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A note on a construction of J. F. Feinstein

by

M. J. Heath (Nottingham)

Abstract. In [6] J. F. Feinstein constructed a compact plane set X such that R(X),
the uniform closure of the algebra of rational functions with poles off X, has no non-zero,
bounded point derivations but is not weakly amenable. In the same paper he gave an
example of a separable uniform algebra A such that every point in the character space of
A is a peak point but A is not weakly amenable. We show that it is possible to modify
the construction in order to produce examples which are also regular.

1. Introduction. A uniform algebra A on a compact (Hausdorff) space
X is said to be regular on X if for any point x in X and any compact subset
K of X \ {x} there is a function f in A such that f(x) = 1 and f is zero
on K. We call A regular if it is regular on its character space, and trivial if
it is C(X), the uniform algebra of all continuous functions on X. The first
example of a non-trivial regular uniform algebra was given by McKissick [8]
(see also [7]; [11, Chapter 37]): the example was R(X) for a compact plane
set X.

The notion of weak amenability was introduced in [1]. A commutative
Banach algebra A is said to be weakly amenable if there are no non-zero,
continuous derivations from A into any commutative Banach A-bimodule. It
is proved in [1] that this is equivalent to there being no non-zero continuous
derivations into the dual module A′.

As point derivations may be regarded as derivations into 1-dimensional,
commutative Banach modules it is a necessary condition for weak amenabil-
ity that there be no non-zero, bounded point derivations. However, this
condition is not sufficient, even for uniform algebras: in [6] J. F. Feinstein
constructed a compact plane set X such that the uniform algebra R(X) has
no non-zero, bounded point derivations but R(X) is not weakly amenable.
It was not clear whether such an example could also be regular. In this note
we show that it can.

Notation. Throughout this paper Q will refer to the compact plane
set {x+ iy : x, y ∈ [−1, 1]}.
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For a plane set X and a function f ∈ C(X), |f |X will be the uniform
norm of f on X, sup{|f(z)| : z ∈ X}. For a compact plane set X we denote
by R0(x) the set of restrictions to X of rational functions with poles off X.
Hence the uniform algebra R(X) is the uniform closure of R0(X) in C(X).

If D is a disc in the plane then r(D) shall refer to its radius.
Let µ be a complex measure on a compact plane set X such that the

bilinear functional on R0(X)×R0(X) defined by

(f, g) 7→
�

X

f ′(x)g(x) dµ(x)

is bounded. Then, as in [6], we may extend by continuity to R(X)× R(X)
and obtain a continuous derivation D from R(X) to R(X)′ such that for
any f and g in R0(X) we have

D(f)(g) =
�

X

f ′(x)g(x) dµ(x).

In the next section, we strengthen Körner’s [7] version of McKissick’s
Lemma to allow greater control over the centres and radii of the discs re-
moved. Using this we modify Feinstein’s [6] construction so that R(X) is
regular. In fact we prove the following theorem.

Theorem 1.1. For each C > 0 there is a compact plane set X obtained
by deleting from Q a countable union of Jordan domains such that ∂Q is a
subset of X, R(X) is regular and has no non-zero, bounded point derivations
and , for all f, g in R0(X),

∣∣∣
�

∂Q

f ′(z)g(z)dz
∣∣∣ ≤ C|f |X |g|X .

If we let X be a compact plane set constructed as in Theorem 1.1 we
have, by the discussion above, a non-zero continuous derivation D from
R(X) to R(X)′ such that

D(f)(g) =
�

∂Q

f ′(z)g(z) dz

for f, g ∈ R0(X). So R(X) is not weakly amenable.

2. The construction. Our main new tool will be the following theorem,
which is a variation on McKissick’s result in [8] (see also [7]).

Theorem 2.1. For any C0 > 0 there is a compact plane set X1 obtained
by deleting from Q a countable union of open discs (Dn)∞n=1 whose closures
are in int(Q) such that R(X1) is regular and , letting sn be the distance
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from Dn to ∂Q,
∞∑

n=1

r(Dn)

s2
n

< C0.

In order to prove Theorem 2.1 we require a series of lemmas which are
variations on the results of [7].

The following is [7, Lemma 2.1].

Lemma 2.2. If N ≥ 2 is an integer and hN (z) = 1/(1 − zN ) then the
following hold :

(i) |hN (z)| ≤ 2|z|−N for |z|N ≥ 2;
(ii) |1− hN (z)| ≤ 2|z|N for |z|N ≤ 2−1;
(iii) hN (z) 6= 0 for all z.

Further if (8 logN)−1 > δ > 0 then:

(iv) |hN (z)| ≤ 2δ−1 provided only that |z−w| ≥ δN−1 whenever wN = 1.

The following is a variant of [7, Lemma 2.2].

Lemma 2.3. If in Lemma 2.2 we set N = n22n with n sufficiently large
then:

(i) |hN (z)| ≤ (n+ 1)−4 for |z| ≥ 1 + 2−(2n+1);

(ii) |1− hN (z)| ≤ (n+ 1)−4 for |z| ≤ 1− 2−(2n+1);
(iii) hN 6= 0 for all z;
(iv) |hN (z)| ≤ n−422n+1 provided only that |z−w| ≥ n−52−4n whenever

wN = 1.

Proof. Parts (i), (ii) and (iii) are the corresponding parts of [7, 2.2]. Part
(iv) follows on putting δ = n−32−2n.

From this we obtain the following variation on [7, Lemma 2.3].

Lemma 2.4. Provided only that n is sufficiently large we can find a finite
collection A(n) of disjoint open discs and a rational function gn such that ,
letting s0(∆) = dist(∆,R ∪ iR) for a disc ∆, the following hold :

(i)
∑

∆∈A(n) r(∆)/s0(∆)2 < n−2 and so
∑

∆∈A(n) r(∆) ≤ n−2;

(ii) the poles of gn lie in
⋃
∆∈A(n)∆;

(iii) |gn(z)| ≤ (n+ 1)−4 for |z| ≥ 1− 2−(2n+1);

(iv) |1− hN (z)| ≤ (n+ 1)−4 for |z| ≤ 1− 2−(2n−1);
(v) |gn(z)| ≤ n422n+1 for z 6∈ ⋃∆∈A(n)∆;

(vi) gn(z) 6= 0 for all z ;
(vii)

⋃
∆∈A(n)∆ ⊂

{
z : 2−(2n−1) ≤ |z| ≤ 1− 2−(2n+1)

}
.

Proof. Let N = n22n, ω = exp(2π/N), gn = hN (ω−1/2(1 − 2−2n)−1z).
If we take A(n) to be the collection of discs with radii n−52−4n and centres
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(1−2−2n)ωr+1/2 (0 ≤ r ≤ N−1), results (ii)–(vii) are either trivial or follow

from Lemma 2.3 on scaling by a factor of ω1/2(1− 2−2n).

To show part (i), consider first those discs with centres (1− 2−2n)ωr+1/2

(0 ≤ r ≤ (N − 1)/8). For such a disc ∆ we have

s0(∆) = (1− 2−2n) sin

(
(r + 1/2)π

n22n

)
− n−52−4n

≥ (r + 1/2)π

n22n+2
− n−52−4n ≥

(
1

2

)
2r + 1

n22n
.

So

r(∆)

s0(∆)2
≤ n−52−4n 4n224n

(2r + 1)2
=

4n−3

(2r + 1)2

and

N/8−1∑

k=1

r(∆k)

s0(∆k)
≤ 4n−3

N/8−1∑

k=0

(2k + 1)−2 ≤ 4n−3
∞∑

k=0

k−2 ≤ n−2

8

provided only that n > K = 32
∑∞

r=0 r
−2. So, by symmetry,

∑

∆∈A(n)

r(∆)

s0(∆)2
≤ n−2

provided only that n is sufficiently large.

Multiplying the gn together as in [7], we obtain the following.

Lemma 2.5. Given any ε > 0 there exists an m = m(ε) such that if
(adopting the notation of Lemma 2.4) we let fn = (m!)−4

∏n
r=m gr and {∆k}

be a sequence enumerating the discs of
⋃∞
r=mA(r) then the following hold :

(a)
∑∞

k=1 r(∆k)/s0(∆k)
2 < ε and so then

∑∞
k=1 r(∆k) < ε;

(b) the poles of the fn lie in
⋃∞
k=1∆k;

(c) the sequence {fn} tends uniformly to zero on {z ∈ C : |z| ≥ 1}.

Proof. Observe that

∞∑

k=1

r(∆k) ≤
∞∑

k=1

r(∆k)

s0(∆k)2
=

∞∑

l=m

∑

∆∈A(l)

r(∆)

s0(∆)2
≤
∞∑

l=m

l−2 < ε

provided only that m(ε) > 2ε−1+1. Thus conclusions (a) and (b) are easy to
verify. To prove (c), set K =

∏∞
r=1(1+(r+1)−4) and observe that, provided

m(ε) is large enough that (m+ 1)!4 > 2(m+ 1)622(m+1) + 2(m+ 1)2, if we
let z 6∈ ⋃∞k=1∆k, a simple induction gives
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|fn(z)| ≤





(n+ 1)!−4 for 1− 2−(2n+1) < |z|,
n−2 ≤∏n

r=m(1 + (r + 1)−4) ≤ K
for 1− 2−(2n−1) < |z| < 1− 2−(2n+1),∏n

r=m(1 + (r + 1)−4) ≤ K for |z| < 1− 2−(2n−1).

Using the trivial equality

|fn+1(z)− fn(z)| = |fn(z)| |1− gn+1(z)|,
we see that for z 6∈ ⋃∞k=1∆k,

|fn+1(z)− fn(z)| ≤





K(n+ 1)−4 for |z| ≤ 1− 2−(2n+1),

(n+ 1)!−4(1 + (n+ 1)422n+1) ≤ (n+ 1)−2

for 1− 2−(2n+1) < |z|.
Thus |fn+1(z)−fn(z)| ≤ K(n+1)−2 for all z 6∈ ⋃∞k=1∆k and, by for example
the WeierstrassM test, fn converges uniformly to f say. To see that f(z) 6= 0
for |z| < 1, z 6∈ ⋃∞k=1∆k, note that if |z| ≤ 1− 22n−1 then fn(z) 6= 0, and

∞∑

r=n+1

|1− gr(z)| ≤
∞∑

r−n+1

(r + 1)−4 <∞.

So by a basic result on infinite products (see, for example, [10, 15.5]),

f(z) = fn(z)

∞∏

r=n+1

gr(z) 6= 0.

Hence by dilation and translation we obtain the following.

Lemma 2.6. Given any closed disc D, with centre a and radius r, and
any ε > 0, we can find a sequence {∆k} of open discs and a sequence {fn}
of rational functions such that , letting s1(∆) := dist(∆k, a + R ∪ iR) for a
disc ∆, the following hold :

(a)
∑∞

k=1 r(∆k)/s1(∆k)
2 < ε and so

∑∞
k=1R(∆k) < ε;

(b) the poles of the fn lie in
⋃∞
k=1∆k;

(c) the sequence {fn} tends uniformly to zero on (C \D) \⋃∞k=1∆k.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let {Dl}∞l=1 be an enumeration of all closed discs
of centre z and radius r with z ∈ Q + iQ and r ∈ Q+ such that, letting
K = {−1− i,−1 + i, 1− i, 1 + i}, one of the following holds:

(1) z ∈ int(Q) and r < dist(z, ∂Y );

(2) z ∈ ∂Q \K and r < dist(z,K);

(3) z ∈ K and r < 1.
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We apply Lemma 2.6 with D = Dl and ε = εl where

εl <





2−l−1C0 dist(Dl, ∂Q)2 if Dl is of type (1),

2−l−1C0 dist(Dl,K)2 if Dl is of type (2),

2−l−1C0 if Dl is of type (3),

to obtain (∆l,n) and (fl,k). Let {UN}∞N=1 be a sequence enumerating the
∆n,a and

X0 = Q \
∞⋃

N=1

UN .

We have
∞∑

N=1

r(UN )

s(UN )2
=

∞∑

l=1

∞∑

n=1

r(∆l,n)

s(∆l,n)2
<

∞∑

l=1

C02−l = C0.

Given any point z in X0 and any compact set B ⊂ X0 there exists Dl with
z ∈ Dl and B ∩Dl = ∅. Hence fl := limk→∞ fl,k ∈ R(X0) has fl(z) 6= 0 and
fl(B) ⊂ {0}, so R(X0) is regular.

In order to prove Theorem 1.1 we need some further lemmas. The first
one is trivial.

Lemma 2.7. Let X, Y be compact plane sets with X ⊂ Y . If R(Y ) is
regular , then the same is true for X.

The next two results are essentially the same as those used in [6].

Lemma 2.8. Let (χn) be a sequence of Jordan domains whose closures
are contained in Q. Set X2 = Q \⋃∞n=1 χn. Let sn be the distance from χn
to ∂Q and let cn be the length of the boundary of χn. Let f and g be in
R0(X2). Then

∣∣∣
�

∂Q

f ′(z)g(z) dz
∣∣∣ ≤ 2|f |X |g|X

∞∑

n=1

cn
s2
n

.

Proof. The argument of [6, 2.1] applies.

Lemma 2.9. Let X be a compact subset of Q. Suppose that there is a
sequence of real numbers Ln ∈ (0, 1) such that Ln → 1 and , for each n,
R(X ∩LnQ) has no non-zero bounded point derivations. Then R(X) has no
non-zero bounded point derivations.

Proof. The argument of [6, 2.2] applies.

The following is [6, 2.3].

Lemma 2.10. Let X, Y be compact plane sets with X ⊂ Y . If R(Y ) has
no non-zero, bounded point derivations, then the same is true for X.

The following result was proved by Wermer [12].
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Proposition 2.11. Let D be a closed disc in C and let ε > 0. Then
there is a sequence of open discs Uk ⊂ D such that R(D \⋃∞k=1 Uk) has no
non-zero bounded point derivations but the sum of the radii of the discs Uk
is less than ε.

Corollary 2.12. Let Y be a square set of the form rQ+ z and δ > 0.
Then there is a sequence of Jordan domains χl ⊂ Y such that R(Y \⋃∞l=1 χl)
has no non-zero bounded point derivations but the sum of the lengths of the
boundaries of the χl is less than δ.

Proof. Apply the previous proposition to any closed disc containing Y
with ε < δ/(2π). Then, by Lemma 2.10, letting (χl) be a sequence enumer-
ating all non-empty sets of the form Uk ∩ int(Y ) will suffice.

Proof of Theorem 1.1. Let C > 0. Set Ln = n/(n + 1). Applying
Corollary 2.12 to LnQ we may choose Jordan domains χn,k ⊂ LnQ such
that R(LnQ \

⋃∞
k=1 χn,k) has no non-zero bounded point derivations and

the sum of the lengths of the boundaries of the (χn,k)
∞
k=0 is less than

2−(n+1)C(1− Ln)2. Set

X2 = Q \
⋃

n,k

χn,k

and let
X1 = Q \

⋃

n

Dn

be the result of applying Theorem 2.1 with C0 = C/(4π). Finally set
X = X1 ∩ X2. Then Lemma 2.7 gives that R(X) is regular and Lemmas
2.9 and 2.10 give that R(X) has no non-zero bounded point derivations.
Enumerating the sets χn,k and Dn as C1, C2, . . . we may apply Lemma 2.8
to obtain the required estimate on the integral.

3. Regularity and peak points. A point x in the character space X
of a uniform algebra A is said to be a peak point for A if there is f ∈ A
such that f(x) = 1 and |f(y)| < 1 for all y ∈ X \ {x}; and x is a point of
continuity for A if, for every compact set K ⊂ X \{x}, there is a function f
in A such f(x) = 1 and f(K) ⊂ {0}. Notice that a uniform algebra is regular
if and only if every point in its character space is a point of continuity. The
following result, regarding systems of Cole root extensions (see [2]), is [5,
2.8].

Proposition 3.1. Let A and B be uniform algebras such that B is the
result of applying a system of Cole root extensions to A. If A is regular so
is B.

In [6] an example of a separable uniform algebra, A, such that every point
of the character space is a peak point for A and A is not weakly amenable
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is obtained by first modifying the original example so that every point,
except possibly those on the outer boundary circle, is a point of continuity,
and then applying an appropriate system of Cole root extensions. Following
essentially the same argument and noting the above proposition we obtain
the following.

Theorem 3.2. There exists a regular uniform algebra A whose character
space is metrizable such that every point of the character space of A is a peak
point but A is not weakly amenable.

We note that both this algebra and the algebra constructed in Theorem
1.1 have dense invertible group (by results in [4]).

We finish by noting that we do not know whether or not either of the
uniform algebras we have constructed are strongly regular—i.e. if, for each
point x in the character space, the algebra of functions constant on a neigh-
bourhood of x is dense in the original algebra.
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