) where ∗ stands
for the convolution product and X is a naturally arising S(G)-module. Along
the way we determine all the left (right) multipliers from S(G) into X. Fi-
nally, we find necessary conditions for S(G) to be Arens regular; these con-
ditions are sometimes sufficient as well. We also find necessary and sufficient
conditions for S(G) to be an ideal in its second dual space, when the latter
is equipped with the first or the second Arens product.

Our interest in (co)homological properties of Segal algebras stemmed
from our study of the Lebesgue–Fourier algebra LA(G) (see Preliminaries
for definition and [9] for further properties) at a time when it was proved by
H. G. Dales and S. S. Pandey that certain Segal algebras on abelian locally
compact groups are weakly amenable [4]. As pointed out in [4] a proper Segal
algebra can never be amenable, since it cannot have a bounded approximate
identity. However it is our opinion that Segal algebras provide good examples
for generalized notions of amenability that are recently being developed. For
example, it has been shown by the first named author and R. J. Loy that
every symmetric Segal algebra on an amenable group is essentially amenable
([10, Corollary 7.1]).

We thank the referee for his/her many valuable suggestions.

1. Preliminaries. Throughout this paper, G will denote a locally com-
pact group with a fixed left Haar measure. Given a function f on G, the left
(right) translation of f by x ∈ G will be denoted by (`xf)(y) = f(xy) (resp.
(rxf)(y) = f(yx)), y ∈ G. The standard Lebesgue spaces with respect to
the left Haar measure will be denoted by Lp(G), 1 ≤ p ≤ ∞; CB(G) will
denote the space of all bounded continuous complex-valued functions on G
with the supremum norm, and UC(G) the space of bounded uniformly con-
tinuous functions on G, i.e. all f ∈ CB(G) such that the maps x 7→ `xf
and x 7→ rxf from G into CB(G) are continuous; WAP(G) will be the space
of continuous weakly almost periodic functions on G, i.e. all f ∈ CB(G)
such that {`xf : x ∈ G} is relatively weakly compact in CB(G); C0(G) the
closed subspace of CB(G) consisting of functions vanishing at infinity; and
Cc(G) the dense subspace of C0(G) consisting of functions with compact
support.

Let A(G) be all functions u in C0(G) of the form u(x) = 〈%(x)h, k〉,
with h, k ∈ L2(G) and %(x)h(y) = h(x−1y), x, y ∈ G, where 〈 , 〉 denotes
the inner product of L2(G). Then A(G) may be identified with the unique
predual of VN(G), the von Neumann algebra on L2(G) generated by {%(x) :
x ∈ G}. Then, as is well known, A(G) with the predual norm and pointwise
multiplication is a commutative Banach algebra with spectrum G (see [7]
for details).
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Convolution product of two functions f and g on G is defined by

(f ∗ g)(x) =
�

G

f(y)g(y−1x) dλ(y),

whenever the integral exists. Then L1(G) is a Banach algebra with convo-
lution product, called the group algebra of G. If G is compact, then Lp(G),
1 ≤ p ≤ ∞, and C(G) are also Banach algebras with convolution product.
When G is abelian, A(G) is isometrically and algebraically isomorphic to

L1(Ĝ), where Ĝ is the dual group of G.
A linear subspace S(G) of the convolution group algebra L1(G) of a

locally compact group G is said to be a Segal algebra if it satisfies the
following conditions:

(i) S(G) is dense in L1(G);
(ii) S(G) is a Banach space under some norm ‖ · ‖S and ‖f‖S ≥ ‖f‖1

for all f ∈ S(G);
(iii) S(G) is left translation invariant, i.e. ‖`xf‖S = ‖f‖S for all x ∈ G

and f ∈ S(G), and the map x 7→ `xf from G into S(G) is continu-
ous.

A Segal algebra S(G) is symmetric if it is right translation invariant, and
for each f ∈ S(G), ‖rxf‖S = ‖f‖S for all x ∈ G, and the map x 7→ rxf from
G into S(G) is continuous. Note that the symmetric Segal algebras include
all Segal algebras on locally compact abelian groups. Also, every symmetric
Segal algebra is a two-sided ideal in L1(G) and has an approximate identity
which is self-adjoint with each term having L1-norm equal to 1. The proof
of these results and other basic properties of Segal algebras can be found in
[22] and [23]. The necessary background on (weak) amenability of Banach
algebras can be found in [3].

We recall from [9] that the Lebesgue–Fourier algebra LA(G) of a locally
compact group G is LA(G) = L1(G) ∩ A(G), where

|||f ||| = ‖f‖1 + ‖f‖A(G) (f ∈ LA(G))

and where the product is the convolution product. As shown in [9], pointwise
product also provides a Banach algebra structure on LA(G).

Let A be a Banach algebra and X be a Banach A-module. A derivation
D from A into X is approximately inner if there is a net (xi) ⊂ X such that

D(a) = lim
i→∞

[a · xi − xi · a] (a ∈ A).

The Banach algebra A is approximately amenable if every continuous deriva-
tion D : A→ X∗ is approximately inner for all Banach A-bimodules X, and
A is approximately weakly amenable if the above holds for X = A. The Ba-
nach algebra A is weak∗ approximately weakly amenable if the limit exists
in the weak∗ topology of A∗ (see [10] for more on these concepts).
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2. Approximate weak amenability of Segal algebras. A locally
compact group G is called a SIN group if there is a basis for the neighbour-
hood of the identity of e consisting of compact sets U such that xUx−1 = U
for all x ∈ G. Examples of SIN groups include all discrete groups, abelian
groups and compact groups. All SIN groups are unimodular.

Theorem 2.1. Suppose that S(G) is a symmetric Segal algebra on a SIN
group G. Then:

(i) S(G) is approximately weakly amenable.
(ii) For every continuous derivation D : S(G) → S(G) there is a net

(µi) ⊂M(G) such that D(f) = limi→∞[f ∗ µi − µi ∗ f ].

Proof. (i) Since G is SIN, L1(G) has a central bounded approximate
identity (ei) such that it is an approximate identity for S(G) (see [20]).

Fix ei and let n ∈ S(G)∗. Then for f ∈ S(G) we have

|〈ei · n, f〉| = |〈n, f ∗ ei〉| ≤ ‖n‖S(G)∗‖f ∗ ei‖S(G) ≤ ‖f‖1‖ei‖S(G)‖n‖S(G)∗ .

Hence ei · n is continuous on (S(G), ‖ · ‖1) and so it has a unique extension
to an element of L1(G)∗ which we denote by (ei · n)−.

Let D : S(G) → S(G)∗ be a continuous derivation. We define Di :
L1(G)→ S(G)∗ by

(1) Di(f) = D(ei ∗ f)−D(ei) · f (f ∈ L1(G)).

Then Di is a derivation (see the proof of Theorem 3.1 in [9]).
Now we define the mapping ∆i : L1(G)→ L1(G)∗ by

(2) ∆i(f) = (ei ·Di(f))− (f ∈ L1(G)).

Since Di is a derivation and (ei) is central, ∆i is a derivation from L1(G)
into L1(G)∗. Hence by weak amenability of L1(G) (see [5] or [19]), there is
ψi ∈ L1(G)∗ such that

(3) ∆i(f) = f · ψi − ψi · f (f ∈ L1(G)).

Let ϕi = ψi|S(G). Then ϕi ∈ S(G)∗, since the L1-norm is dominated by the
S(G)-norm.

From (1)–(3) for f ∈ S(G) we have

ei ·D(ei ∗ f)− eiD(ei) · f = f · ϕi − ϕi · f (f ∈ S(G)),

or

(4) e2
i ·D(f) = f · ϕi − ϕi · f (f ∈ S(G)).

Now we note that (e2
i ) is an approximate identity for S(G). In fact, for

f ∈ S(G),

‖f ∗ e2
i − f‖S(G) = ‖f ∗ e2

i − f ∗ ei‖S(G) + ‖f ∗ ei − f‖S(G)

≤ ‖f ∗ ei − f‖S(G)‖ei‖L1(G) + ‖f ∗ ei − f‖S(G) → 0.
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Hence from (4) we get

(5) D(f) = weak∗- lim
i→∞

[f · ϕi − ϕi · f ].

This, in particular, shows that D(e2
i ) = 0, since (ei) is central. Thus (4)

implies that
D(e2

i ∗ f) = f · ϕi − ϕif (f ∈ S(G))

and so
D(f) = norm- lim

i→∞
[f · ϕi − ϕi · f ] (f ∈ S(G)).

Hence S(G) is approximately weakly amenable.
(ii) Suppose that G is SIN and S(G) is symmetric and D : S(G)→ S(G)

is a continuous derivation. Let (ei) be a central approximate identity for
S(G), as in the proof of part (i). We define Di : L1(G)→ S(G) ⊂ L1(G) by

Di(f) = D(ei ∗ f)−D(ei) ∗ f.
By using strong operator topology it can be shown that each Di is a deriva-
tion. From [18, Proposition 4.1] or [11, p. 366] there is µi ∈M(G) such that
Di(f) = f ∗ µi − µi ∗ f. In particular, for f ∈ S(G) we have

ei ∗D(f) = f ∗ µi − µi ∗ f.
Hence

D(f) = norm- lim
i→∞

[f ∗ µi − µi ∗ f ] (f ∈ S(G)).

Remark 2.2. It was pointed out to us by the referee that an abstract
version of Theorem 2.1(i) is also true: Let A be a weakly amenable Banach
algebra and let B be an abstract Segal subalgebra of A such that B has
a central approximate identity. Then B is approximately weakly amenable.
The proof follows exactly that of Theorem 2.1.

Remark 2.3. Let G be an infinite non-abelian compact group. It is
shown in [9, Remark 3.2] that the convolution Segal algebra L2(G) is not
weakly amenable. Thus in general the conclusion of Theorem 2.1 is the best
that one can get.

Remark 2.4. It follows from [8] and Theorem 3.3 in [9] that if G is
a totally disconnected amenable locally compact group, then LA(G) with
pointwise multiplication is weakly amenable.

Remark 2.5. It was shown in [9] that for any locally compact group,
LA(G) with convolution product is amenable if and only if G is discrete and
amenable.

3. Derivations from Segal algebras on amenable groups. Suppose
that X is a Banach A-bimodule. An operator T : A→ X is a left multiplier
if T (ab) = T (a)·b (a, b ∈ A). Right multipliers are defined similarly. Suppose
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that T is a right multiplier and S is a left multiplier. Then the pair (S, T )
is a double centralizer if

a · S(b) = T (a) · b (a, b ∈ A).

It is easily verified that when (S, T ) is a double centralizer, D = S − T :
A→ X is a derivation.

We recall from [18] that for a Banach algebra A, a Banach A-bimodule
X is neo-unital if A ·X = X ·A = X.

Theorem 3.1. Let G be an amenable group, and let S(G) be a sym-
metric Segal algebra on G. Suppose that X is a Banach L1(G)-bimodule.
Then:

(i) For every continuous derivation D : S(G)→ X∗ there is a continu-
ous double centralizer (S, T ) such that D = S − T.

(ii) Every continuous derivation from S(G) into X is approximately in-
ner.

Proof. (i) First we note that if A is a Banach algebra with an approx-
imate identity (ei), and X is a Banach A-bimodule such that the left (or
right) action of A on X is trivial, i.e., a · x = 0 (resp. x · a = 0) for every
a ∈ A, x ∈ X, then every continuous derivation D : A→ X is approximately
inner. In fact if the left action is trivial, then for every a ∈ A,

D(a) = lim
i→∞

D(ei ∗ a) = lim
i→∞

[D(ei) · a+ ei ·D(a)]

= lim
i→∞

D(ei)a = lim
i→∞

[D(ei) · a− a ·D(ei)].

Now suppose that X is a Banach L1(G)-bimodule and D : S(G) →
X∗ is a continuous derivation. Let X1 = L1(G) · X · L1(G). Then by Co-
hen’s factorization theorem X1 is a neo-unital Banach submodule of X. By
arguments similar to the ones in [18, p. 15] we can write X∗ as the direct
sum of three submodules one of which is isomorphic to the dual L1(G)-
module X∗1 , whereas the action of L1(G) on one side of the other two is
trivial. Furthermore, the projection of X∗ on each of these submodules is an
L1(G)-module morphism. Hence we can writeD = D1+D2+D3, where D1 ∈
Z1(S(G),X∗1 ), whereas D2 and D3 are approximately inner derivations. So,
without loss of generality we can assume that X is a neo-unital Banach
L1(G)-bimodule.

Let Mul be the Banach space of all continuous left multipliers from S(G)
into X∗. We can make Mul into a Banach S(G)-bimodule by defining the
right and left actions of S(G) on Mul by

(f · T )(g) = f · T (g), (T · f)(g) = T (f ∗ g) (f, g ∈ S(G), T ∈ Mul).

Suppose D : S(G) → X∗ is a continuous derivation. We can extend D to a
continuous derivation D : L1(G)→ Mul , where D(f)(g) = D(f ∗g)−f ·D(g)
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(f ∈ L1(G), g ∈ S(G)) (see [9, Lemma 4.2]). Hence, from amenability
of L1(G), there is a bounded net (Tj) ⊂ Mul such that

D(f) = lim
j→∞

(f · Tj − Tj · f) (f ∈ L1(G))

([12, Proposition 2.1]). Let T be a cluster point of (Tj) in the weak∗-operator
topology. Then

D(f) = f · T − T · f (f ∈ L1(G)).

Let (ei) be a bounded approximate identity for L1(G) such that it is also
an approximate identity for S(G). Now for f ∈ S(G) we have

D(f)(ei) = f · T (ei)− T (f ∗ ei).
Hence

D(f ∗ ei)− f ·D(ei) = f · T (ei)− T (f ∗ ei),
or

ei ·D(f) = f · T (ei)− T (f ∗ ei).
Therefore

(1) D(f) = weak∗- lim
i→∞

f · T (ei)− T (f).

Now it is easily seen that S : f 7→ weak∗- limi→∞ f · T (ei) is a continuous
right multiplier. Furthermore,

S(f) · g = weak∗- lim
i→∞

f · T (ei) · g = weak∗- lim
i→∞

f · T (ei ∗ g)

= f · T (g) (f, g ∈ S(G)).

Obviously, S is continuous, since D and T are so. Hence D = S − T for the
double centralizer (S, T ).

(ii) First suppose that D ∈ Z1(S(G),X∗∗). Then from equation (1)
above we have

D(f) = weak∗- lim
i→∞

[f · T (ei)− T (ei · f)] = weak∗-lim
i

[f · x∗∗i − x∗∗i · f ],

where x∗∗i = T (ei).
Now if D ∈ Z1(S(G),X), then we have D ∈ Z1(S(G),X∗∗), through

the canonical embedding of X into X∗∗. Hence by the first case there is a
net (x∗∗i ) ⊂ X∗∗ such that

D(f) = weak∗- lim
i→∞

[f · x∗∗i − x∗∗i · f ] (f ∈ S(G)).

Now it is standard that by using Goldstine’s theorem and taking convex
combinations we can find a net (xi) ⊂ X, such that

D(f) = norm- lim
i→∞

[f · xi − xi · f ] (f ∈ S(G)).

Examples 3.2. There is a multitude of examples covered by Theo-
rem 3.1. Let G be a unimodular amenable group. Then for any S(G),
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X can be taken to be any of the spaces Lp(G), 1 ≤ p <∞, L1(G) ∩ Lp(G),
1 ≤ p < ∞, LUC(G), RUC(G), UC(G), WAP(G), A(G), where the right
and left actions of S(G) on X are defined by convolution.

Corollary 3.3. Let G be an amenable group. Then every symmetric
Segal algebra S(G) on G is approximately weakly amenable.

Proof. This follows from part (ii) of Theorem 3.1 with X = S(G)∗.

Remark 3.4. The referee has also pointed out that an abstract version
of Theorem 3.1 is valid: Let A be an amenable Banach algebra, let B be an
abstract Segal subalgebra of A and let X be a Banach A-bimodule. Then:

(i′) For every continuous derivation D : B → X∗ there is a continuous
double centralizer (S, T ) such that D = S − T.

(ii′) Every continuous derivation from B into X is approximately inner.
(iii′) B is approximately weakly amenable.

The proof of these is the same as that of Theorem 3.2.

4. Derivations and multipliers from Segal algebras on compact
groups. In [9], for a compact group G, we characterized all the derivations
from the convolution algebra A(G) into A(G). Here, for a compact group G,
we consider the convolution algebras C(G), A(G), VN(G), M(G) and Lp(G),
1 ≤ p ≤ ∞, and attempt to describe continuous derivations from A into B,
where A and B are chosen from among the above algebras provided that B
is naturally a Banach A-bimodule. In all the cases, the description of the
continuous multipliers from A into B plays an important rôle in identifying
the derivations.

In the following theorem Mul `(A,X) stands for the space of all continu-
ous left multipliers from A into X, and a subscript r signifies right multipli-
ers. Many of the parts of the theorem are proved in [17, Chapter IX, §35].
Here we provide new proofs for the known ones; our proofs are considerably
shorter. We also provide proofs for the previously unknown parts.

Theorem 4.1. Let G be a compact group. Let 1 ≤ p <∞ and q be the
conjugate exponent to p. Then:

(i) Mul `(L
p(G), C(G)) ∼= Mulr(L

p(G), C(G)) ∼= Lq(G).
(ii) Mul `(L

p(G), L∞(G)) ∼= Mulr(L
p(G), L∞(G)) ∼= Lq(G).

(iii) Mul `(L
∞(G), C(G)) ∼= Mulr(L

∞(G), C(G)) ∼= L1(G).
(iv) Mul `(C(G), C(G)) ∼= Mulr(C(G), C(G)) ∼= M(G).
(v) Mul `(C(G), L∞(G)) ∼= Mulr(C(G), L∞(G)) ∼= M(G).

(vi) Mul `(L
∞(G), L∞(G)) ∼= Mulr(L

∞(G), L∞(G)) ∼= M(G).
(vii) Mul `(L

2(G), L2(G)) ∼= Mulr(L
2(G), L2(G)) ∼= VN(G).

(viii) Mul `(A(G), C(G)) ∼= Mulr(A(G), C(G)) ∼= VN(G).
(ix) Mul `(A(G), L∞(G)) ∼= Mulr(A(G), L∞(G)) ∼= VN(G).
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(x) Let Σ be the set of all (equivalence classes of) irreducible unitary
representations of G, and for σ ∈ Σ, let dσ be the dimension of the
Hilbert space which is the range of σ. If sup{dσ : σ ∈ Σ} <∞, then

Mul `(A(G),VN(G)) = Mul r(A(G),VN(G)) = VN(G)

and

Mulr(C(G),M(G)) ∼= Mul `(C(G),M(G)) ∼= VN(G).

(xi) In each of the cases above the space of continuous double centraliz-
ers coincides with the space of continuous left or right multipliers.

Proof. We prove the results only in the case of left multipliers. Similar
proofs can be given in the case of right multipliers.

(i) Suppose that T ∈ Mul `(L
p(G), C(G)). The space Lq(G) is a Banach

M(G)-bimodule when the right and left actions are defined by convolution.
It is easily seen that T ∗ : M(G) → Lq(G) is a left multiplier, and so, as
M(G) is unital, there is g ∈ Lq(G) such that T ∗(µ) = g ∗ µ (µ ∈ M(G)).
Now for f ∈ Lp(G) and µ ∈M(G) we have

〈T (f), µ〉 = 〈f, T ∗(µ)〉 = 〈f, g ∗ µ〉 = 〈ǧ ∗ f, µ〉,
where ǧ(x) = g(x−1) (x ∈ G). Hence

T (f) = ǧ ∗ f (f ∈ Lp(G)).

(ii) Let T ∈ Mul `(L
p(G), L∞(G)), and let (ei) be an approximate identity

for Lp(G). Then

T (f) = lim
i→∞

T (ei ∗ f) = lim
i→∞

T (ei) ∗ f ∈ C(G).

Hence the result follows from (i).
(iii) Let T ∈ Mul `(L

∞(G), C(G)). The Banach space L1(G)∗∗ is a Ba-
nach M(G)-bimodule since L1(G) is a Banach M(G)-bimodule with actions
defined by convolution. The operator T ∗ : M(G)→ L1(G)∗∗ is a left multi-
plier. In particular T ∗|L1(G) : L1(G)→ L1(G)∗∗ is a left multiplier. Let (ei)
be a bounded approximate identity for L1(G). For every f ∈ L1(G) we have
T (f) = norm- limi→∞ T (ei) ∗ f ∈ L1(G), since L1(G) is an ideal in L1(G)∗∗.
Hence T ∗ restricts to a left multiplier from L1(G) into L1(G). Thus by Wen-
del’s characterization of multipliers of L1(G), there is a measure µ ∈M(G)
such that T ∗(f) = µ ∗ f for every f ∈ L1(G). Now for g ∈ L∞(G) and
f ∈ L1(G) we have

〈T (g), f〉 = 〈g, T ∗f〉 = 〈g, µ ∗ f〉 = 〈µ̌ ∗ g, f〉 ,
where µ̌ is the measure defined by

〈µ̌, ϕ〉 = 〈µ, ϕ̌〉 (ϕ ∈ C(G)).

Hence T (g) = µ̌ ∗ g (g ∈ L∞(G)). Since T maps into C(G), we conclude
from [16, V.19.27] that µ ∈ L1(G).
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(iv) Similar to (i).
(v) Let T ∈ Mul ` (C(G), L∞(G)). Let (ei) be an approximate identity

for C(G). Then for f ∈ C(G), T (f) = limi→∞ T (ei) ∗ f ∈ C(G), and the
result follows from (iv).

(vi) Let T ∈ Mul `(L
∞(G), L∞(G)). By (v) there is a measure µ ∈M(G)

such that T (f) = µ ∗ f for all f ∈ C(G). The relation T (f ∗ g) = T (f) ∗ g,
which is valid for f, g ∈ L∞(G), can be extended to hold for all g ∈ L1(G),
by continuity and since L∞(G) is dense in L1(G).

Now for f ∈ L∞(G) and g1, g2 ∈ L1(G),

〈T (f), g1 ∗ g2〉 = 〈T (f) ∗ ǧ2, f1〉 = 〈T (f ∗ ǧ2), g1〉 = 〈µ ∗ f ∗ ǧ2, g1〉
= 〈µ ∗ f, g1 ∗ g2〉,

and we have the result since L1(G) factorizes.
(vii) For n ∈ VN(G), let λn be an operator on L2(G), given by the

duality 〈λn(f), g〉2 = 〈n, f ∗ g〉, where the last number stands for the value
of n ∈ A(G)∗ at f ∗ g ∈ A(G). It is readily seen that λn is a left multiplier.

For the converse suppose that T ∈ Mul ` (L2(G), L2(G)). We define an

operator T̃ : A(G)→ A(G) by

(1) T̃ (h) = T (f) ∗ ǧ if h = f ∗ ǧ
for some f, g ∈ L2(G). We notice that T̃ is well defined since the right hand
side can be written as limi→∞ T (ei) ∗ f ∗ ǧ = limi→∞ T (ei) ∗ h, where (ei)
is an approximate identity for L2(G). Now from [9, Theorem 5.2] there is

n ∈ VN(G) such that T̃ (h) = n · h (h ∈ A(G)). Hence from equation (1) we
have

(2) T (f) ∗ ǧ = n · (f ∗ ǧ).

By letting g = ěi and taking norm limits, we obtain T (f) = n · f.
(viii) Similar to (iii).
(ix) Let T ∈ Mul ` (A(G), L∞(G)). By using an approximate identity of

A(G) we see that T maps into C(G). Hence the result follows from (viii).
(x) It is shown in [17] that under the stated condition, Mul `(L

2(G),
VN(G)) = VN(G). Suppose T ∈ Mul `(A(G),VN(G)). Define an operator

T̃ : L2(G)→ Mul(L2(G),VN(G)) = VN(G) by

T̃ (f)(g) = T (f ∗ g) (g ∈ L2(G)).

There is an n ∈ VN(G) such that T̃ (f) = n · f. Hence T (f ∗ g) = n · (f ∗ g),
for f, g ∈ L2(G) and we have the result, since A(G) = L2(G) ∗ L2(G).

To prove the second part, first we notice that to every n ∈ VN(G)
and f ∈ C(G), we can associate an element n · f ∈ M(G), specified by
〈n · f, g〉 = 〈n, f ∗ g〉, where the last pairing is (VN(G), A(G)) dual pairing.
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We notice that since

|〈n, f ∗ g〉| ≤ ‖n‖ ‖f ∗ g‖ ≤ ‖n‖ ‖f‖2 ‖g‖2 ≤ ‖n‖ ‖f‖C(G) ‖g‖C(G),

the element n ·f as defined above is a continuous functional on C(G). Hence
f 7→ n · f is a multiplier from C(G) into M(G).

For the converse, suppose that T ∈ Mul ` (C(G),M(G)). Then T |A(G)
is a multiplier from A(G) to M(G) ↪→ VN(G). By the first part there is
n ∈ VN(G) such that T (f) = n ·f for all f ∈ A(G), and since A(G) is dense
in C(G), this holds for all f ∈ C(G).

(xi) We prove this only in the case of double centralizers from Lp(G) into
C(G). The proofs of the other cases follow similar lines. So let (S, T ) be a
continuous double centralizer from C(G) into Lp(G). Then by (1) there are
f1, f2 ∈ Lq(G) such that g1 ∗ f1 ∗ g2 = g1 ∗ f2 ∗ g2 (g1, g2 ∈ C(G)). By using
an approximate identity we obtain f1 = f2.

Theorem 4.2. Let G be a compact group, 1 ≤ p < ∞ and q be the
conjugate exponent to p. Then:

(i) D ∈ Z1(Lp(G), L∞(G)) if and only if there is g ∈ Lq(G) such that
D(f) = f ∗ g − g ∗ f (f ∈ Lp(G)).

(ii) D ∈ Z1(Lp(G), C(G)) if and only if there is g ∈ Lq(G) such that
D(f) = f ∗ g − g ∗ f (f ∈ Lp(G)).

(iii) D ∈ Z1(L∞(G), C(G)) if and only if there is g ∈ L1(G) such that
D(f) = f ∗ g − g ∗ f (f ∈ L∞(G)).

(iv) D ∈ Z1(C(G), C(G)) if and only if there is µ ∈ M(G) such that
D(f) = f ∗ µ− µ ∗ f (f ∈ C(G)).

(v) D ∈ Z1(C(G), L∞(G)) if and only if there is µ ∈ M(G) such that
D(f) = f ∗ µ− µ ∗ f (f ∈ C(G)).

(vi) D ∈ Z1(L∞(G), L∞(G)) if and only if there is µ ∈M(G) such that
D(f) = f ∗ µ− µ ∗ f (f ∈ L∞(G)).

(vii) D ∈ Z1(L2(G), L2(G)) if and only if there is n ∈ VN(G) such that
D(f) = f · n− n · f (f ∈ L2(G)).

(viii) D ∈ Z1(A(G), C(G)) if and only if there is n ∈ VN(G) such that
D(f) = f · n− n · f (f ∈ A(G)).

(ix) D ∈ Z1(A(G), L∞(G)) if and only if there is n ∈ VN(G) such that
D(f) = f · n− n · f (f ∈ A(G)).

(x) Furthermore, if sup{dσ : σ ∈ Σ} <∞, then D ∈ Z1(A(G),VN(G))
if and only if there is n ∈ VN(G) such that D(f) = f · n − n · f
(f ∈ A(G)), and D ∈ Z1(C(G),M(G)) if and only if there is
n ∈ VN(G) such that D(f) = f · n− n · f (f ∈ C(G)).

Proof. Parts (i), (v), (vi), (vii), (ix) and (x) follow from part (i) of The-
orem 3.1 and from Theorem 4.1. Then we have (ii), (iv), (vii) since (i)⇒(ii),
(v)⇒(iv) and (vii)⇒(viii). Now to prove (vi), let D ∈ Z1(L∞(G), L∞(G)).
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By (v) there is µ ∈M(G) such that for every f ∈ C(G), D(f) = f ∗µ−µ∗f.
To prove (iii), let f ∈ L∞(G), g1, g2 ∈ C(G). Then

〈D(f), g1 ∗ g2〉 = 〈D(f) · g1, g2〉 = 〈ǧ1 ∗D(f), g2〉
= 〈D(ǧ1 ∗ f)−D(ǧ1) ∗ f, g2〉
= 〈ǧ1 ∗ f ∗ µ− µ ∗ ǧ1 ∗ f − ǧ1 ∗ µ ∗ f + µ ∗ ǧ1 ∗ f, g2〉
= 〈f ∗ µ− µ ∗ f, g1 ∗ g2〉 .

Hence D(f) = f ∗ µ− µ ∗ f, since C(G) ∗ C(G) is dense in L1(G).

5. Arens regularity of LA(G). The second dual space A∗∗ of a Banach
algebra A can be equipped with two Banach algebra products, called first
and second Arens products, each of which extends the original product of A
as canonically embedded in A∗∗. The Banach algebra A is Arens regular if
the two Arens products on A∗∗ coincide ([6], [3]). A condition equivalent to
Arens regularity of A due to J. S. Pym is that for every f ∈ A∗, the operator
a 7→ a · f : A→ A∗ is weakly compact [6]. Here a · f ∈ A∗ is defined by

〈a · f, b〉 = 〈f, ba〉 (b ∈ A)

(see [6]).

Theorem 5.1. Suppose that S(G) is a symmetric Segal subalgebra of
L1(G). Then:

(i) Arens regularity of S(G) is sufficient but not necessary for G to be
compact.

(ii) Let G be unimodular. Then LA(G) is Arens regular if and only if G
is compact.

Proof. (i) We denote the norm on S(G) by ‖·‖S. Take f ∈ UC(G). Since
for every g ∈ S(G),

|〈f, g〉| =
∣∣∣

�

G

f(x)g(x) dx
∣∣∣ ≤ ‖f‖∞‖g‖1 ≤ ‖f‖∞‖g‖S,

we can view f as an element of S(G)∗, through integration. Let (ei) be a
bounded approximate identity for L1(G) such that it is also an approximate
identity for S(G). Fix ei. For g ∈ L1(G) we have ‖g ∗ ei‖S ≤ ‖g‖1‖ei‖S and
so the set {g ∗ ei : ‖g‖1 ≤ 1} is bounded in S(G). Hence by our assumption
on Arens regularity of S(G), the set {(g ∗ ei) · f : ‖g‖1 ≤ 1} has weakly
compact closure in S(G)∗. The operator Ti : f 7→ f · ei from S(G)∗ into
L1(G)∗ is continuous, since for every g ∈ L1(G),

|〈f · ei, g〉| = |〈f, ei ∗ g〉| ≤ ‖f‖ ‖ei ∗ g‖S ≤ ‖f‖ ‖ei‖S ‖g‖1.
Hence the set {(g ∗ ei) · f · ei : ‖g‖1 ≤ 1} has weakly compact closure in
L∞(G). This means that ei ·f ·ei is a weakly almost periodic function on G.
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We also have f = limi→∞ ei ·f ·ei, since UC(G) = L1(G)∗UC(G)∗L1(G).
Thus f ∈WAP(G). Hence WAP(G) = UC(G) and so G is compact [13].

To show that the converse is not true, we let G be an infinite compact
group and we consider S(G) = L1(G), which is not Arens regular [25].

(ii) If G is unimodular, LA(G) is a symmetric Segal algebra. Hence the
result follows from part (i) and [9, Theorem 6.2].

If G is a locally compact group, let UC(Ĝ) denote the closed linear
span of {u · T : u ∈ A(G) and T ∈ VN(G)}. When G is amenable, then

UC(Ĝ) = A(G) · VN(G) by Cohen’s factorization theorem as shown by

Granirer [13]. When G is abelian, UC(Ĝ) is precisely the space of bounded

uniformly continuous functions on the dual group Ĝ. Let WAP(Ĝ) denote
the set of all T ∈ VN(G) such that {u · T : u ∈ A(G), ‖u‖ ≤ 1} is relatively

compact in the weak topology of VN(G). When G is abelian, WAP(Ĝ) is

the space of continuous weakly almost periodic functions on Ĝ.

Theorem 5.2. Let G be a locally compact group. Then LA(G) with
pointwise multiplication is Arens regular if and only if G is discrete.

Proof. The “if” part is proved in [9, Proposition 6.1]. For the converse,

we will show that if LA(G) is Arens regular, UC(Ĝ) = WAP(Ĝ). Then G
must be discrete by using [13] and [14]. Since LA(G) is norm dense in A(G),

it suffices to show that if v ∈ LA(G), T ∈ VN(G), then S = v ·T ∈WAP(Ĝ).
We may view S as an element of LA(G)∗.

Let ||| · ||| denote the norm in LA(G). Then since

|||uv||| ≤ ‖u‖ |||v|||,
the set {uv : ‖u‖ ≤ 1, u ∈ A(G)} is a norm bounded subset of LA(G).
So {u · S : ‖u‖ ≤ 1, u ∈ A(G)} is relatively weakly compact in LA(G)∗ by
Arens regularity of LA(G). Consider now the map Π : LA(G)∗ → VN(G)
defined by Π(T ) = v · T. Then for u ∈ A(G), we have

|〈v · T, u〉| = |〈T, vu〉| ≤ ‖T‖LA(G)∗ |||vu||| ≤ ‖T‖LA(G)∗ |||v||| ‖u‖A(G)

(since LA(G) is an ideal in A(G)). Hence Π is continuous and so the set
{Π(u · S) : u ∈ A(G), ‖u‖ ≤ 1} = {u · (v · T ) : u ∈ A(G) : ‖u‖ ≤ 1} is

relatively weakly compact in VN(G). Thus S ∈WAP(Ĝ) as required.

After the completion of our paper, Professor E. E. Granirer kindly sent
us a preprint of his very interesting work [15] where a proof of the “only if”
direction of our Theorem 5.2 is given. However his proof is for a much more
general situation and it is in fact quite different from ours.

Remark 5.3. When G is a compact group each of the Segal algebras
(C(G), ∗) and (L∞(G), ∗) is Arens regular. This is due to the fact that
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every bounded operator from a C∗-algebra into its dual space is weakly
compact [1].

6. LA(G) as an ideal in its second dual space. Suppose that A is
a Banach algebra and the second dual space A∗∗ of A is equipped with the
first or the second Arens product. It is well known that A is an ideal in A∗∗

if and only if, for every a ∈ A, the operators %a : b 7→ ab and λa : b 7→ ba are
weakly compact [6].

Proposition 6.1. Let S(G) be a symmetric Segal subalgebra of L1(G).
Then the following are equivalent:

(i) G is compact;
(ii) for every f ∈ S(G), λf : g 7→ f ∗ g (g ∈ S(G)) is compact;

(iii) for every f ∈ S(G), λf : g 7→ f ∗ g (g ∈ S(G)) is weakly compact;
(iv) for some non-zero f ∈ S(G), λf : g 7→ f ∗ g (g ∈ S(G)) is compact;
(v) for some non-zero f ∈ S(G), λf : g 7→ f ∗ g (g ∈ S(G)) is weakly

compact.

Proof. (i)⇒(ii). Let G be compact. It is known ([2]) that for every f ∈
L1(G), λ : g 7→ f ∗ g is a compact operator on L1(G). Now let f ∈ S(G).
Then f = g ∗ h for some h ∈ L1(G) and g ∈ S(G). Let (kn) be a bounded
sequence in S(G). Then (kn) is bounded in L1(G). Hence for a subsequence
(kni) of (kn), the sequence (h ∗ kni) converges in L1(G), and so (g ∗ h ∗ kni)
converges in S(G).

The implications (ii)⇒(iii) and (iii)⇒(iv)⇒(v) are clear.
(v)⇒(i). Let f ∈ S(G), f 6= 0, and suppose that λf : g 7→ f ∗ g is a

weakly compact operator on S(G). Let (kn) be a bounded sequence in L1(G).
Let h ∈ S(G) be such that f ∗ h 6= 0 (such h exists since S(G) contains
a bounded approximate identity of L1(G)). Then (h ∗ kn) is a bounded
sequence in S(G) and so by weak compactness of λf , there is a subsequence
(h ∗ kni) of (h ∗ kn) such that (f ∗h ∗ kni) converges weakly in S(G). Choose
m ∈ L1(G) with m ∗ f ∗ h 6= 0. Then the sequence m ∗ f ∗ h ∗ kni converges
weakly in L1(G). This shows that for the non-zero element p = m ∗ f ∗ h of
L1(G), λp : L1(G)→ L1(G) is weakly compact, and this in turn forces G to
be compact [2].

Corollary 6.2. Let G be a unimodular group. Then the algebra LA(G)
is an ideal in its second dual if and only if G is compact.

Proof. When G is unimodular, LA(G) is a symmetric Segal subalgebra
of L1(G).

We now let LA(G) have a pointwise product and determine when it is
an ideal in its second dual. First we need the following:
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We recall that a scalar-valued function f on G is positive-definite if for
any finite number of complex numbers c1, . . . , cn and elements x1, . . . , xn of
G we have

∑
i,j cicjf(xix

−1
j ) ≥ 0. The Fourier–Stieltjes algebra B(G) of G

is the linear span of all continuous positive-definite functions on G, with the
pointwise multiplication [7]. Let

P1(G) = {ϕ ∈ B(G) : ϕ(e) = 1 = ‖ϕ‖B(G)}.
That is, P1(G) consists of all positive-definite functions ϕ on G with ϕ(e)
= 1. For every f ∈ LA(G) we let

Kf := {vf : v ∈ P1(G) ∩A(G)}.
We note that Kf ⊂ LA(G), since ‖vf‖A(G) = ‖f‖A(G) and ‖vf‖1 ≤ ‖f‖1.

Lemma 6.3. Suppose that f ∈ LA(G), f is positive-definite and f(e) = 1
(‖f‖ = 1). If Kf is relatively weakly compact in LA(G), then G is discrete.

Proof. Since the inclusion map ι : LA(G) → A(G) is continuous, it
follows that Kf is a relatively weakly compact subset of A(G). Now Kf is

convex and so Kf is a weakly compact convex subset of A(G) contained in

P1(G) ∩ A(G). For every v ∈ P1(G), let Tv be a mapping on Kf defined

by Tv(w) = vw (w ∈ Kf ), and let S = {Tv : v ∈ P1(G)}. Then S is a

commuting family of continuous affine mappings on Kf . So by the Markov–

Kakutani fixed point theorem there is w0 ∈ Kf such that vw0 = w0 for
every v ∈ P1(G). Hence w0 is a topological invariant mean on VN(G) and
w0 ∈ A(G). Then by a result of [24], G must be discrete.

Theorem 6.4. Let G be a locally compact group and suppose that LA(G)
is equipped with the pointwise product. Then LA(G) is an ideal in LA(G)∗∗

if and only if G is discrete.

Proof. If G is discrete, then LA(G) = `1(G) with pointwise product and
this is a compact algebra. For the converse, suppose that LA(G) is an ideal
in LA(G)∗∗. Then for every f ∈ LA(G) the set Qf = {wf : ‖w‖ ≤ 1,
w ∈ LA(G)} is relatively compact in the weak topology of LA(G). Now,
LA(G) contains all the functions in A(G) with compact support.

Take h ∈ Cc(G) with ‖h‖2 = 1, and set f(x) = 〈%(x)h, h〉 (x ∈ G).
Then f ∈ A(G)∩Cc(G), f is positive-definite, f(e) = 1, and Qf is relatively
weakly compact in LA(G). Now, for Kf as defined before Lemma 6.3 we
have

Kf2 = {vf2 : v ∈ P1(G) ∩ A(G)} = {(vf)f : v ∈ P1(G) ∩A(G)}.
For vf as above we have

‖vf‖A(G) = (vf)(e) = f(e) = ‖f‖A(G),
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and
‖vf‖1 =

�

G

|v(t)|f(t) dt ≤ ‖f‖1.

Therefore Kf2 ⊆ (‖f‖A(G) + ‖f‖1)Qf . Hence Kf2 is relatively weakly com-
pact in LA(G), and so G is discrete by Lemma 6.3.

Remark 6.5. The proof of Lemma 6.3 shows that if there exists an
f ∈ A(G), f ≥ 0 and positive-definite, with f(e) = 1, such that g 7→ f · g is
a weakly compact operator from A(G) into A(G), then G is discrete.

Open Questions. 1. Is Theorem 1.1 true withoutG being a SIN group?
2. Is every symmetric Segal algebra on an amenable group approxi-

mately amenable?
3. Suppose that there exists an f ∈ A(G), f 6= 0, such that g 7→ fg is a

weakly compact operator from A(G) into A(G). Is G discrete?
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