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Heat kernel estimates for a class of
higher order operators on Lie groups

by

Nick Dungey (Sydney)

Abstract. Let G be a Lie group of polynomial volume growth. Consider a differential
operator H of order 2m on G which is a sum of even powers of a generating list A1, . . . , Ad′
of right invariant vector fields. When G is solvable, we obtain an algebraic condition on
the list A1, . . . , Ad′ which is sufficient to ensure that the semigroup kernel of H satisfies
global Gaussian estimates for all times. For G not necessarily solvable, we state an analytic
condition on the list which is necessary and sufficient for global Gaussian estimates. Our
results extend previously known results for nilpotent groups.

1. Introduction. Let G be a non-compact, connected, unimodular Lie
group with Lie algebra g, and assume that G has polynomial volume growth.
Consider a differential operator

H = H(m) = (−1)m
d′∑

i=1

A2m
i ,

where m is a positive integer and A1, . . . , Ad′ are right invariant vector fields
on G corresponding to a list of generators a1, . . . , ad′ ∈ g of the Lie algebra.
It is known that H generates a semigroup St = e−tH , t > 0, in the spaces
Lp = Lp(G; dg), 1 ≤ p ≤ ∞, where dg denotes a fixed Haar measure on G.
Moreover, St acts via a convolution Stf = Kt ∗ f , f ∈ Lp, t > 0, where
Kt: G → R is a smooth function satisfying the following “local” Gaussian
bounds: for each t0 ∈ (0,∞), there exist c, b > 0 such that

|Kt(g)| ≤ ct−D′/(2m)e−b(%A(g)2m/t)1/(2m−1)
(1)

for all t ∈ (0, t0] and g ∈ G (see [16] and [11]). Here %A:G → [0,∞) is the
standard Carathéodory modulus associated with A1, . . . , Ad′ , and D′ ∈ N is
a local dimension associated with %A (for background, see [19, 18]).

Since G has polynomial growth, there is a D ∈ N such that an estimate
c−1rD ≤ dg(B(r)) ≤ crD holds for all r ≥ 1, where B(r) := {g ∈ G :
%A(g) < r} is the ball of radius r associated with %A. Let us say that H
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satisfies global Gaussian bounds if there exist c, b > 0 such that

|Kt(g)| ≤ ct−D/(2m)e−b(%A(g)2m/t)1/(2m−1)
(2)

for all t ≥ 1 and g ∈ G. For m = 1, it is well known that H = H (1) satisfies
global Gaussian bounds (see, for example, [19]). If G is nilpotent, or more
generally, G is a local direct product of a nilpotent group and a compact
group, and m is arbitrary, then H satisfies global Gaussian bounds (see
[13, 8], and earlier works [10, 3, 15] dealing with homogeneous groups).

However, when G is the universal cover of the solvable group of Euclidean
motions of the plane, it was discovered in [12] that there are choices of
a1, . . . , ad′ for which H does not satisfy global Gaussian bounds when m ≥ 2.
For such choices one has c−1t−µ ≤ ‖Kt‖∞ ≤ ct−µ for all t ≥ 1, with some
µ > D/(2m). Note that the author [6] recently established the upper bound
‖Kt‖∞ ≤ ct−D/(2m) for t ≥ 1, for any G and any list a1, . . . , ad′ .

The aim of this paper is to give a general condition on a1, . . . , ad′ suf-
ficient for global Gaussian bounds. To state it, suppose that G is solvable,
and let n ⊆ g denote the nilradical (the largest nilpotent ideal) of g. To the
solvable algebra g = (g, [·, ·]) we can associate its nilshadow gN , which is a
nilpotent Lie algebra with g = gN as vector spaces and Lie bracket [·, ·]N
(see, for example, [1, 2, 9]). Let gN ;1 ⊇ gN ;2 ⊇ · · · be the lower central series
of gN , defined by gN ;1 = gN and gN ;j+1 = [gN , gN ;j ]N ⊆ gN ;j , j ∈ N. We
say that the generating list a1, . . . , ad′ is nice of order k, where k ∈ N, if
there exists a Cartan subalgebra w of g such that each ai = vi + yi, where
vi ∈ w, yi ∈ n, and

(ad vi)nyi ∈ gN ;n+1(3)

for all n ∈ {1, . . . , k − 1} and i ∈ {1, . . . , d′}. Here (adx)y = [x, y], x, y ∈ g,
is the adjoint representation of g, and we recall that a Cartan subalgebra is
a nilpotent subalgebra which equals its own normalizer.

Theorem 1.1. Assume that G is solvable. If a1, . . . , ad′ is nice of or-
der m, then H = H(m) satisfies global Gaussian bounds.

We conjecture that, for G solvable and simply connected, niceness of
orderm is necessary as well as sufficient for global Gaussian bounds forH (m).

Theorem 1.1 actually has an extension for any group G of polynomial
growth, which is more complicated to state: see Remark 2.6 below.

Theorem 1.1 will be derived from the following theorem of independent
interest (and which is not restricted to the solvable case). Denote by e the
identity of G.

Theorem 1.2. Let m ∈ N. Suppose there exist a family (ηR)R≥1 of
C∞-smooth functions on G and a constant c > 0 such that 0 ≤ ηR ≤ 1,
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ηR(e) = 1, the support of ηR is contained in B(cR), and

‖Aki ηR‖∞ ≤ cR−k

for all i ∈ {1, . . . , d′}, k ∈ {1, . . . ,m} and R ≥ 1. Then H = H (m) satisfies
global Gaussian bounds.

The above theorems are proved in Section 2. The effort of the proofs
is reduced by utilizing work of the author [7] which shows that, to obtain
Gaussian bounds for group-invariant semigroups, it suffices to verify certain
L2 “off-diagonal” estimates.

Let us notice some special cases and examples of Theorem 1.1. Every
generating list is nice of order 1. If G is nilpotent, then g = gN = n as
Lie algebras so that any generating list is nice of all orders. When G is
solvable, and w is a Cartan subalgebra of g, any generating list satisfying
{a1, . . . , ad′} ⊆ w ∪ n is nice of all orders. Since g = w + n (see for example
[9, pp. 64–65]) where the sum need not be direct, we see that nice generating
lists certainly exist.

If G is solvable and if gN is an abelian Lie algebra, then niceness of
order k, k ≥ 2, means that for some Cartan subalgebra w, ai = vi + yi with
vi ∈ w, yi ∈ n, and [vi, yi] = 0 for all i. Thus, for such G, the condition is
independent of k when k ≥ 2. On the other hand, by considering solvable
groups G for which gN is non-abelian with large nilpotent rank, for any k
one can construct examples of generating lists which are nice of order k but
not of order k + 1. We leave the details to the reader.

For the example of the group G considered in [12], g = span{b1, b2, b3} is
a three-dimensional Lie algebra with non-zero commutation relations [b1, b2]
= b3, [b1, b3] = −b2, and n = span{b2, b3}. Let a1, a2, a3 be a vector space
basis of g. Since the Cartan subalgebras are just the one-dimensional sub-
spaces of g complementary to n, and gN is abelian, one sees that a1, a2, a3
is nice of order k (k ≥ 2) if and only if exactly two of the ai are in n. The
latter condition was noticed in [12].

Let us note a converse to Theorem 1.2.

Theorem 1.3. Suppose that H = H (m) satisfies global Gaussian bounds.
Then there exist smooth functions (ηR)R≥1 on G with properties as in the
statement of Theorem 1.2.

To prove Theorem 1.3, choose a non-decreasing function F ∈ C∞(R)
with F (x) = 0 for all x ≤ 2−1 and F (x) = 1 for x ≥ 1, and set

ηR(g) = F (KR2m(g)/KR2m(e)), g ∈ G.
To verify the desired properties of ηR is an easy adaption of arguments of
[5, Section 2], and we omit further details.

Combining Theorems 1.2 and 1.3 gives the following interesting result.
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Corollary 1.4. Let m1,m2 ∈ N with m1 > m2. If H(m1) satisfies global
Gaussian bounds on G, then H(m2) satisfies global Gaussian bounds on G.

Finally, let us speculate about heat kernel estimates for an arbitrary
choice of a1, . . . , ad′ . We conjecture that there exists a suitable function
%A,m:G→ [0,∞), depending on A1, . . . , Ad′ and on m, such that %A,m ≤ c%A
and

|Kt(g)| ≤ ct−D̃/(2m)e−b(%A,m(g)2m/t)1/(2m−1)
, ‖Kt‖∞ ≥ c−1t−D̃/(2m),

for all t ≥ 1 and g ∈ G. Here, D̃ ≥ D denotes a global dimension associated
with %A,m, that is, dg({g ∈ G: %A,m(g) < r}) ' rD̃ for r ≥ 1. The main
difficulty in proving this conjecture is apparently to define a suitable %A,m;
the results already stated suggest that %A,m will be sensitive to perturbations
of A1, . . . , Ad′ or m.

2. Proofs

Proof of Theorem 1.2. In general, c, c′, b, ω and so on denote positive
constants whose value may change from line to line. We first construct func-
tions ϕR with similar properties to the given functions ηR, and with the
symmetry property ϕR(g−1) = ϕR(g).

Lemma 2.1. There exist c > 0 and functions ϕR ∈ C∞c (G), R ≥ 1, such
that 0 ≤ ϕR ≤ 1, ϕR(g−1) = ϕR(g) for all g ∈ G, ϕR is supported in B(cR),
ϕR(g) = 1 whenever g ∈ B(c−1R), and

‖Aki ϕR‖∞ ≤ cR−k

for all R ≥ 1, i ∈ {1, . . . , d′} and k ∈ {1, . . . ,m}.
Proof. For R ≥ 1 let tR =

�
G η

2
R and η̃R(g) = ηR(g−1), and define

η̂R := t−1
R (ηR ∗ η̃R),

where ∗ denotes convolution of functions on G. So Aki η̂R = t−1
R (Aki ηR) ∗ η̃R,

and there is an estimate c−1RD ≤ tR ≤ cRD for all R ≥ 1. It is then
straightforward to check that the η̂R have the same properties as ηR, and
moreover η̂R(g−1) = η̂R(g), g ∈ G. Since ‖Aiη̂R‖∞ ≤ cR−1 and η̂R(e) = 1,
one easily shows that there is c′ > 0 with

η̂R(g) ≥ 2−1

for all g ∈ B((c′)−1R) andR≥ 1. Choose a C∞-smooth function F : [0,∞)→
[0, 1] such that F (0) = 0 and F (x) = 1 for all x ≥ 2−1. The functions
ϕR := F ◦ η̂R have the required properties.

Borrowing an idea of [14], we define a function %: G→ [1,∞) by

%(g) = 1 +
∞∑

j=1

(1− ϕj(g)).
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From the properties of ϕR, one sees that the sum is locally finite, so % is a
smooth function, and that

c−1(1 + %A) ≤ % ≤ c(1 + %A).(4)

Thus % is a smooth approximation of %A. Moreover, %(g) = %(g−1) for all
g ∈ G. For g ∈ G with %A(g) > 1, the properties of ϕR yield

|(Aki %)(g)| ≤
∑

c−1%A(g)≤j≤c%A(g)

‖Aki ϕj‖∞ ≤ c′%A(g)1−k

for all k ∈ {1, . . . ,m}. Hence

|(Aki %)(g)| ≤ c′′%(g)1−k(5)

for all g ∈ G and k ∈ {1, . . . ,m}. Taking k = 1 in (5), we deduce that

|%(h)− %(gh)| ≤ c%A(g)
d′∑

i=1

‖Ai%‖∞ ≤ c′%(g)

for all g, h ∈ G, and consequently %(gh) ≤ c(%(g) + %(h)) for all g, h ∈ G.
In what follows, write M = 2m, denote by Uλ the multiplication operator

f 7→ eλ%f for λ ∈ R, and let L = LG be the left regular representation of G
with (L(g)f)(h) = f(g−1h), g, h ∈ G, for functions f : G → C. We will
establish estimates

(6)
‖UλStU−λ‖2→2 ≤ ceωλ

M t,

‖(I − L(g))UλStU−λ‖2→2 ≤ c%(g)t−1/Meωλ
M t

for all t ≥ 1, λ ∈ R and g ∈ G such that %(g) ≤ t1/M (where ‖ · ‖2→2
denotes the operator norm for bounded operators in L2). Then it follows
from Theorem 2.3 and Remark 2.4 of [7], together with the local estimate (1),
that

|Kn(g)| ≤ cn−D/M exp(−b(%(g)M/n)1/(M−1))

for all n ∈ N and g ∈ G. In this inequality, we may replace % with %A,
because of (4). Then using the semigroup property Kt = Kt−n ∗Kn and (1),
we easily deduce global Gaussian bounds for H.

Therefore, to complete the proof of Theorem 1.2 it remains to verify (6).
The proof of (6) is an adaption of the usual Davies perturbation tech-

nique. Introduce the set Em of smooth functions ψ: G → R such that
‖Aki ‖∞ < ∞ for all i ∈ {1, . . . , d′} and k ∈ {1, . . . ,m}; we do not assume
that ψ is bounded. Because of the relation

eψAi(e−ψf) = Aif − (Aiψ)f,(7)

we may consider Hψ := eψHe−ψ as a differential operator which is a per-
turbation of H by terms of order less than 2m with bounded coefficients.
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Define a functional σm on Em by

σm(ψ) =
d′∑

i=1

m∑

k=1

(‖Aki ψ‖∞)1/k;

we usually abbreviate σm = σ. In the next two lemmas, we will see that this
functional seems well adapted to the study of off-diagonal estimates for H.
Notice that the lemmas apply to an arbitrary generating list a1, . . . , ad′ , that
is, they make no use of the hypothesis of Theorem 1.2.

Lemma 2.2. There exists c > 0 such that

|(Hf, f)− (Hψf, f)| ≤ 2−1(Hf, f) + cσ(ψ)M‖f‖22
for all f ∈ C∞c (G) and ψ ∈ Em. Consequently , there is c1 > 0 with

Re (Hψf, f) ≥ −c1σ(ψ)M‖f‖22
for all f ∈ C∞c and ψ ∈ Em.

Proof. The second estimate of the lemma follows easily from the first.
Let us sketch the proof of the first estimate, which is a variation of standard
arguments (see [4] and [5, pp. 58–59]). Write

(Hf, f)− (Hψf, f) =
d′∑

i=1

((Ami f,A
m
i f)− (eψAmi e

−ψf, e−ψAmi e
ψf)),

and apply (7) to expand the left side as a sum of terms each of the form

T (f) = c((An1
i ψ) · · · (Anpi ψ)Ak1

i f,A
k2
i f),

where p ∈ N, n1, . . . , np ∈ {1, . . . ,m}, k1, k2 ∈ {0, 1, . . . ,m}, and n1 + · · ·+
np + k1 + k2 = 2m = M . Now set r = n1 + · · ·+np ∈ {1, . . . ,M}, and apply
a standard interpolation inequality

‖Aki f‖2 ≤ c‖Ami f‖
k/m
2 ‖f‖1−(k/m)

2 ≤ c(Hf, f)k/M‖f‖1−(k/m)
2 ,(8)

which is valid for k ∈ {0, 1, . . . ,m}. We obtain

|T (f)| ≤ cσ(ψ)r‖Ak1
i f‖2‖Ak2

i f‖2 ≤ c′(Hf, f)1−(r/M) (σ(ψ)M‖f‖22)r/M

≤ ε(Hf, f) + cε−(M−r)/rσ(ψ)M‖f‖22
for all ε > 0, and the lemma follows.

The next lemma is deduced from Lemma 2.2 by a standard line of rea-
soning, and we omit the details (see [5, pp. 55–56] or [4]).

Lemma 2.3. The operator Hψ generates a semigroup Sψt = eψSte
−ψ in

L2, satisfying the estimates

‖Sψt ‖2→2 + t‖HψS
ψ
t ‖2→2 ≤ ceωσ(ψ)M t, ‖Aki Sψt ‖2→2 ≤ ct−k/Meωσ(ψ)M t

for all t > 0, ψ ∈ Em, i ∈ {1, . . . , d′} and k ∈ {1, . . . ,m}.
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To prove (6) we consider separately the two cases |λ|≥2−1 and |λ|<2−1.
In the first case, observe from (5) that λ% ∈ Em with an estimate

σ(λ%) ≤ c
d′∑

i=1

m∑

k=1

|λ|1/k ≤ c′|λ|.

Therefore, from Lemma 2.3 and the standard inequality (see [18, p. 268])

‖(I − L(g))f‖2 ≤ %A(g)
( d′∑

i=1

‖Aif‖22
)1/2

,(9)

we obtain (6) for |λ| ≥ 2−1.
To deal with the second case, define %j = 1 +

∑∞
s=j(1 − ϕs) for each

j ∈ N. Then %1 = % and

‖%− %j‖∞ ≤ j − 1, ‖Aki %j‖∞ ≤ cj1−k

for all j ∈ N and k ∈ {1, . . . ,m}, where the second inequality is proved
in a similar way to (5). Given 0 < |λ| < 2−1, let j be the greatest integer
less than or equal to |λ|−1. Then 2−1 ≤ |λ|j ≤ 1, σ(λ%j) ≤ c|λ|, and from
Lemma 2.3 we get

‖eλ%Ste−λ%‖2→2 ≤ ‖eλ(%−%j)‖2→2‖eλ%jSte−λ%j‖2→2‖e−λ(%−%j)‖2→2

≤ c′eωλM t,
where c′, ω are constants independent of λ. This yields the first estimate
of (6) for |λ| < 2−1 (the case λ = 0 is trivial). The second estimate of (6)
may be proved in a similar way by estimating the operators

Aie
λ%Ste

−λ% = (Ai(eλ(%−%j)))Sλ%jt e−λ(%−%j) + eλ(%−%j)AiS
λ%j
t e−λ(%−%j)

for 0 < |λ| < 2−1, and applying (9). The proof of Theorem 1.2 is complete.

Proof of Theorem 1.1. Let G be solvable and fix a Cartan subalgebra
w of g such that ai = vi + yi, vi ∈ w, yi ∈ n, and such that (3) holds
for all n ∈ {1, . . . ,m − 1}. From w one may construct the nilshadow Lie
group GN = GN (w), with Lie algebra gN , such that G = GN are identified
as manifolds and g = gN are identified as vector spaces. For details see
[9, 1, 2]: in these references GN is constructed starting from a subspace
v ⊆ w satisfying g = v⊕ n, but the construction is actually independent of
the choice of v within w (see [9, pp. 78–80]). For x ∈ g, we will write

X = dLG(x), X̃ = dLGN (x)

respectively for the G-right invariant vector field and the GN -right invariant
vector field corresponding to x. In particular, Ai = Vi + Yi, where Vi =
dLG(vi), Yi = dLG(yi). The following lemma is contained in the analysis
of [2, 9].
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Lemma 2.4. One has

(Xf)(g) = (dLG(x)f)(g) = ((dLGN (T (g−1)x))f)(g)(10)

for all x ∈ g, f ∈ C∞c (G) and g ∈ G. Here T is a certain representation
of G in the vector space g, such that T (g)x = x for all x ∈ w and g ∈ G, and
T (exp y) = I for all y ∈ n. Moreover , the T (g) are orthogonal transforma-
tions with respect to a suitably chosen inner product on g, and T (g)(n) ⊆ n,
T (g)(gN ;j) ⊆ gN ;j for all j.

Lemma 2.5. There exists a family (ηR)R≥1 of smooth functions on GN
such that 0 ≤ ηR ≤ 1, ηR(e) = 1, and ηR is supported in B(cR). Moreover ,
for any k ∈ N and z1, . . . , zk ∈ g with zj ∈ gN ;mj for some m1, . . . ,mk ∈ N,
there is c′ > 0 such that

‖Z̃1 · · · Z̃kηR‖∞ ≤ c′R−(m1+···+mk)

for all R ≥ 1, where Z̃j = dLGN (zj).

Proof. The distances on G and GN are equivalent at infinity, that is,
if %̃ denotes a Carathéodory modulus on GN then one has an estimate
c−1(1 + %̃) ≤ 1 + %A ≤ c(1 + %̃) (see [9] or [2]). Then the lemma follows
from results of [14] and the nilpotency of GN .

Alternatively, one can prove the lemma more directly by fixing a suitable
η1 ∈ C∞c (GN ) and setting ηR(g) = η1(τR−1(g)) for R > 1, where τδ, δ > 0,
are dilations “at infinity” on the nilpotent group GN (see, for example,
[1, Section 5] or [17] for these dilations). We skip the details.

Set wi,n = (ad vi)nyi and Wi,n = dLG(wi,n) for n ∈ N0 = {0, 1, . . .}.
Expanding Ami = (Vi + Yi)m and reordering terms yields an expression

Ami = V m
i + Y m

i +
∑

cl0,...,lsWi,l1 . . .Wi,lsV
l0
i ,(11)

where the sum is over all s ≥ 1 and l0, l1, . . . , ls ∈ {0, 1, . . . ,m − 1} with
l0 + l1 + · · ·+ ls + s = m and where cl0,...,ls are constants.

Since vi ∈ w, it follows from Lemma 2.4 that Vi = dLGN (vi), that is,
Vi is a GN -invariant vector field. Also, given n ∈ {0, 1, . . . ,m − 1} and
i ∈ {1, . . . , d′}, since wi,n ∈ n ∩ gN ;n+1 we can use Lemma 2.4 to express

Wi,n =
∑

j

ξjZ̃j ,

for some fields Z̃j = dLGN (zj) with zj ∈ n ∩ gN ;n+1. The ξj : G → R are
smooth bounded functions which are constant in the n-directions, that is,
Ỹ ξj = 0 for any y ∈ n (for further details, see for example [9, p. 183]).

By combining these observations with (11), we may express Ami as a sum
of terms each of the form ξZ̃1 . . . Z̃k, where ξ are smooth bounded functions
and zj ∈ gN ;mj with m1 + · · ·+mk ≥ m. Therefore, by Lemma 2.5 one has
‖Ami ηR‖∞ ≤ cR−m for R ≥ 1. Since ‖ηR‖∞ = 1, by interpolation we get
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‖Aki ηR‖∞ ≤ c′R−k for all k ∈ {1, . . . ,m}. Theorem 1.1 now follows from
Theorem 1.2.

Remark 2.6. Let us note a generalization of Theorem 1.1 for any Lie
group G of polynomial growth. In this general case, g ⊇ q ⊇ n where q is
the solvable radical and n is the nilradical of g. A subalgebra w ⊆ g will be
called a generalized Cartan subalgebra of g if w = m⊕w0 where m is a Levi
subalgebra of g (that is, m is a semisimple subalgebra with g = m⊕ q) and
w0 ⊆ q is a Cartan subalgebra of the algebra q0(m) := {x ∈ q : [m, x] = {0}}.
A generalized Cartan subalgebra satisfies g = w + n (see, for instance,
[9, pp. 64–65]). Let qN ;1 ⊇ qN ;2 ⊇ · · · be the lower central series of the
nilshadow qN associated with q. Then we have:

Theorem 2.7. Let a1, . . . , ad′ be a generating list such that there exists
a generalized Cartan subalgebra w with ai = vi + yi, vi ∈ w, yi ∈ n, and
(ad vi)nyi ∈ qN ;n+1 for all n ∈ {1, . . . ,m − 1} and all i. Then H = H (m)

satisfies global Gaussian bounds.

The proof is a straightforward extension of the above proof of Theo-
rem 1.1, since one knows suitable generalizations of Lemmas 2.4 and 2.5
(see again [9, 2] for the structure theory of G). We omit the details.
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