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The norms and singular numbers of polynomials of
the classical Volterra operator in L2(0, 1)

by

Yuri Lyubich (Haifa) and Dashdondog Tsedenbayar (Ulaanbaatar)

Abstract. The spectral problem (s2I − φ(V )∗φ(V ))f = 0 for an arbitrary complex
polynomial φ of the classical Volterra operator V in L2(0, 1) is considered. An equivalent
boundary value problem for a differential equation of order 2n, n = deg(φ), is constructed.
In the case φ(z) = 1 + az the singular numbers are explicitly described in terms of roots
of a transcendental equation, their localization and asymptotic behavior is investigated,
and an explicit formula for the ‖I + aV ‖2 is given. For all a 6= 0 this norm turns out to
be greater than 1.

1. Introduction. For any compact linear operator A in a Hilbert space
the singular numbers sk(A) are the distances from A to the set of all op-
erators of rank less than or equal to k − 1, k ≥ 1. Their squares are the
eigenvalues of the compact selfadjoint nonnegative operator A∗A counted
according to their multiplicities (see e.g. [1]). In particular, s1(A) = ‖A‖.
The latter has been used by Halmos [2] to calculate the L2-norm ‖·‖2 of the
classical Volterra operator

(V f)(x) =
x�

0

f(t) dt, 0 ≤ x ≤ 1.

Actually, the Halmos calculation yields

(1.1) sk(V ) =
2

(2k − 1)π

for all k ≥ 1, in particular,

(1.2) ‖V ‖2 = 2/π.

The point is that the spectral problem

(V ∗V f)(x) = s2f(x), 0 ≤ x ≤ 1,
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is equivalent to the boundary value problem

f ′′(x) + λf(x) = 0, f ′(0) = 0, f(1) = 0,

where λ = 1/s2. This yields f(x) = cos
√
λx (under the normalization

f(0) = 1) and cos
√
λ = 1, which immediately implies (1.1).

A similar equivalence for the powers V n was established by Thorpe [4].
The corresponding boundary value problem is

(−1)nf (2n) = λf, f (l)(0) = f (n+l)(1) = 0, 0 ≤ l ≤ n− 1.

In the present paper we generalize these results to the arbitrary complex
polynomials

(1.3) φ(V ) =
n∑
i=0

aiV
i, an 6= 0, n ≥ 1.

Note that the operator φ(V ) is not compact if a0 6= 0, but in any case
φ(V )∗φ(V ) = |a0|2I+K where I is the identity operator and K is a compact
self-adjoint operator. This suggests defining the singular numbers of φ(V )
as the nonnegative square roots of the eigenvalues of φ(V )∗φ(V ). In fact,
they are positive, since the operator φ(V ) is injective. Indeed, it is invertible
if a0 6= 0, otherwise, it is of the form V lψ(V ), l ≥ 1, with ψ(V ) invertible.
Actually, the singleton {a0} is the spectrum of φ(V ).

The singular numbers of φ(V ) constitute a countable set Sφ converging
to |a0|. We have

(1.4) supSφ = ‖φ(V )‖2 ≥ |a0|.

In Section 2 we consider the case n = 1 and obtain an explicit formula
for the singular numbers, in particular, for ‖I + aV ‖2) in terms of roots
of a transcendental equation that comes from a boundary value problem.
We describe the localization of these roots in much detail. The general case
n ≥ 1 is considered in Section 3 where we construct a boundary value
problem equivalent to the spectral problem in question. In Section 4 the
problem of equality in (1.4) is discussed.

2. The case n = 1. Let φ(V ) = a0I + a1V , a1 6= 0. Since the case
a0 = 0 trivally reduces to that of [2], one can assume a0 6= 0. Without loss
of generality one can set a0 = 1 and then denote a1 by a, for short. Thus,
we will consider φ(V ) = I + aV with a 6= 0.

Our spectral problem

(I + aV ∗)(I + aV )f = s2f

can be rewritten as

(2.1) (s2 − 1)f − aV ∗f − aV f − |a|2V ∗V f = 0.
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We proceed from this integral equation to a differential equation by applying
the operator D = d/dx twice. Note that DV = I, while DV ∗ = −I since

(V ∗f)(x) =
1�

x

f(t) dt, 0 ≤ x ≤ 1.

Thus, (2.1) yields

(2.2) (s2 − 1)f ′ − (a− a)f + |a|2V f = 0

and then

(2.3) (s2 − 1)f ′′ − (a− a)f ′ + |a|2f = 0.

Now we insert x = 0 and x = 1 into (2.1) and (2.2) taking into account
that

(V f)x=0 = (V ∗f)x=1 = 0,

and

(V f)x=1 = (V ∗f)x=0 = J1 ≡
1�

0

f dt,

hence,

(V ∗V f)x=1 = 0, (V ∗V f)x=0 = J2 ≡
1�

0

(V f) dt.

In this way we obtain four linear homogeneous equations for the six values:
f(0), f ′(0), f(1), f ′(1), J1, J2. Eliminating J1 and J2 we get two boundary
conditions for the differential equation (2.3). Let us emphasize that in [2]
and [4] no integrals remain after substitution of x = 0 and x = 1 into the
corresponding integral equation and its derivatives. In our case this is true
only for one of the four equalities, namely, we get

(2.4) (s2 − 1)f ′(0)− (a− a)f(0) = 0

when putting x = 0 in (2.2). However,

(s2 − 1)f(1)− aJ1 = 0, (s2 − 1)f ′(1)− (a− a)f(1) + |a|2J1 = 0

for x = 1 in (2.1) and (2.2), respectively. Eliminating J1 we obtain

(2.5) (s2 − 1)f ′(1) + (as2 − a)f(1) = 0.

Lemma 2.1. For every s the integral equation (2.1) is equivalent to the
differential equation (2.3) with the boundary conditions (2.4) and (2.5).

Proof. We already know that each solution f to the equation (2.1) sat-
isfies (2.3)–(2.5). In the converse direction we start with f satisfying (2.3)–
(2.5) and set

g = ((I + aV ∗)(I + aV )− s2I)f.
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We have to show that g = 0. To this end we note that g′′ = 0 by (2.3), hence
g(x) is a linear function of x. Furthermore,

g′(0) = (s2 − 1)f ′(0)− (a− a)f(0),

hence g′(0) = 0 by (2.4). Thus, g(x) is a constant, so

ag(1) = ag(1) + g′(1) = (s2 − 1)f ′(1)− (as2 − a)f(1)

by (2.5). Since a 6= 0, we get g(1) = 0.

The singular numbers in question are just those s for which the boundary
value problem (2.3)–(2.5) has a solution f 6= 0. It is easy to see that s 6= 1.
Indeed, otherwise from (2.3) it follows that

(2.6) (a− a)f ′ − |a|2f = 0.

If a is real then f = 0 at once. If a is not real then f satisfies the linear
differential equation (2.6) and, in addition, f(0) = 0 by (2.4). Hence, f = 0
again.

Now we are in a position to prove the following theorem.

Theorem 2.2. Let a = α + iβ. The singular numbers of the operator
I + aV are given by the formula

(2.7) s =

√
α2 +∆

α2 + β2

where α and β are the real and the imaginary parts of a and ∆ runs over
all real roots of the equation

(2.8)
√
∆ cot

√
∆(α2 + β2)
∆− β2

= α.

Though the value
√
∆ is determined only up to the factor ±1, the right-

hand side of (2.8) is uniquely determined since the function cot(·) is odd.
Also note that if ∆ is a root of the equation (2.8) then

∆ 6= β2,

√
∆(α2 + β2)
∆− β2

6= mπ

for all integers m, in particular, ∆ 6= 0. However, ∆ = 0 becomes admssible
by passing to the limit as ∆→ 0. The limit equality is

β2

α2 + β2
= −α,

or equivalently,

(2.9) β2 = − α3

α+ 1
where automatically −1 < α < 0 and β 6= 0, so a is not real. Under the
relation (2.9) Theorem 2.2 extends by including ∆ = 0 into (2.7), so we have
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the special singular number

(2.10) s0 =
|α|√
α2 + β2

=
√

1 + α

in this situation.
For ∆ < 0 the equation (2.8) can be rewritten as

(2.11)
√
|∆| coth

√
|∆|(α2 + β2)
|∆|+ β2

= −α.

Proof of Theorem 2.2. In our current notation the equation (2.3) is

(2.12) (s2 − 1)f ′′ − 2iβf ′ + (α2 + β2)f = 0,

and the boundary conditions (2.4) and (2.5) are

(2.13) (s2 − 1)f ′(0)− 2iβf(0) = 0

and

(2.14) (s2 − 1)f ′(1) + ((s2 − 1)α− (s2 + 1)iβ)f(1) = 0.

The characteristic equation for the differential equation (2.12) is

(2.15) (s2 − 1)r2 − 2iβr + (α2 + β2) = 0.

Its roots are

(2.16) r1 = i
β +
√
∆

s2 − 1
, r2 = i

β −
√
∆

s2 − 1
,

where

(2.17) ∆ = β2 + (s2 − 1)(α2 + β2).

The latter is equivalent to (2.7). We have to prove that (2.8) (including the
equality ∆ = 0 in the case (2.9)) is equivalent to the nontrivial solvability
of the boundary value problem (2.12)–(2.14). Let us start with ∆ 6= 0, i.e.
r1 6= r2.

The general solution to (2.12) is

f(x) = c1e
r1x + c2e

r2x,

where c1 and c2 are arbitrary constants. Hence,

f(0) = c1 + c2, f ′(0) = c1r1 + c2r2

and
f(1) = c1e

r1 + c2e
r2 , f ′(1) = c1r1e

r1 + c2r2e
r2 .

By substitution into (2.13) and (2.14) we obtain a system of linear homoge-
neous equations for c1 and c2. This system has a nontrivial solution if and
only if its determinant is equal to zero. This equality reduces to

((s2 − 1)r1 − α− iβ)er1 = ((s2 − 1)r2 − α− iβ)er2
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by an elementary calculation taking (2.15) into account. Using (2.16) we
obtain

(2.18) (α− i
√
∆)er1 = (α+ i

√
∆)er2 .

Note that α − i
√
∆ 6= 0, otherwise, α2 + ∆ = 0, which implies s = 0 by

(2.17). Therefore, one can rewrite (2.18) as

er1−r2 =
α+ i

√
∆

α− i
√
∆
,

or equivalently,
er1−r2 + 1
er1−r2 − 1

=
α

i
√
∆
.

This is nothing but the equation (2.8) since

r1 − r2 =
2i
√
∆

s2 − 1
=

2i
√
∆(α2 + β2)
∆− β2

by (2.16) and (2.17).
In the case ∆ = 0 the only root of (2.15) is

r =
iβ

s2 − 1
= − i(α

2 + β2)
β

since

s2 − 1 = − β2

α2 + β2

by (2.17). (Note that β 6= 0 since s 6= 1.) The general solution to (2.12) is
now of the form

f(x) = (c1 + c2x)erx.

Accordingly,
f(0) = c1, f ′(0) = c1r1 + c2r2

and
f(1) = c1e

r1 + c2e
r2 , f ′(1) = c1r1e

r1 + c2r2e
r2 .

It is easy to check that the determinant of the corresponding linear system
for c1 and c2 vanishes if and only if the relation (2.9) is valid. As we know,
the latter is the limit form of (2.8) as ∆→ 0.

Now we investigate the equation (2.8) with unknown ∆ 6= 0 (written as
(2.11) for ∆ < 0). We start with β = 0. For the new unknown

(2.19) ξ = α2/
√
|∆| > 0

we have the equation

(2.20) coth ξ = −ξ/α
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if ∆ < 0, but

(2.21) cot ξ = ξ/α

if ∆ > 0. By (2.7) and (2.19) the corresponding singular number is

(2.22) s =

√
1 +

εα2

ξ2

where ξ is a root of (2.20) or (2.21) and ε = −1 or 1, respectively. By these
equations one can rewrite (2.22) as

(2.23) s = 1/cosh ξ or s = 1/|cos ξ|,
respectively.

The equation (2.20) has no positive roots if α > 0, but if α < 0 then
(2.20) has exactly one positive root. Indeed, in the latter case the function
coth ξ + ξ/α on (0,∞) monotonically decreases from +∞ to −∞.

In contrast, the equation (2.21) has infinitely many positive roots for any
α 6= 0: there is exactly one root ξk of (2.21) in each interval ((k − 1)π, kπ),
k ≥ 1. Accordingly,

(2.24) sk =

√
1 +

α2

ξ2k
=

1
|cos ξk|

, k ≥ 1.

Now let β 6= 0. Then we introduce the new unknown

(2.25) ξ =
√
|∆|/|β| > 0,

instead of ∆, and the new real parameters

(2.26) γ =
α2 + β2

|β|
, δ =

α

|β|
,

instead of α and β. In this setting we have

(2.27) ξ coth
γξ

ξ2 + 1
= −δ

if ∆ < 0, but

(2.28) ξ cot
γξ

ξ2 − 1
= δ

if ∆ > 0. The corresponding singular number is

(2.29) s =

√
δ2 + εξ2

δ2 + 1
where ξ is a root of (2.27) or (2.28) and ε is defined as in (2.22).

Since γ > 0, the equation (2.27) has no positive roots if δ ≥ 0. Let δ < 0,
i.e. α < 0 by (2.26). Then all positive roots of (2.27) (if they exist) are less
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than |δ|. With this restriction (2.27) is equivalent to g(ξ) = 0 where

g(ξ) =
2γξ
ξ2 + 1

− log
|δ|+ ξ

|δ| − ξ
.

The derivative g′(ξ) is

γ(ξ2 − 1)(ξ2 − δ2)− |δ|(ξ2 + 1)2,

up to a positive factor. This biquadratic polynomial has at most two positive
roots, so the same is true of g′(ξ) and hence of g(x) because of Rolle’s
theorem and g(0+) = 0. Thus, the equation (2.27) has at most two positive
roots if δ < 0.

It remains to investigate the positive roots of the equation (2.28). With
δ = 0 they are

(2.30) ξ0k =
γ + εk

√
γ2 + (2k − 1)2π2

(2k − 1)π

where k runs over all integers and εk = sign(2k − 1). It is easy to see that
ξ0k+1 < ξ0k for k 6= 0 but ξ01 > ξ00 . Moreover, ξ01 > 1, while ξ00 < 1. (It is useful
to note that ξ0−(k−1)ξ

0
k = 1.) Obviously, the roots ξ0k and ξ0−k tend to 1 as

k → +∞.
Now let δ 6= 0. Then with ξ 6= ξ0k (k = 0,±1,±2, . . .), (2.28) is equivalent

to h(ξ) = 0 where

h(ξ) = h0(ξ)− arctan
(
ξ

δ

)
− q(ξ)π, h0(ξ) =

γξ

ξ2 − 1

and an integer coefficient q(ξ) is determined by the inequality

−π
2
< h0(ξ)− q(ξ)π < π

2
.

The function h0(ξ) monotonically decreases from 0 to −∞ on the interval
(0, 1) and from +∞ to 0 on the interval (1,∞). Since

h0(ξ0k) =
(2k − 1)π

2
,

we have q(ξ) = k for ξ0k+1 < ξ < ξ0k, k 6= 0, and q(ξ) = 0 for ξ < ξ00 or ξ > ξ01 .
Thus,

h(ξ) = h0(ξ)− arctan
(
ξ

δ

)
− kπ

on the interval Jk = (ξ0k+1, ξ
0
k), k 6= 0, and

h(ξ) = h0(ξ)− arctan
(
ξ

δ

)
on the intervals J0 = (0, ξ00) and J∞ = (ξ01 ,∞). On each of these intervals
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the function h(ξ) is continuous. Moreover, we have the one-sided limit values

h(ξ0k−) = −
(
π

2
+ arctan

(
ξ0k
δ

))
< 0, h(ξ0k+) =

π

2
− arctan

(
ξ0k
δ

)
> 0

for all k, and

(2.31) h(0+) = 0, h(+∞) = −π
2

sign δ.

Therefore, the equation (2.28) has at least one root in each interval Jk,
k 6= 0,∞. For k = ∞ this is true if δ > 0. For k = 0 it is true if δ < 0 and
|δ|γ < 1. Indeed, in this case h′(0) > 0, so h(ξ) > 0 for small ξ > 0.

In general, the derivative h′(ξ) is

γ(ξ2 + 1)(ξ2 + δ2) + δ(ξ2 − 1)2,

up to a negative factor. If δ > 0 then h′(ξ) < 0 for all ξ > 0. In this case the
equation (2.28) has exactly one root ξk ∈ Jk, k 6= 0, including J∞, while J0

does not contain roots at all.
If δ < 0 then h′(ξ) has at most two positive roots. These roots can lie

either in a Jk, and then (2.28) has no more than three roots there, or they
belong to some different Jk and Jl, and then the number of roots in each of
them does not exceed 2. Any other interval Jm contains exactly one root.
The number of roots in J0 and in J∞ does not exceed 2 because of (2.31).

Now we denote by ξk a root of h(ξ) in the interval Jk. The sequences
(ξk : k ≥ 1) and (ξ−k : k ≥ 0) monotonically tend to 1 from above and from
below, respectively. By (2.29) with ε = 1 the same is true for (sk : k ≥ 1)
and (s−k : k ≥ 0). All these singular numbers are greater than |δ|/

√
δ2 + 1.

This lower bound is just the special singular number s0 (see (2.10)) if ∆ = 0
is a root of the equation (2.8), i.e. if (2.9) is valid. There are at most two
singular numbers below this bound since they appear only if ∆ < 0.

Theorem 2.3. Let a = α+ iβ 6= 0. If β = 0, i.e. a = α ∈ R \ {0}, then

(2.32) ‖I + aV ‖2 =

√
1 +

α2

ξ2min

=
1

|cos ξmin|

where ξmin is the smallest positive root of the equation (2.21).
If β 6= 0, then

(2.33) ‖I + aV ‖2 =

√
δ2 + ξ2max

δ2 + 1
where ξmax is the greatest root of the equation (2.28) with δ and γ defined
by (2.26).

Proof. Combine formula (1.4) with (2.24) in the case β = 0 and with
(2.29) in the case β 6= 0, ε = 1.
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Corollary 2.4. If α = 0, i.e. a = iβ, where β ∈ R \ {0}, then

(2.34) ‖I + aV ‖2 =
|β|
π

+

√
1 +

β2

π2
.

Indeed, in this case we have (2.33) with δ = 0 and ξmax = ξ01 coming
from (2.30) with γ = |β|.

As β → ∞, formula (2.34) leads to Halmos’s formula (1.2). Similarly,
(1.1) follows from (2.29) and (2.30).

Corollary 2.5. The inequality

(2.35) ‖I + aV ‖2 > 1

holds for all complex a 6= 0.

Proof. This follows from (2.32) if β = 0 and from (2.33) if β 6= 0 since
ξmax > 1 in either case.

Another way to get the inequality (2.35) (except for a ≤ 0) is to recall
that the operator I + aV is not power bounded if a is not real nonpositive
(see [5]). With a < 0 this operator becomes power bounded [5], but its norm
remains greater than 1 by Corollary 2.5.

3. The general case. For an arbitrary polynomial φ of degree n ≥ 1
we proceed from the integral equation

(3.1) (s2I − φ(V )∗φ(V ))f = 0

to

(3.2) D2n(s2I − φ(V )∗φ(V ))f = 0,

by differentiation of order 2n. In more detail, if φ(V ) is of the form (1.3)
then the equation (3.1) can be rewritten as(

(s2 − |a0|2)I −
∑

aiak(V ∗)iV k
)
f = 0

with the summation over 0 ≤ i, k ≤ m, i + k ≥ 1. Accordingly, (3.2) takes
the form

(3.3) (s2 − |a0|2)f (2n) −
2n∑
j=1

cjf
(2n−j) = 0

where

(3.4) cj =
∑
i+k=j

(−1)iaiak.

Note that c2n = (−1)n|an|2 6= 0, so (3.3) cannot be an identity. This is
a linear homogeneous differential equation with constant coefficients. The
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formal leading coefficient is s2 − |a0|2, so the order of the equation (3.3) is
2n if s 6= |a0|. The other cofficients do not depend on s.

Now we substitute x = 0 and x = 1 into the intermediate integro-
differential equations

(3.5) Di(s2I − φ(V )∗φ(V ))f = 0, 0 ≤ i ≤ 2n− 1,

including (3.1). This yields 4n linear homogeneous equations for 4n bound-
ary values

f(0), f ′(0), . . . , f (2n−1)(0), f(1), f ′(1), . . . , f (2n−1)(1)

and the integrals

((V ∗)iV kf)(0), (V kf)(1), 1 ≤ i, k ≤ n.
The total number of these integrals is n(n + 2), but each one is a linear
combination of 2n power moments

Ml =
1�

0

tlf(t) dt, 0 ≤ l ≤ 2n− 1.

Indeed, from the classical formula

(V kf)(x) =
1

(k − 1)!

x�

0

(x− t)k−1f(t) dt

and its version

((V ∗)if)(x) =
1

(i− 1)!

1�

x

(t− x)i−1f(t) dt

it follows that

(V kf)(1) =
1

(k − 1)!

1�

0

(1− t)k−1f(t) dt

and

((V ∗)iV kf)(0) =
1

(i− 1)!(k − 1)!

1�

0

f(t) dt
1�

t

(s− t)k−1si−1 ds.

All these integrals are linear combinations of Ml, 0 ≤ l ≤ k−1, and Mi+k−1.
The orders of these moments are less than 2n.

Now let F be the 4n-column consisting of the values f (m)(0) and f (m)(1),
0 ≤ m ≤ 2n − 1, and let M be the 2n-column consisting of the values Ml,
0 ≤ l ≤ 2n− 1. Then we have an equation

(3.6) AF +BM = 0

where A and B are matrices of sizes 4n× 4n and 4n× 2n, respectively.
To eliminate M from (3.6) we take any 4n-row w such that wB = 0.

Then we obtain a boundary condition (wA)F = 0. In fact, only linearly
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independent systems of boundary conditions are interesting. Accordingly,
we choose a basis {wj : 1 ≤ j ≤ r} in the space of solutions of the equation
wB = 0 and get

(3.7) (wjA)F = 0, 1 ≤ j ≤ r.
Note that r ≥ 2n since the vector equation wB = 0 can be rewritten as a
system of 2n linear homogeneous scalar equations with 4n unknowns.

Theorem 3.1. The integral equation (3.1) is equivalent to the differen-
tial equation (3.2) with the boundary conditions (3.7), where r = 2n and
{wj} is any linearly independent system of 2n solutions of the equation
wB = 0.

Proof. We only need to prove that every solution f of the boundary
value problem under consideration satisfies (3.1). In other words, we have
to prove that g = 0 for

g = (s2I − φ(V )∗φ(V ))f.

By (3.2) we have D2ng = 0, therefore, g is a polynomial of degree less
than or equal to 2n− 1. The column G consisting of the values g(m)(0) and
g(m)(1), 0 ≤ m ≤ 2n− 1, satisfies the boundary conditions

(3.8) wjG = 0, 1 ≤ j ≤ 2n,

since G = AF +BM and wjAF = 0 by (3.7), while wjB = 0 by the choice
of wj .

The upper and the lower halves of the column G are G0 and G1 whose
entries are g(m)(0) and g(m)(1), 0 ≤ m ≤ 2n − 1, respectively. The Taylor
expansion at x = 0 shows that G1 = CG0 where C is a 2n × 2n-matrix.
The matrix C is invertible by the Taylor expansion at x = 1. The equations
(3.8) can be rewritten as

(3.9) (uj + vjC)G0 = 0, 1 ≤ j ≤ 2n,

where uj and vj are the left and the right halves of the row wj . From (3.9)
it follows that G0 = 0, and then g = 0 since the rows uj + vjC, 1 ≤ j ≤ 2n,
are linearly independent. The latter is true since the rows wj , 1 ≤ j ≤ 2n,
are linearly independent and the matrix C is invertible.

By Theorem 3.1 the singular numbers of the operator φ(V ) are just those
s for which the boundary linear functionals F 7→ (wjA)F , 1 ≤ j ≤ 2n, on the
space of solutions of the differential equation (3.2) are linearly dependent.
Equivalently, the latter means that

(3.10) det(wjAFi) = 0

where {fi : 1 ≤ i ≤ 2n} is an arbitrary basis of that space (a “fundamental
system” of solutions of (3.2)). Thus, the singular numbers are just the roots
of the equation (3.10). The unknown s is contained in the matrix A and
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in the columns Fi corresponding to the solutions fi, 1 ≤ i ≤ 2n. Actually,
the matrix A is lower triangular and all its diagonal entries are equal to
s2 − |a0|2. The other entries of A do not depend on s.

Theorem 3.1 also implies that for every singular number s the eigenspace
of the operator φ(V )∗φ(V ) corresponding to the eigenvalue s2 is of dimension
≤ 2n.

4. Appendix. An unsolved problem. According to Corollary 2.5 the
only operator of L2-norm 1 in the family {I + aV : a ∈ C} is I.

Problem. Describe the class I of functions φ(z) such that φ(0) = 1
and ‖φ(V )‖2 = 1.

In this context φ(z) can be any function analytic in a neighborhood of
z = 0, φ(0) = 1. Since the spectrum of φ(V ) is {1} we have ‖φ(V )‖2 ≥ 1 a
priori.

The class I is not empty: the function 1(z) ≡ 1 belongs to I. In total, I
is a convex multiplicative semigroup. On the other hand, if φ ∈ I and φ 6= 1
then 1/φ 6∈ I, i.e. ‖φ(V )−1‖2 > 1. Indeed, otherwise, φ(V ) is an isometry,
hence φ(V ) = I by the clasical Gelfand theorem.

For φ ∈ I the operator φ(V ) is power bounded. From Theorem 1.1 of [3]
it follows that if φ ∈ I \{1} then φ′(0) is real negative. This necessary condi-
tion is not sufficient even for linear functions, as we already know. Moreover,
we do not know any nontrivial polynomial φ ∈ I. We conjecture that there
are no such polynomials. However, there are some functional examples.

Proposition 4.1. If all roots of a polynomial φ are real negative and
φ(0) = 1 then 1/φ ∈ I.

Proof. Halmos proved (see [2, Problem 150]) that ‖(I + V )−1‖2 = 1.
This means that the function (1 + z)−1 belongs to I. The same proof shows
that the function (1 + az)−1 belongs to I for every a > 0. The general case
is settled by the decomposition of φ(z) into factors of the form 1 +az where
−a runs over the reciprocals of the roots of φ.

Remark 4.2. If a is not real nonnegative then φ(z) = (1 + az)−1 does
not belong to I since φ′(0) = −a. In other words, ‖(I + aV )−1‖2 > 1 for all
complex a, except for a ≥ 0.

Halmos’s proof cited above is based on the inequality Re (V f, f) ≥ 0
that means that the operator −V is dissipative. Hence, if a ≤ 0 then
‖exp(aV )‖2 ≤ 1, so eventually ‖exp(aV )‖2 = 1, thus exp(az) ∈ I. The
sufficient condition a ≤ 0 is also necessary since a = φ′(0).
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