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Characterizations of p-superharmonic functions
on metric spaces

by

Anders Björn (Linköping)

Abstract. We show the equivalence of some different definitions of p-superharmonic
functions given in the literature. We also provide several other characterizations of p-
superharmonicity. This is done in complete metric spaces equipped with a doubling mea-
sure and supporting a Poincaré inequality. There are many examples of such spaces. A
new one given here is the union of a line (with the one-dimensional Lebesgue measure) and
a triangle (with a two-dimensional weighted Lebesgue measure). Our results also apply
to Cheeger p-superharmonic functions and in the Euclidean setting to A-superharmonic
functions, with the usual assumptions on A.

1. Introduction. Superharmonic functions are used as a tool to study
harmonic functions. They are, e.g., used to define Perron solutions of the
Dirichlet (i.e. boundary value) problem for harmonic functions. In connec-
tion with nonlinear p-harmonic functions on weighted Rn, p-superharmonic
functions were used in the monograph Heinonen–Kilpeläinen–Martio [7]. An
important feature of the definition is that the bounded superharmonic func-
tions (we drop p from the notation from now on) are exactly the bounded
lower semicontinuously regularized supersolutions (there are also unbounded
superharmonic functions which are not supersolutions).

In metric spaces, Kinnunen–Martio [13] noticed that the definition
from [7] was difficult to use (since at that time Theorem 3.7 below was
not known). They proposed a different definition, which in the Euclidean
case is equivalent to the definition in [7]. In connection with quasiminimiz-
ers, they gave a third definition in [14], and showed that a superharmonic
function according to the third definition is also superharmonic according
to the second definition.

In this paper we show that the definitions given in [7], [13] and [14] are
equivalent. We also give several other characterizations of superharmonic-
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p-harmonic, Poincaré inequality, regular, superharmonic, superminimizer, supersolution.

[45]



46 A. Björn

ity, and provide similar characterizations for hyperharmonic functions. (The
obvious characterizations for subharmonic and hypoharmonic functions are
left to the interested reader.)

There are many different examples of complete metric spaces equipped
with a doubling measure satisfying a Poincaré inequality. Here are some of
them:

(1) Unweighted and weighted Euclidean spaces (see the monograph by
Heinonen–Kilpeläinen–Martio [7]).

(2) Riemannian manifolds with nonnegative Ricci curvature satisfy the
(1, 2)-Poincaré inequality (see Saloff-Coste [18]).

(3) Graphs (see Shanmugalingam [21]).
(4) The Heisenberg group H1 = C× R with the Lebesgue measure and

the metric

d((z, t), (z′, t′)) = (|z − z′|4 + (t− t′ + 2 Im zz′)2)1/4

satisfies the (1, 1)-Poincaré inequality (see Heinonen [6, Theo-
rem 9.27]). Note that H1 is topologically 3-dimensional but Ahlfors
4-regular, i.e. µ(B) ≈ diam(B)4 for balls B.

(5) For every Q ≥ 1, Laakso [17] showed that there is an Ahlfors Q-
regular space satisfying the (1, 1)-Poincaré inequality.

(6) In Section 8, we construct an example where a line (with the one-
dimensional Lebesgue measure) is glued to a triangle (with a two-
dimensional weighted Lebesgue measure) so that the union satisfies
the (1, 1)-Poincaré inequality.

The results and proofs given in this paper also hold for Cheeger p-
harmonic functions (see, e.g., Björn–Björn–Shanmugalingam [2] for a discus-
sion). The results and proofs also hold for A-harmonic functions as defined
on p. 57 of Heinonen–Kilpeläinen–Martio [7], assuming that A satisfies the
degenerate ellipticity conditions (3.3)–(3.7) on p. 56 of [7].

When this paper was almost ready, J. Björn [5] obtained Theorem 3.7,
which improved Theorems 6.1 and 7.1.

Acknowledgements. The author is supported by the Swedish Re-
search Council and Gustaf Sigurd Magnuson’s fund of the Royal Swedish
Academy of Sciences. This research started while the author was visiting the
Department of Mathematical Analysis at the Charles University in Prague
during the autumn 2003.

2. Notation and preliminaries. We assume throughout the paper
that X = (X, d, µ) is a complete metric space endowed with a metric d and
a doubling measure µ, i.e. there exists a constant C > 0 such that for all
balls B = B(x0, r) := {x ∈ X : d(x, x0) < r} in X (we make the convention



Characterizations of p-superharmonic functions 47

that balls are nonempty and open),

0 < µ(2B) ≤ Cµ(B) <∞,
where λB = B(x0, λr). We emphasize that the σ-algebra on which µ is
defined is obtained by the completion of the Borel σ-algebra. We also assume
that 1 < p < ∞ and that Ω ⊂ X is a nonempty open set. (At the end of
this section we make one further assumption on X that is kept in the rest
of the paper.)

Note that some authors assume that X is proper (i.e. closed bounded
sets are compact) rather than complete, but, since µ is doubling, X is proper
if and only if it is complete.

A curve is a continuous mapping from an interval. We will in addition,
throughout the paper, assume that every curve is nonconstant, compact and
rectifiable. A curve can thus be parameterized by its arc length ds.

Definition 2.1. A nonnegative Borel function g on X is an upper
gradient of an extended real-valued function f on X if for all curves γ :
[0, lγ]→ X,

(2.1) |f(γ(0))− f(γ(lγ))| ≤
�
γ

g ds

whenever both f(γ(0)) and f(γ(lγ)) are finite, and � γ g ds =∞ otherwise. If

g is a nonnegative measurable function on X and if (2.1) holds for p-almost
every curve, then g is a p-weak upper gradient of f .

By saying that (2.1) holds for p-almost every curve we mean that it fails
only for a curve family with zero p-modulus (see Definition 2.1 in Shanmu-
galingam [19]). It is implicitly assumed that � γ g ds is defined (with a value

in [0,∞]) for p-almost every curve.

If g ∈ Lp(X) is a p-weak upper gradient of f , then one can find a sequence
{gj}∞j=1 of upper gradients of f such that gj → g in Lp(X) (see Lemma 2.4

in Koskela–MacManus [16]).
If f has an upper gradient in Lp(X), then it has a minimal p-weak upper

gradient gf ∈ Lp(X) in the sense that for every p-weak upper gradient
g ∈ Lp(X) of f , gf ≤ g µ-a.e. (see Corollary 3.7 in Shanmugalingam [20]).
The minimal p-weak upper gradient can be given by the formula

gf (x) := inf
g

lim sup
r→0+

�
B(x,r)

g dµ,

where � A g dµ := µ(A)−1 � A g dµ and the infimum is taken over all upper
gradients g ∈ Lp(X) of f (see Lemma 2.3 in J. Björn [4]). See also Björn–
Björn [1, Section 3] for some further comments on p-weak upper gradients.
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Definition 2.2. We say thatX supports a weak (1, q)-Poincaré inequal-
ity if there exist constants C > 0 and λ ≥ 1 such that for all balls B ⊂ X,
all measurable functions f on X and all upper gradients g of f ,

(2.2)
�
B

|f − fB | dµ ≤ C diam(B)
( �
λB

gq dµ
)1/q

,

where fB := � B f dµ. If λ = 1, then X supports a (1, q)-Poincaré inequality.

In the above definition of Poincaré inequality we can equivalently assume
that g is a q-weak upper gradient—see the comments above. It is also equiv-
alent to require that (2.2) holds for all f ∈ Lipc(X) and all upper gradients
g ∈ Lipc(X) of f (see Keith [8, Theorem 2]). Here Lipc(A) = {f ∈ Lip(A) :
supp f b A}, where E b A if E is a compact subset of A.

By the Hölder inequality it is easy to see that if X supports a weak
(1, q)-Poincaré inequality, then it supports a weak (1, s)-Poincaré inequality
for every s > q.

Following Shanmugalingam [19], we define a version of Sobolev spaces
on the metric space X.

Definition 2.3. Whenever u ∈ Lp(X), let

‖u‖N1,p(X) =
( �
X

|u|p dµ+ inf
g

�
X

gp dµ
)1/p

,

where the infimum is taken over all upper gradients of u. The Newtonian
space on X is the quotient space

N1,p(X) = {u : ‖u‖N1,p(X) <∞}/∼,
where u ∼ v if and only if ‖u− v‖N1,p(X) = 0.

The space N1,p(X) is a Banach space and a lattice (see Shanmugalin-
gam [19]).

Definition 2.4. The capacity of a set E ⊂ X is the number

Cp(E) = inf ‖u‖p
N1,p(X)

,

where the infimum is taken over all u ∈ N 1,p(X) such that u = 1 on E.

The capacity is countably subadditive. For this and other properties
as well as equivalent definitions of the capacity we refer to Kilpeläinen–
Kinnunen–Martio [10] and Kinnunen–Martio [11], [12].

We say that a property regarding points in X holds quasieverywhere
(q.e.) if the set of points for which the property does not hold has capacity
zero. The capacity is the correct gauge for distinguishing between two New-
tonian functions. If u ∈ N 1,p(X), then u ∼ v if and only if u = v q.e. More-
over, Corollary 3.3 in Shanmugalingam [19] shows that if u, v ∈ N 1,p(X)
and u = v µ-a.e., then u ∼ v.



Characterizations of p-superharmonic functions 49

If X supports a weak (1, p)-Poincaré inequality, then Lipschitz functions
are dense in N1,p(X) and the functions in N 1,p(X) are quasicontinuous
(see [19]). This means that in the Euclidean setting, N 1,p(Rn) is the refined
Sobolev space as defined on p. 96 of Heinonen–Kilpeläinen–Martio [7].

To be able to compare the boundary values of Newtonian functions we
need a Newtonian space with zero boundary values. We let

N1,p
0 (Ω) = {f |Ω : f ∈ N1,p(X) and f = 0 on X \Ω}.

One can replace the assumption “f = 0 on X\Ω” with “f = 0 q.e. on X\Ω”

without changing the resulting space N 1,p
0 (Ω). Note that if Cp(X \Ω) = 0,

then N1,p
0 (Ω) = N1,p(Ω).

We say that f ∈ N1,p
loc (Ω) if f ∈ N1,p(Ω′) for every open Ω′ b Ω.

We end this section by recalling some standard notation. We let f+ =
max{f, 0}. By a continuous function we always mean a real-valued contin-
uous function, whereas a semicontinuous function is allowed to be extended
real-valued, i.e. to take values in the extended real line R := [−∞,∞].

In addition to the assumptions made at the beginning of this section,
from now on we assume that X supports a weak (1, p)-Poincaré inequal-
ity. By Keith–Zhong [9] it follows that X supports a weak (1, q)-Poincaré
inequality for some q ∈ [1, p), which was earlier a standard assumption.

3. The obstacle problem. We follow Kinnunen–Martio [13] in making
the following definition of the obstacle problem.

Let V ⊂ X be a nonempty bounded open set with Cp(X \ V ) > 0. (If
X is unbounded then the condition Cp(X \ V ) > 0 is of course immediately
satisfied.)

Definition 3.1. Let f ∈ N1,p(V ) and ψ : V → R. Then we define

Kψ,f (V ) = {v ∈ N1,p(V ) : v − f ∈ N1,p
0 (V ) and v ≥ ψ µ-a.e. in V }.

Further, a function u ∈ Kψ,f (V ) is a solution of the Kψ,f (V )-obstacle prob-
lem if �

V

gpu dµ ≤
�
V

gpv dµ for all v ∈ Kψ,f (V ).

Kinnunen–Martio [13, Theorem 3.2] showed that if Kψ,f (V ) 6= ∅, then
there is a solution of the Kψ,f (V )-obstacle problem, and this solution is
unique up to equivalence in N 1,p(V ). They also showed (Theorem 5.1 in [13])
that if u is a solution then its lower semicontinuous regularization u∗(x) =
ess lim infy→x u(y) is also a solution and this solution is the unique lower
semicontinuously regularized solution. Furthermore, u∗ is (a)-superharmonic
in V (see Definition 4.1). If the obstacle ψ is continuous they showed that
u∗ is also continuous (see Theorem 5.5 in [13]). They actually considered
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continuous functions which are even allowed to be extended real-valued. We
will need the following special case of their result. For f ∈ N 1,p(V ), define
HV f to be the continuous solution of the K−∞,f (V )-obstacle problem.

Proposition 3.2. Let f ∈ N1,p(V ) be continuous. Then there is a con-
tinuous solution u of the Kf,f (V )-obstacle problem. Moreover , u ≥ f every-
where in V , and u|A = HAf for the open set A = {x ∈ V : u(x) > f(x)}.

(See Björn–Björn [1, Proposition 4.2] for a proof.)
A function u is a superminimizer in Ω if it is a solution of the Ku,u(Ω′)-

obstacle problem for every nonempty open subsetΩ ′bΩ with Cp(X\Ω′)>0.

Equivalently, a function u ∈ N 1,p
loc (Ω) is a superminimizer in Ω if for every

nonempty open subset Ω′ b Ω and all nonnegative ϕ ∈ N 1,p
0 (Ω′), we have�

Ω′
gpu dµ ≤

�
Ω′
gpu+ϕ dµ.

This is just a rephrasing apart from the case when Ω = X is bounded, but
in the latter case it is easy to see that u must be constant q.e. An equivalent
definition was given in Kinnunen–Martio [14, Section 3].

A solution u of the Kψ,f (V )-obstacle problem is a superminimizer in V .
Conversely, if u ∈ N1,p(V ) is a superminimizer, then u is a solution of the
Ku,u(V )-obstacle problem. A function u is a minimizer in Ω if it is a solution
of the K−∞,u(Ω′)-obstacle problem for every nonempty open subset Ω ′ b Ω
with Cp(X \Ω′) > 0, or equivalently if both u and −u are superminimizers
in Ω.

By Proposition 3.8 and Corollary 5.5 in Kinnunen–Shanmugalingam [15],
a minimizer in Ω can be modified on a set of capacity zero so that it be-
comes locally Hölder continuous in Ω. A p-harmonic function is a contin-
uous minimizer. By Corollary 6.4 in [15], p-harmonic functions satisfy the
strong maximum principle: If u attains its minimum or maximum in some
component G of Ω, then u|G is constant.

The sum of two p-harmonic functions is, in general, not a p-harmonic
function. Nevertheless, if u is p-harmonic and α, β ∈ R, then αu+ β is also
p-harmonic.

If f1, f2 ∈ N1,p(V ) and (f1 − f2)+ ∈ N1,p
0 (V ), then HV f1 ≤ HV f2.

(This is a special case of Lemma 3.9.) It follows that for f ∈ N 1,p(V ), HV f
only depends on f |∂V . A Lipschitz function f on ∂V can be extended to a

function f̃ ∈ Lip(V ) so that f = f̃ on ∂V . As HV f̃ does not depend on the

choice of extension, we define HV f := HV f̃ .
We say that u is K-quasisuperharmonic in Ω if it is K-quasisuperharmo-

nic in the sense of Definition 7.1 in Kinnunen–Martio [14]. (Note that there
is a misprint in [14]: the functions vi should be assumed to be K-quasisuper-
minimizers.)
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A function u is K-quasihyperharmonic in Ω if in each component of Ω
it is K-quasisuperharmonic or identically ∞.

Definition 3.3. Given a function f : ∂V → R, let Uf (V ) be the set of
all (a)-superharmonic functions u in V (see Definition 4.1) bounded below
such that

lim inf
V 3y→x

u(y) ≥ f(x) for all x ∈ ∂V.

Define the upper Perron solution of f by

P V f(x) = inf
u∈Uf (V )

u(x), x ∈ V.

The lower Perron solution is given analogously or by

P V f = −P V (−f).

If P V f = P V f , then we let PV f = PV f , and f is said to be resolutive.

The comparison principle given by Kinnunen–Martio [13, Theorem 7.2],
shows that P V f ≤ P V f for all functions f .

We now have two ways of solving the Dirichlet problem for p-harmonic
functions. We need two results from Björn–Björn–Shanmugalingam [2]:

Theorem 3.4 (Theorem 6.1 in [2]). Let f ∈ C(∂V ). Then f is resolu-
tive.

Theorem 3.5 (Theorem 5.1 in [2]). Let f ∈ N 1,p(X). Then PV f = HV f
in V .

Note that since HV f is independent of which representative of f we pick,
also PV f is independent of the representative (when f ∈ N 1,p(X)).

Definition 3.6. A point x0 ∈ ∂V is regular if

lim
V 3y→x0

HV f(y) = f(x0) for all f ∈ Lip(∂V ).

If x0 ∈ ∂V is not regular, then it is irregular. The set V is regular if every
x0 ∈ ∂V is regular.

Note that when we say that a set is regular we require that it is nonempty,
open, bounded and has a complement with positive capacity. For equiva-
lent characterizations of regular boundary points see Björn–Björn [1, Theo-
rem 6.2].

From J. Björn [5] we need the following result.

Theorem 3.7. Assume that either X is unbounded or Ω 6= X. Then
there exist regular sets Ω1 b Ω2 b · · · such that Ω =

⋃∞
j=1Ωj.

We also need the following results from Björn–Björn [1].
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Proposition 3.8 (Corollary 5.4 in [1]). Assume that V is regular. Let
f ∈ Lip(V ), and let u be the continuous solution of the Kf,f (V )-obstacle

problem in V , and u = f on ∂V . Then u ∈ C(V ).

Lemma 3.9 (Lemma 5.6 in [1]). Let ψj : V → R and fj ∈ N1,p(V ) be
such that Kψj ,fj (V ) 6= ∅, and let uj be the lower semicontinuously regularized
solution of the Kψj ,fj (V )-obstacle problem, j = 1, 2. Assume that ψ1 ≤ ψ2

µ-a.e. in V and that (f1 − f2)+ ∈ N1,p
0 (V ). Then u1 ≤ u2 in V .

4. Definitions of superharmonicity. The main purpose of this note
is to obtain equivalent definitions of superharmonicity; in order to be able
to study this we need to give a number of different definitions of superhar-
monicity.

One should observe that even though we give different definitions of
superharmonicity, the underlining definitions of harmonicity and supermin-
imizers are the same throughout.

Definition 4.1. Let u : Ω → (−∞,∞] and consider the following state-
ments:

(i) The function u is lower semicontinuous in Ω.
(ii) The function u is not identically ∞ in any component of Ω.

(iii.a) For every nonempty open set Ω′ b Ω with Cp(X \ Ω′) > 0, and

all functions v ∈ C(Ω′) ∩ N1,p(Ω′) such that v ≤ u on ∂Ω′, we
have HΩ′v ≤ u in Ω′.

(iii.b) For every nonempty open set Ω′ b Ω with Cp(X \Ω′) > 0, and all
functions v ∈ Lip(∂Ω′) such that v ≤ u on ∂Ω′, we have HΩ′v ≤ u
in Ω′.

(iii.c) For every nonempty open set Ω′ b Ω with Cp(X \ Ω′) > 0, and

all functions v ∈ N1,p
loc (Ω) such that v ≤ u q.e. on ∂Ω′, we have

HΩ′v ≤ u in Ω′.
(iii.d) For every nonempty open set Ω′ b Ω with Cp(X \ Ω′) > 0, and

all functions v ∈ C(Ω′) ∩ N1,p(Ω′) such that v ≤ u on Ω′, we
have w ≤ u in Ω′, where w is the continuous solution of the
Kv,v(Ω′)-obstacle problem.

(iii.e) For every nonempty open set Ω′ b Ω with Cp(X \ Ω′) > 0, and

all functions v ∈ Lip(Ω′) such that v ≤ u on Ω′, we have w ≤ u
in Ω′, where w is the continuous solution of the Kv,v(Ω′)-obstacle
problem.

(iii.f) For every nonempty open set Ω′ b Ω with Cp(X \ Ω′) > 0, and

all functions v ∈ C(Ω′) such that v is p-harmonic in Ω′ and v ≤ u
on ∂Ω′, we have v ≤ u in Ω′.
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(iii.g) For every nonempty open set Ω′ b Ω with Ω′ 6= Ω, and all func-
tions v ∈ C(Ω′) such that v is p-harmonic in Ω′ and v ≤ u on
∂Ω′, we have v ≤ u in Ω′.

For j = a, . . . , g, we define u to be (j)-superharmonic in Ω if u satisfies con-
ditions (i), (ii) and (iii.j). Furthermore, we define u to be (j)-hyperharmonic
in Ω if u satisfies conditions (i) and (iii.j).

We will show that the different definitions of superharmonicity above are
equivalent.

The definition of (g)-superharmonicity is the one given in Heinonen–
Kilpeläinen–Martio [7, p. 131] in the weighted Euclidean setting.

Kinnunen–Martio [13, Section 7] gave the definition of (a)-superharmon-
icity in the metric space setting. They knew that the definitions of (g)-
superharmonicity and (a)-superharmonicity are equivalent in the weighted
Euclidean setting (this was mentioned at a public lecture given by Kinnunen
at the University of Michigan, Ann Arbor, 28 February 2002).

In Björn–Björn–Shanmugalingam [2] it was observed, after Defini-
tion 3.10, that (a)-superharmonicity is equivalent to (b)-superharmonicity.

In connection with quasisuperminimizers, Kinnunen–Martio [14] gave the
definition of (d)-superharmonicity. They showed that (d)-superharmonicity
implies (a)-superharmonicity.

We have given special care to correctly handle the case X = Ω bounded.

Remark 4.2. Let us make some observations for j ∈ {a, . . . , g}.
(1) If u is p-harmonic in Ω, then u is (j)-superharmonic in Ω.
(2) The assumption “for every nonempty open set Ω ′ b Ω” can be

replaced by “for every domain Ω′ b Ω”. In one direction this is trivial
and in the other it follows by arguing in each component of Ω ′ separately.
(A domain is by definition a nonempty open connected set.)

(3) Let Ω′ b Ω. If X is unbounded, then it is immediate that Cp(X \Ω′)
is positive; similarly if Ω 6= X, then there are x ∈ X \Ω and r > 0 so that
B(x, r) ⊂ X\Ω′, hence Cp(X\Ω′) > 0. Thus the condition Cp(X\Ω′) > 0 is
redundant unless X = Ω is bounded, but in this case we need to have the ob-
stacle problem uniquely soluble (and the operator HΩ′ well defined), which
is essential in (iii.a)–(iii.e). Alternatively one can formulate these definitions
in a manner similar to (i) in Theorem 6.1, or, in view of (5) below, just say
that if X is bounded, then u is (j)-superharmonic on X if u is constant.

(4) If the condition Ω′ 6= Ω were omitted from (iii.g) and X were
bounded, then, as all constant functions are p-harmonic, no function would
be (g)-superharmonic on X, which would contradict (1).

(5) It follows from the maximum principle for p-harmonic functions and
for the obstacle problem that u ≡ k ∈ R is (j)-superharmonic. Conversely,
if X is bounded, then all (j)-superharmonic functions on X are constant. To
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see this, let u be (d)-superharmonic on X. Let m = infX u and M = supX u.
Let δ < M be arbitrary and x ∈ X be so that u(x) > δ. Since u is lower semi-
continuous there is a ball B = B(x, r) such that u > δ in 2B. Let v ∈ Lip(X)
be such that v = δ in B, v = m on X \ 2B and m ≤ v ≤ δ on X; then v ≤ u
on X. Let w be the continuous solution of the Kv,v(X \B)-obstacle problem.
By Lemma 3.9 and the maximum principle for p-harmonic functions,

u ≥ w ≥ HX\Bv ≥ δ in X \B.

Thus u ≥ δ on X, and since δ < M was arbitrary, u ≡M <∞. The proofs
for j 6= d are similar or easier.

(6) If u and v are (j)-superharmonic in Ω, a ≥ 0 and b ∈ R, then
min{u, v} and au+ b are (j)-superharmonic in Ω.

(7) A function u satisfying (ii) is (j)-superharmonic in Ω if and only
if min{u, k} is (j)-superharmonic in Ω for all k ∈ R. In one direction this
follows from (5) and (6). In the other direction, if j 6= c, it follows since con-
tinuous functions are bounded on compact sets, and if j = c it will follow
from the characterization in Theorem 6.1.

(8) Let Ω1 ⊂ Ω2 ⊂ · · · be an increasing sequence of open sets such that
Ω =

⋃∞
k=1Ωk. Then a function is (j)-superharmonic in Ω if and only if it

is (j)-superharmonic in Ωk for every k. (This follows from a compactness
argument.)

(9) A function is (j)-superharmonic in Ω if and only if it is (j)-super-
harmonic in every component of Ω.

(10) A function is (j)-hyperharmonic in Ω if and only if in every com-
ponent of Ω it is either identically ∞ or (j)-superharmonic.

(11) There are obvious counterparts for subharmonic and hypoharmonic
functions.

5. Functions that are (f)-superharmonic. In this section we prove
the results for (f)-superharmonic functions needed in the proof of Theo-
rem 6.1. The proofs in this section are fairly close to those in Section 7
of Kinnunen–Martio [13]. The author has been unable to follow the proof of
Lemma 7.16 in [13], however, Kinnunen–Martio made all the preparations for
a correct proof. For the reader who so wishes it is an easy task to modify the
proof of Lemma 5.4 below to give an alternative proof of Lemma 7.16 in [13].

Theorem 5.1. Let u be (f)-superharmonic in Ω and let Ω′ b Ω be
regular. Then there is an increasing sequence of continuous superminimizers
{uj}∞j=1 in Ω′ such that u(x) = limj→∞ uj(x) for every x ∈ Ω′.

Proof. Since u is lower semicontinuous in Ω, there is an increasing se-
quence {ϕj}∞j=1 of Lipschitz functions on Ω′ such that u = limj→∞ ϕj
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on Ω′. Let uj be the continuous solution of the Kϕj ,ϕj (Ω′)-obstacle prob-

lem in Ω′, and uj = ϕj on ∂Ω′. By Proposition 3.8, uj ∈ C(Ω′). Let
Aj = {x ∈ Ω′ : uj(x) > ϕj(x)}. By Proposition 3.2, Aj is an open set,
uj = HAjϕj is p-harmonic in Aj and uj = ϕj ≤ u on ∂Aj . Since u is
(f)-superharmonic, it follows that uj ≤ u in Aj . Thus

u = lim
j→∞

ϕj ≤ lim
j→∞

uj ≤ u in Ω′,

and hence u = limj→∞ uj in Ω′. That the sequence {uj}∞j=1 is increasing
follows from Lemma 3.9.

Corollary 5.2. Let u be (f)-superharmonic in Ω and let Ω′ b Ω be
regular. If u is locally bounded in Ω′, then u is a superminimizer in Ω′.

Proof. By Theorem 5.1, u is a limit of an increasing sequence of super-
minimizers. It follows from Theorem 6.1 in [13] that u is a superminimizer
in Ω′.

Lemma 5.3. Let u be (f)-superharmonic in Ω and let Ω′ b Ω be regular.
Then for every ball B such that u ≥ 0 in 6B ⊂ Ω′ we have

( �
B

uσ dµ
)1/σ

≤ c inf
3B
u,

where c <∞ and σ > 0 only depend on p and the constants in the doubling
condition and the Poincaré inequality.

Proof. Construct the sequence {uj}∞j=1 as in the proof of Theorem 5.1.
In the construction we can assume that ϕj ≥ 0 in 5B, and hence that 0 ≤
uj ≤ u in 5B. Using Lemma 4.7 of [13], and the fact that uj is continuous,
we see that

( �
B

uσj dµ
)1/σ

≤ c ess inf
3B

uj = c inf
3B
uj ≤ c inf

3B
u.

Since uj increases to u, the monotone convergence theorem shows that
( �
B

uσ dµ
)1/σ

≤ c inf
3B
u.

Lemma 5.4. Let u be (f)-superharmonic in Ω, Ω′ b Ω be regular and
Ω′′ ⊂ Ω′ be open. Assume that u = 0 µ-a.e. in Ω′′. Then u = 0 everywhere
in Ω′′.

Proof. Let x ∈ Ω′′. Since u is lower semicontinuous,

u(x) ≤ lim inf
y→x

u(y) ≤ 0.

Let ε > 0. Again since u is lower semicontinuous, there is a ball B =
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B(x, r) ⊂ 6B ⊂ Ω′′ such that

u(y) ≥ u(x)− ε for y ∈ 6B.

Then v = u−u(x)+ε is an (f)-superharmonic function in Ω such that v ≥ 0
in 6B and v = −u(x) + ε µ-a.e. in 6B. So by Lemma 5.3,

−u(x) ≤ −u(x) + ε =
( �
B

vσ dµ
)1/σ

≤ c inf
3B
v ≤ cv(x) = cε.

Letting ε→ 0+ gives −u(x) ≤ 0, i.e. u(x) = 0.

Theorem 5.5. Let u be (f)-superharmonic in Ω and let Ω′ b Ω be
regular. Then

u(x) = ess lim inf
y→x

u(y) for every x ∈ Ω′.

Proof. Let x ∈ Ω′. Since u is lower semicontinuous,

u(x) ≤ lim inf
y→x

u(y) ≤ ess lim inf
y→x

u(y) =: λ.

Let a < λ. Then there is a ball B = B(x, r) ⊂ Ω′ such that

u(y) > a for µ-a.e. y ∈ B.
Let v = min{u− a, 0}, an (f)-superharmonic function in Ω such that v = 0
µ-a.e. in B. By Lemma 5.4, v = 0 everywhere in B, and thus u(x) ≥ a.
Letting a→ λ shows that u(x) = λ.

6. Characterizations of superharmonicity

Theorem 6.1. Let u : Ω → (−∞,∞]. Then the following are equivalent :

(a) u is (a)-superharmonic in Ω;
(b) u is (b)-superharmonic in Ω;

...
(g) u is (g)-superharmonic in Ω;
(h) u is 1-quasisuperharmonic in Ω;
(i) u is (d)-superharmonic in Ω′ for every nonempty open set Ω′ ⊂ Ω

with Cp(X \Ω′) > 0;
(j) u is not identically ∞ in any component of Ω, and min{u, k} is

(d)-superharmonic in Ω for every k ∈ R;
(k) u is not identically ∞ in any component of Ω, and min{u, k} is

a lower semicontinuously regularized superminimizer in Ω for every
k ∈ R;

(l) u is not identically ∞ in any component of Ω, and for every
k ∈ R, uk := min{u, k} is a superminimizer in Ω such that uk(x) =
limr→0+ � B(x,r) uk dµ for x ∈ Ω.
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Of course, in (i) and (j) we can replace d by a, b, c, e, f or g once this
theorem has been proved.

Proof. (d)⇒(i). This is trivial.
(i)⇒(d). If Ω = X is bounded, then the proof given in Remark 4.2(5)

actually only uses the fact that u is (d)-superharmonic in X \ B for every
ball B ⊂ X, and thus u is constant and we are done. Otherwise, we can
find Ω1 b Ω2 b · · · such that Ω =

⋃∞
j=1Ωj . As Cp(X \ Ωj) > 0, u is

(d)-superharmonic in Ωj for every j, and thus by Remark 4.2(8), u is (d)-
superharmonic in Ω.

(d)⇒(a). This is Lemma 8.5 in Kinnunen–Martio [14]. We however give
an alternative proof here: If Ω = X is bounded, then this follows from Re-
mark 4.2(5). Otherwise, we can find Ω1 b Ω2 b · · · such that Ω =

⋃∞
j=1Ωj .

For every j, by Lemma 8.2 in [14] there exists an increasing sequence
{uj,k}∞k=1 of continuous superminimizers in Ωj such that u = limk→∞ uj,k
everywhere in Ωj . By Proposition 7.4 in Kinnunen–Martio [13], uj,k is (a)-
superharmonic in Ωj . Hence, by Lemma 7.1 in [13], u is (a)-superharmonic
in Ωj . Finally, by Remark 4.2(8), u is (a)-superharmonic in Ω.

(a)⇒(c). Let Ω′ b Ω be a nonempty open set with Cp(X \Ω′) > 0 and

let v ∈ N1,p
loc (Ω) be such that v ≤ u q.e. on ∂Ω′. Let η ∈ Lipc(Ω) be 1 on Ω′

and

ṽ =

{
min{v, u} on ∂Ω′,

ηv in X \ ∂Ω′.
Then ṽ = ηv q.e. on X, and as ηv ∈ N 1,p(X) also ṽ ∈ N1,p(X). Moreover
ṽ ≤ u on ∂Ω′. Since u is lower semicontinuous it is bounded from below
on Ω′. Furthermore, lim infΩ′3y→x u(y) ≥ u(x) ≥ ṽ(x) for x ∈ ∂Ω′, from
which it follows, by definition, that u ∈ Uṽ(Ω′). Using Theorem 3.5, we see
that

u ≥ PΩ′ ṽ = HΩ′ ṽ = HΩ′v in Ω′.

(c)⇒(b). This follows since any Lipschitz function on ∂Ω ′ can be ex-

tended to a Lipschitz function in Ω, and Lip(Ω) ⊂ N 1,p
loc (Ω).

(b)⇒(g). If Ω = X is bounded, then u is constant by Remark 4.2(5) and
thus u is (g)-superharmonic. Otherwise, let Ω ′ b Ω be a nonempty open set.
Then Cp(X\Ω′) > 0. Let v ∈ C(Ω′) be p-harmonic inΩ′ and such that v ≤ u
on ∂Ω′. By Corollary 6.2 in Björn–Björn–Shanmugalingam [2], v = PΩ′v
in Ω′. Let ε > 0. Then there exists v′ ∈ Lip(Ω′) ⊂ N1,p(Ω′) such that
v′ ≤ v ≤ v′ + ε on Ω′. Since v′ ≤ u on ∂Ω′ and u is (b)-superharmonic,
PΩ′v

′ = HΩ′v
′ ≤ u in Ω′. By the comparison principle we have v = PΩ′v ≤

PΩ′v
′ + ε ≤ u + ε in Ω′. Letting ε → 0+ completes the proof of this impli-

cation.
(g)⇒(f). This is trivial.
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(f)⇒(k). If Ω = X is bounded, then u is constant by Remark 4.2(5)
and thus (k) holds. Otherwise, by Theorem 3.7, there exist regular sets
Ω1 b Ω2 b · · · such that Ω =

⋃∞
j=1Ωj . Let k ∈ R and uk = min{u, k}.

By Corollary 5.2, uk is a superminimizer in Ωj for every j, from which
it follows that uk is a superminimizer in Ω. By Theorem 5.5, uk is lower
semicontinuously regularized in Ωj for every j and thus in all of Ω.

(k)⇒(j). This follows directly from Lemma 8.3 in Kinnunen–Martio [14].
(For the case Cp(X \ Ω) = 0 use the fact that we have already shown that
(d)⇔(i).)

(j)⇒(d). This follows from Remark 4.2(7).
(d)⇒(e). This is trivial.
(e)⇒(d). Let Ω′ b Ω be a nonempty open set with Cp(X \Ω′) > 0. Let

further v ∈ C(Ω′) ∩ N1,p(Ω′) be such that v ≤ u on Ω′. Let ε > 0. Then
there exists v′ ∈ Lip(Ω′) ⊂ N1,p(Ω′) such that v′ ≤ v ≤ v′ + ε on Ω′. Let w
and w′ be the continuous solutions of the Kv,v(Ω′)- and Kv′,v′(Ω′)-obstacle

problems, respectively. Since v′ ≤ u on Ω′ and u is (e)-superharmonic, w′ ≤
u in Ω′. By Lemma 3.9, w ≤ w′+ ε ≤ u+ ε in Ω′. Letting ε→ 0+ completes
the proof of this implication.

(k)⇔(h). This is Theorem 7.10 in Kinnunen–Martio [14] (which unfor-
tunately is not correctly stated, but should be stated in the form of the
equivalence we want here).

(k)⇔(l). This follows from Remark 5.4 in Kinnunen–Martio [13], which
says that

ess lim inf
y→x

v(y) = lim
r→0+

�
B(x,r)

v dµ, x ∈ Ω,

for any bounded superminimizer v in Ω.

7. Characterizations of hyperharmonicity

Theorem 7.1. Let u : Ω → (−∞,∞]. Then the following are equivalent :

(a) u is (a)-hyperharmonic in Ω;
(b) u is (b)-hyperharmonic in Ω;

...
(g) u is (g)-hyperharmonic in Ω;
(h) u is 1-quasihyperharmonic in Ω;
(i) u is (d)-hyperharmonic in Ω′ for every nonempty open set Ω′ ⊂ Ω

with Cp(X \Ω′) > 0;
(j) min{u, k} is (a)-superharmonic in Ω for every k ∈ R;
(k) min{u, k} is a lower semicontinuously regularized superminimizer in

Ω for every k ∈ R;
(l) for every k ∈ R, uk := min{u, k} is a superminimizer in Ω such that

uk(x) = limr→0+ � B(x,r) uk dµ for x ∈ Ω.
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Proof. Assume first that Ω is connected. If u ≡ ∞ in Ω, then all state-
ments are true. On the other hand, if u 6≡ ∞ in Ω, then the result follows
directly from Theorem 6.1.

Assume next that Ω is arbitrary. Then we argue in each component
separately and obtain the full result using Remark 4.2(10).

8. A line joined to a triangle. In this section we give an example of
a space X satisfying our standard assumptions including the (1, 1)-Poincaré
inequality, such that the local dimension of the space is different at different
parts of the space.

We let X1 = [−1, 0], X2 = {z ∈ C : 0 ≤ Re z ≤ 1 and |arg z| ≤ π/4}
(other angles can be obtained by applying a linear transformation) and X =
X1 ∪X2. (We use complex notation to simplify some expressions.) Further,
let µ|X1 be the one-dimensional Lebesgue measure, and dµ|X2 = |z|−1 dm,
where m is the two-dimensional Lebesgue measure, i.e. dµ|X2 = dr dθ in
polar coordinates.

We need to prove that µ is doubling and that X satisfies the (1, 1)-
Poincaré inequality. We start with the Poincaré inequality.

Let u be a measurable function on X and g an upper gradient of u. Let
B = B(x0, r0) ⊂ X be a ball. We want to prove that there is a constant aB
such that

(8.1)
�
B

|u− aB| dµ ≤ C diam(B)
�
B

g dµ,

for if this holds then
�
B

|u− uB| dµ ≤
�
B

|u− aB | dµ+ |uB − aB|

≤
�
B

|u− aB | dµ+
�
B

|u− aB | dµ

= 2
�
B

|u− aB| dµ ≤ 2C diam(B)
�
B

g dµ.

Assume first that B ∩ X1 6= ∅. We let T0 = inf{x ∈ B ∩ X1}, T1 =
sup{x ∈ B ∩X1} and aB = u(T1). Then

�
B∩X1

|u− aB| dµ ≤
T1�
T0

T1�
t

g(τ) dτ dt ≤ |T1 − T0|
T1�
T0

g(τ) dτ(8.2)

≤ diam(B)
�

B∩X1

g dµ.
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Thus we have proved (8.1) in the case when B ⊂ X1. We therefore assume
that 0 ∈ B. Furthermore, let rθ = sup{r ≥ 0 : reiθ ∈ B ∩X2}. Then

�
B∩X2

|u− aB | dµ =

π/4�
−π/4

rθ�
0

|u(reiθ)− u(0)| dr dθ

≤
π/4�
−π/4

rθ�
0

r�
0

g(%eiθ) d% dr dθ

≤
π/4�
−π/4

rθ

rθ�
0

g(%eiθ) d% dθ ≤ diam(B)
�

B∩X2

g dµ.

Combining this with (8.2) gives
�
B

|u− aB | dµ ≤ diam(B)
�
B

g dµ.

It remains to consider the case B = B(x, r) ⊂ X2 \ {0}, x ∈ X2. Let
v = u|X2 and extend v by reflections to all of C, i.e. let v(z) = v(w) if z ∼ w,
where ∼ is the equivalence class on C defined by saying that

a+ib ∼ −a−ib ∼ b+ia, ±1+a+ib ∼ ±1−a+ib, a±i+ib ∼ a±i−ib,
a, b ∈ R. Note that for every z ∈ C, there is a unique w ∈ X2 such that z ∼ w.
We extend the measure dµ|X2 to dµ̃ = dr dθ on C. It is straightforward to
check that µ̃ is a Muckenhoupt A1 weight and therefore µ̃ is doubling and
satisfies a (1, 1)-Poincaré inequality (see, e.g., J. Björn [3, Theorem 4]). Let
now g be an upper gradient of u. Then g̃, defined by g̃ = g on X2 and

g̃(z) = g̃(w) if z ∼ w, is an upper gradient of v on C. Let B̃ = B(x, r) as a

ball in C. Since 0 /∈ B, for every z ∈ B there are at most eight w ∈ B̃ such

that w ∼ z. Moreover, for every w ∈ B̃, there exists z ∈ B with |z| ≤ |w|.
Since dµ̃(z) = w(z) dm, where w(z) = |z|−1 decreases with |z| and m is the
two-dimensional Lebesgue measure, we see that

�
B

|u− v
B̃
| dµ ≤

�
B̃

|v − v
B̃
| dµ ≤ Cr

�
B̃

g̃ dµ ≤ 8Cr
�
B

g dµ.

We have thus proved the (1, 1)-Poincaré-inequality.
Let us now turn to the doubling property, and start with the case B =

B(x, r) ⊂ X, where x ∈ X2 and r < 3. Let also B̃ = B(x, r) as a subset

of C. For every z ∈ B ∩X2 there are at most eighty w ∈ B̃ such that w ∼ z.
Since µ̃ is doubling, we have

(8.3) µ(2B ∩X2) ≤ µ̃(2B̃) ≤ Cµ(B̃) ≤ 80Cµ(B).
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If 2B ∩X1 6= ∅, then there is 0 ≤ θ′ ≤ 1
4π such that

{
%eiθ : 0 ≤ % ≤ r and θ′ − 1

4π ≤ arg z ≤ θ′
}
⊂ 2B ∩X2.

It follows that

µ(2B ∩X1) ≤ 2r ≤ 8

π
µ(2B ∩X2),

and together with (8.3) this shows that µ is doubling for balls B with center
in X2.

Finally, consider B = B(x, r) with x ∈ X1, r < 3. Then

µ(2B) ≤ 2r +

π/4�
−π/4

2r�
0

d% dθ ≤ 6r ≤ 18µ(B ∩X1) ≤ 18µ(B).

We have thus shown that µ is doubling.
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