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Transitive sensitive subsystems for interval maps

by

Sylvie Ruette (Paris)

Abstract. We prove that for continuous interval maps the existence of a non-empty
closed invariant subset which is transitive and sensitive to initial conditions is implied by
positive topological entropy and implies chaos in the sense of Li–Yorke, and we exhibit
examples showing that these three notions are distinct.

1. Introduction. In this paper an interval map is a topological dy-
namical system given by a continuous map f : I → I where I is a compact
interval. In the literature much has been said about chaos for interval maps.
The point is that the relations between various properties related to chaos
are much more numerous for these systems than for general dynamical sys-
tems. As a consequence there is a rather ordered “scale of chaos” on the
interval. For example, for interval maps topological weak mixing and topo-
logical strong mixing are equivalent [3], and transitivity implies sensitivity to
initial conditions [2], which in turn implies positive topological entropy [8].
For more details on this topic see e.g. [6], [15, §§6–9] and [21].

Among the different definitions of chaos, a well known one is chaos in the
sense of Li–Yorke. The definition follows the ideas of [17] but was formalized
later.

Definition 1.1. Let T : X → X be a continuous map on the metric
space X with distance d. Then T is called chaotic in the sense of Li–Yorke
if there exists an uncountable set S ⊂ X such that, for all distinct x, y ∈ S,

lim sup
n→+∞

d(Tn(x), Tn(y)) > 0 and lim inf
n→+∞

d(Tn(x), Tn(y)) = 0.

Note that in the definition of chaos in the sense of Li–Yorke some people
make the extra assumption that for all x ∈ S and all periodic points z ∈ X
one has lim supn→+∞ d(Tn(x), Tn(z)) > 0. This gives an equivalent defini-
tion since this property is satisfied by all points of the set S except at most
one [6, p. 144].

2000 Mathematics Subject Classification: Primary 37E05.
The author has been partly supported by a Marie Curie Fellowship of the European

Community programme Human Potential under contract n◦ HPMF-CT-2002-02026.

[81]



82 S. Ruette

Li and Yorke showed that an interval map with a periodic point of pe-
riod 3 is chaotic in the sense of Li–Yorke [17]. In [14] Janková and Smı́tal
generalized this result as follows:

Theorem 1.2 (Janková–Smı́tal). If f : I → I is an interval map of
positive entropy , then it is chaotic in the sense of Li–Yorke.

Recently, Blanchard, Glasner, Kolyada and Maass [4] proved that, if
T : X → X is a continuous map on the compact metric space X such that
the topological entropy of T is positive, then the system is chaotic in the
sense of Li–Yorke.

The converse of this result is not true, even for interval maps: Smı́tal
[23] and Xiong [25] built interval maps of zero entropy which are chaotic in
the sense of Li–Yorke. See also [20] (a correction is given in [18]) or [11] for
examples of C∞ interval maps which are chaotic in the sense of Li–Yorke
and have a null entropy.

Recall that the map T : X → X is transitive if for all non-empty open
subsets U, V there exists an integer n ≥ 0 such that T−n(U) ∩ V 6= ∅; if
X is compact with no isolated point, then T is transitive if and only if
there exists x ∈ X such that ω(x, T ) = X (where ω(x, T ) is the set of limit
points of {Tn(x) | n ≥ 0}). The map T has sensitive dependence on initial
conditions (or simply is sensitive) if there exists δ > 0 such that for all
x ∈ X and all neighbourhoods U of x there exist y ∈ U and n ≥ 0 such that
d(Tn(x), Tn(y)) ≥ δ. A subset Y ⊂ X is invariant if T (Y ) ⊂ Y .

The work of Wiggins [24] leads to the following definition (see, e.g., [13]).

Definition 1.3. Let X be a metric space. The continuous map T : X
→ X is said to be chaotic in the sense of Wiggins if there exists a non-
empty closed invariant subset Y such that the restriction T |Y is transitive
and sensitive.

The aim of this paper is to locate this notion with respect to the other
definitions of chaos.

Remark 1.4. A continuous map T : X → X which is transitive and
sensitive is sometimes called chaotic in the sense of Auslander–Yorke [1].
If in addition the periodic points are dense, then it is called chaotic in the
sense of Devaney [10].

Transitive sensitive subsystems appear naturally when considering a
horseshoe, that is, two disjoint closed intervals J,K such that f(J)∩f(K) ⊃
J∪K, because the points whose orbits never escape from J∪K form a subset
on which f acts almost like a 2-shift [5]. For interval maps, positive entropy
is equivalent to the existence of a horseshoe for some power of f [19, 7] (see
also [6, Chap. VIII]), and one can deduce that a positive entropy interval
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map has a transitive, sensitive subsystem. More precisely, Shihai Li proved
the following result [16].

Theorem 1.5 (Shihai Li). Let f : I → I be an interval map. The topo-
logical entropy of f is positive if and only if there exists a non-empty closed
invariant subset X ⊂ I such that f |X is transitive, sensitive to initial con-
ditions, and the periodic points are dense in X (in other words, f |X is
Devaney chaotic).

In the “if” part of this theorem one cannot suppress the assumption on
the periodic points. In Section 3 we build a counter-example which leads to
the following theorem.

Theorem 1.6. There exists a continuous map f : [0, 1] → [0, 1] of zero
topological entropy which is chaotic in the sense of Wiggins.

In [23] Smı́tal built a zero entropy map f which is chaotic in the sense
of Li–Yorke. If one looks at the construction of f , it is not hard to prove
that f |ω(0,f) is transitive and sensitive to initial conditions. We show the
following theorem in Section 2.

Theorem 1.7. Let f : I → I be an interval map. If f is Wiggins chaotic
then it is Li–Yorke chaotic.

The converse of this theorem is not true, contrary to what one may expect
by considering Smı́tal’s example. The last and longest section is devoted to
the construction of a counter-example that proves the following result.

Theorem 1.8. There exists a continuous interval map g : I → I which
is chaotic in the sense of Li–Yorke but not in the sense of Wiggins.

From Theorems 1.5 to 1.8 it follows that, for interval maps, chaos in the
sense of Wiggins is a strictly intermediate notion between positive entropy
and chaos in the sense of Li–Yorke.

Furthermore the examples of Sections 3 and 4 show that the behaviour
of zero entropy interval maps is more varied that one might expect. Let us
describe the different kinds of dynamics exhibited by these maps.

The next result is well known (see, e.g., [6, p. 218]).

Theorem 1.9. Let f : I → I be an interval map. The following proper-
ties are equivalent :

• the topological entropy of f is zero,
• every periodic point has period 2n for some integer n ≥ 0.

According to Sharkovskĭı’s Theorem [22] the set of periods of periodic
points of a zero entropy interval map is either {2k; 0 ≤ k ≤ n} for some
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integer n, and then f is said to be of type 2n, or {2k; k ≥ 0}, and then
f is of type 2∞. There is little to say about the dynamics of type 2n, and
some interval maps of type 2∞ share almost the same dynamics [9]: every
orbit converges to some periodic orbit of period 2k; these maps are never
Li–Yorke chaotic.

The interval maps of type 2∞ that admit an infinite ω-limit set may be
Li–Yorke chaotic or not, as shown by Smı́tal [23]. A map f that is not Li–
Yorke chaotic is called “uniformly non-chaotic” in [6] and it has the following
property: every point x is approximately periodic, that is, for every ε > 0
there exists a periodic point y and an integer N such that |fn(x)−fn(y)[< ε
for all n ≥ N .

The maps built in Sections 3 and 4 are both zero entropy and Li–Yorke
chaotic. In the first example there is a transitive sensitive subsystem which
is the core of the dynamics; in particular Li–Yorke chaos can be read on this
subsystem. In the second example this situation does not occur since there
is no transitive sensitive subsystem.

2. Wiggins chaos implies Li–Yorke chaos. The following notion
of f -non-separable points was introduced by Smı́tal to give an equivalent
condition for chaos in the sense of Li–Yorke [23]. Note that Theorem 2.2
was proven to remain valid for all interval maps by Janková and Smı́tal [14].

Definition 2.1. Let f : I → I be an interval map and a0, a1 two distinct
points in I. The points a0, a1 are called f -separable if there exist two disjoint
subintervals J0, J1 and two integers n0, n1 such that for i = 0, 1, ai ∈ Ji,
fni(Ji) = Ji and (fk(Ji))0≤k<ni are disjoint. Otherwise they are f -non-
separable.

Theorem 2.2 (Smı́tal). Let f : I → I be an interval map of zero entropy.
The following properties are equivalent :

• f is chaotic in the sense of Li–Yorke,
• there exists x0 ∈ I such that the set ω(x0, f) is infinite and contains

two f -non-separable points.

In the proof of this theorem, Smı́tal showed the following intermediate
result which describes the structure of an infinite ω-limit set of a zero entropy
map.

Lemma 2.3. Let f : I → I be an interval map of zero entropy and x0

in I such that ω(x0, f) is infinite. For all n ≥ 0 and 0 ≤ i < 2n, define

Iin = [minω(f i(x0), f2n),maxω(f i(x0), f2n)], Lin =
⋃

k≥0

fk2n(Iin).
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Then f(Lik) = Li+1 mod 2k

k for all 0 ≤ i < 2k, and the intervals (Lik)0≤i<2k

are pairwise disjoint.

Lemma 2.4. Let f : [a, b]→ R be a continuous map. If f([a, b]) ⊃ [a, b],
then f has a fixed point.

Proof. There exist x, y ∈ [a, b] such that f(x) ≤ a and f(y) ≥ b. One
then has f(x)− x ≤ a− x ≤ 0 and f(y)− y ≥ b− y ≥ 0, so there is a point
c ∈ [x, y] such that f(c)− c = 0.

Lemma 2.5. Let f : I → I be an interval map of zero entropy. If J ⊂ I is
a (not necessarily closed) subinterval such that fp(J) = J and (f i(J))0≤i<p
are pairwise disjoint then p is a power of 2.

Proof. If J is reduced to one point then it is a periodic orbit and by
Theorem 1.9, p is a power of 2. We assume that J is non-degenerate, which
implies that fn(J) is a non-degenerate interval for all n ≥ 0.

Since fp(J) = J , by Lemma 2.4 there exists x ∈ J such that f p(x) = x.
According to Theorem 1.9 the period of x is equal to 2k for some k; write
p = m2k. If x ∈ J then (f i(x))0≤i<p are distinct and p = 2k.

Suppose that m ≥ 3. Then x ∈ ∂J ; we assume that x = supJ , the case of

x = inf J being symmetric. Since x = f 2k(x) ∈ f2k(J) and f2k(J) ∩ J = ∅,
one has x = inf f2k(J). But also x ∈ f2k+1

(J), which contradicts the

fact that J, f2k(J), f2k+1
(J) are pairwise disjoint non-degenerate intervals.

Therefore m = 1 or 2 and p is a power of 2.

The following result is the key tool in the proof of Theorem 1.7.
A rather similar result can be found in a paper of Fedorenko, Sharkovskĭı
and Smı́tal [12].

Lemma 2.6. Let f : I → I be an interval map of zero entropy and x0

in I such that ω(x0, f) is infinite and does not contain two f -non-separable
points. Then for all ε > 0 there exists δ > 0 such that if x, y ∈ ω(x0, f) and
|x− y| < δ, then |fn(x)− fn(y)| < ε for all n ≥ 0.

Proof. Let X = ω(x0, f). For all integers n ≥ 0 and 0 ≤ i < 2n define
ain = minω(f i(x0), f2n) and bin = maxω(f i(x0), f2n). Define I in and Lin as
in Lemma 2.3; then I in = [ain, b

i
n]. The points ain, b

i
n belong to X and

(1) Iin+1 ∪ Ii+2n

n+1 ⊂ Iin for all 0 ≤ i < 2n.

Suppose that there exists ε > 0 such that

(2) for all n ≥ 0 there is 0 ≤ i < 2n with |I in| ≥ ε.
Using (1) we can build a sequence (in)n≥0 such that I

in+1

n+1 ⊂ Iinn and |Iinn | ≥ ε
for all n ≥ 0. Define I∞ =

⋂
n≥1 I

in
n . It is a decreasing intersection of compact

intervals, hence a closed interval, and |I∞| ≥ ε. Write I∞ = [a, b]; then
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a = lim
n→+∞

ainn , b = lim
n→+∞

binn ,

and thus a, b ∈ X. One has a, b ∈ Linn for all n ≥ 0. By Lemma 2.3 the

intervals L
in+2

n+2 , f2n(L
in+2

n+2 ), f2n+1
(L

in+2

n+2 ) are pairwise disjoint, so {a, f 2n(a),

f2n+1
(a)} are distinct.

Since a 6= b and by assumption a, b are f -separable, there exist an interval
J and an integer p ≥ 1 such that a ∈ J , b 6∈ J , f p(J) = J and (f i(J))0≤i<p
are pairwise disjoint. By Lemma 2.5, p is a power of 2; write p = 2k.

Consider the intervalK = Likk ∩J ; it contains a, and f 2k(K) ⊂ K because

f2k(Likk ) = Likk by Lemma 2.3. Thus K contains {a, f 2k(a), f2k+1
(a)}. These

three points belong to ω(x0, f) and are distinct, so one of them belongs to
Int(K) and there exists an integer n such that fn(x0) ∈ K. We thus have

X = ω(x0, f) ⊂
2k−1⋃

j=0

f j(K).

Let b′ ∈ X be such that f2k+1
(b′) = b and let 0 ≤ j < 2k be such that

b′ ∈ f j(K). The points b′, f2k(b′) and f2k+1
(b′) belong to f j(K) and they are

distinct (same proof as for a), hence one of them belongs to f j(K), which
implies that b ∈ f j(K). One has j 6= 0 because b 6∈ J and K ⊂ J . But on

the other hand b ∈ f j(Likk )∩Likk , which is empty by Lemma 2.3, and we get
a contradiction. Therefore, (2) is false.

Let ε > 0; the negation of (2) implies that there exists n ≥ 0 such that
|Iin| < ε for all 0 ≤ i < 2n. Let δ > 0 be the minimal distance between two
distinct intervals among (I in)0≤i<2n. If x, y ∈ X with |x− y| < δ then there
exists 0 ≤ i < 2n such that x, y ∈ I in∩ω(x0, f) = ω(f i(x0), f2n). Thus for all
k ≥ 0 one has fk(x), fk(y) ∈ ω(f i+k(x0), f2n) ⊂ Ii+k mod 2n

n , which implies
that |fk(x)− fk(y)| < ε.

Now we are ready to prove

Theorem 1.7. Let f : I → I be an interval map. If f is Wiggins chaotic
then it is Li–Yorke chaotic.

Proof. Suppose that f is not chaotic in the sense of Li–Yorke. By Theo-
rem 1.2 one has htop(f) = 0. Consider a closed invariant subset Y ⊂ I such
that f |Y is transitive. If Y is finite or has an isolated point, then f |Y is not
sensitive. If Y is infinite with no isolated point, then there exists x0 ∈ Y such
that ω(x0, f) = Y . By Theorem 2.2, Y does not contain two f -non-separable
points, and by Lemma 2.6, f |Y is not sensitive.

3. Wiggins chaos does not imply positive entropy. We are going
to build an interval map of zero entropy which is chaotic in the sense of
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Wiggins. It resembles the maps built by Smı́tal (map f in [23]) and Delahaye
(map g in [9]), but we give full details because this construction will be used
as a basis for the next example.

Notation. If I is an interval, let mid(I) denote the middle of I. If f is
a linear map, let slope(f) denote its constant slope. We write ↑ (resp. ↓) for
“increasing” (resp. “decreasing”).

Let (an)n≥0 be an increasing sequence of numbers less than 1 such that
a0 = 0. Define I1

0 = [a0, 1] and, for all n ≥ 1,

I0
n = [a2n−2, a2n−1], Ln = [a2n−1, a2n], I1

n = [a2n, 1].

Then I0
n ∪ Ln ∪ I1

n = I1
n−1. We fix (an)n≥0 such that the lengths of the

intervals I0
n, I

1
n satisfy:

|I0
n|=

1

3n
|I1
n−1|, |I1

n|=
(

1− 2

3n

)
|I1
n−1| if n is odd,

|I0
n|=

(
1− 2

3n

)
|I1
n−1|, |I1

n|=
1

3n
|I1
n−1| if n is even,

This implies that |Ln| = (1/3n)|I1
n−1| for all n ≥ 1. Note that |I1

n| → 0, that

is, limn→+∞ an = 1; hence
⋃
n≥1(I0

n ∪ Ln) = [0, 1).

For all n ≥ 1, let ϕn : I0
n → I1

n be the increasing linear homeomorphism
mapping I0

n onto I1
n; the slope of ϕn is slope(ϕn) = |I1

n|/|I0
n|. Define the map

f : [0, 1]→ [0, 1] such that f is continuous on [0, 1) and

• f(x) = ϕ−1
1 ◦ ϕ−1

2 ◦ · · · ◦ ϕ−1
n−1 ◦ ϕn(x) for all x ∈ I0

n, n ≥ 1,
• f |Ln is linear for all n ≥ 1,
• f(1) = 0.

Note that f |I0
n

is linear ↑. We will show below that f is continuous at 1.

a00= a1 a2 a3 a4
I1
0 I1

1

I2
1I2

0

ϕ−1
I1 2
1( )

ϕ−1
I1 2
0( )

I1
0

...1

1

0

I1
1

Fig. 1. The first steps of the construction of f (left) and the graph of f (right). This map
has a zero entropy and the invariant set ω(0, f) is transitive and sensitive.
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Let us explain the underlying construction. At step n = 1 the interval
I0

1 is sent linearly onto I1
1 (hence f |I0

1
= ϕ1) and we require that f(I1

1 ) ⊂ I0
1

(grey area in Figure 1). Then we do the same kind of construction in the grey
area with respect to I0

2 , I
1
2 ⊂ I1

1 : we rescale I0
2 , I

1
2 as ϕ−1

1 (I0
2 ), ϕ−1

1 (I1
2 ) ⊂ I0

1

(on the vertical axis) and we send linearly I0
2 onto ϕ−1

1 (I1
2); in this way

f |I0
2

= ϕ−1
1 ◦ ϕ2. We repeat this construction on I1

2 (black area), and so

on. Finally, we fill the gaps in a linear way to get the whole map, which is
pictured on the right of Figure 1.

Let J0
0 = [0, 1] and for all n ≥ 1 define the subintervals J0

n, J
1
n ⊂ J0

n−1 by

minJ0
n = 0, maxJ1

n = maxJ0
n−1 and |J in|/|J0

n−1| = |Iin|/|I1
n−1| for i = 0, 1.

To show that f is continuous at 1, it is enough to prove that max(f |I1
n
)

tends to 0 as n goes to infinity. For all n ≥ 1 one has

ϕn(max I0
n) = max I1

n = 1 = min I1
n−1 + |I1

n−1|,
ϕ−1
n−1 ◦ ϕn(max I0

n) = min I0
n−1 + |I1

n−1| slope(ϕ−1
n−1)

= min I1
n−2 + |I1

n−1| slope(ϕ−1
n−1),

ϕ−1
n−2 ◦ ϕ−1

n−1 ◦ ϕn(max I0
n) = min I0

n−2 + |I1
n−1| slope(ϕ−1

n−2) slope(ϕ−1
n−1),

...

ϕ−1
1 ◦ ϕ−1

2 ◦ · · · ◦ ϕ−1
n−1 ◦ ϕn(max I0

n) = min I0
1 + |I1

n−1|
n−1∏

i=1

slope(ϕ−1
i )

=
n−1∏

i=1

|I0
i |

|I1
i−1|

= |J0
n−1|.

Consequently,

(3) f(max I0
n) = |J0

n−1| = maxJ0
n−1.

According to the definition of f , one has max(f |I1
n−1

) = f(max I0
n), so that

max(f |I1
n−1

) = |J0
n−1|. By definition, |J0

n−1| ≤ 1/3n−2, which tends to 0, and

therefore f is continuous at 1.
The next lemma describes the action of f on the intervals (J in) and (I in)

and collects the properties that we will use later. The interval I1
n is periodic

of period 2n and the map f2n−1
swaps I0

n and I1
n. However, we prefer to deal

with J0
n = f(I1

n); this will simplify the proofs because f |I1
n

is not monotone

whereas f i|J0
n

is linear for all 1 ≤ i ≤ 2n − 1.

Lemma 3.1. Let f be the map defined above. Then for all n ≥ 1:

(i) f(I1
n) = J0

n,
(ii) f(I0

n) = J1
n,
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(iii) f i|J0
n

is linear ↑ for all 1 ≤ i ≤ 2n − 1,

(iv) f2n−1−1(J0
n) = I0

n and f2n−1(J0
n) = I1

n,
(v) f i(J0

n) ⊂ ⋃1≤k≤n I
0
k for all 0 ≤ i ≤ 2n − 2,

(vi) (f i(J0
n))0≤i<2n are pairwise disjoint ;

and the previous clauses also imply

(vii) f2n−1
(J0
n) = J1

n,
(viii) f2n(J0

n) = J0
n,

(ix) f2n−1|I0
n

is linear ↑ and f2n−1
(I0
n) = I1

n,

(x) f2n−1
(I1
n) = I0

n,
(xi) (f i(I0

n))0≤i<2n are pairwise disjoint and f2n(I1
n) = I1

n.

Proof. According to (3), max(f |I1
n
) = f(max I0

n+1) = maxJ0
n; moreover

f(1) = 0 = minJ0
n. Thus f(I1

n) = J0
n by continuity; this is (i).

According to the definition of f ,

|f(I0
n)| = |I0

n| slope(ϕn)

n−1∏

i=1

slope(ϕ−1
i )

= |I1
n|
n−1∏

i=1

|I0
i |
|I1
i |

=
|I1
n|

|I1
n−1|

n−1∏

i=1

|I0
i |

|I1
i−1|

= |J1
n|.

Moreover f(max I0
n) = maxJ0

n−1 = maxJ1
n by (3), and thus f(I0

n) = J1
n.

This gives (ii).
We show by induction on n that (iii) and (iv) are satisfied.

• This is true for n = 1 because J0
1 = I0

1 , J1
1 = I1

1 , f |I0
1

= ϕ1 is linear ↑
and f(I0

1 ) = I1
1 .

• Suppose that (iii) and (iv) are true for n. Since J0
n+1 ⊂ J0

n, the map

f i|J0
n+1

is linear ↑ for all 1 ≤ i ≤ 2n−1 and f2n−1(J0
n+1) ⊂ I1

n; moreover

the linearity implies that

min f2n−1(J0
n+1) = min f2n−1(J0

n) = min I1
n = min I0

n+1

and
|f2n−1(J0

n+1)|
|I1
n|

=
|J0
n+1|
|J0
n|

=
|I0
n+1|
|I1
n|

.

Therefore f2n−1(J0
n+1) = I0

n+1. Then f2n(J0
n+1) = J1

n+1 by (ii). Since

J1
n+1 ⊂ J0

n, the induction hypothesis applies: f i|J1
n+1

is linear ↑ for all

1 ≤ i ≤ 2n − 1, f2n−1(J1
n+1) ⊂ I1

n, and by linearity

max f2n−1(J1
n+1) = max f2n−1(J0

n) = 1 = max I1
n+1

and |f2n−1(J1
n+1)| = |I1

n+1|, hence f2n+1−1(J0
n+1) = f2n−1(J1

n+1) =

I1
n+1. This gives (iii) and (iv) for n+ 1.
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Now we prove (v) by induction on n:

• This is true for n = 1 because J0
1 = I0

1 .
• Suppose that (v) is true for n. Since J0

n+1 ⊂ J0
n it follows that f i(J0

n+1)

⊂ ⋃1≤k≤n I
n
k for all 0 ≤ i < 2n − 1. Moreover f2n−1(J0

n+1) = I0
n+1

by (iv), and f2n(J0
n+1) = f(I0

n+1) = J1
n+1 by (ii). Since J1

n+1 ⊂ J0
n we

can use the induction hypothesis again to get f 2n+i(J0
n+1)⊂⋃1≤k≤n I

n
k

for all 0 ≤ i < 2n − 1. This gives (v) for n+ 1.

Next we prove (vi). Suppose that f i(J0
n) ∩ f j(J0

n) 6= ∅ for some 0 ≤
i < j < 2n. Then f2n−1−j(f i(J0

n)) ∩ f2n−1−j(f j(J0
n)) 6= ∅. But f2n−1(J0

n) =

I1
n by (iv) and f2n−1−(j−i)(J0

n) ⊂ [0,max I0
n] by (v), so these two sets are

disjoint, which is a contradiction.
Finally, we indicate how to obtain the other assertions. Assertions (vii)

and (viii) follow respectively from (iv)+(ii) and (iv)+(i). Assertion (ix) fol-
lows from (iii)+(iv). Assertion (x) follows from (i)+(iv). Assertion (xi) fol-
lows from the combination of (i), (iv) and (vi).

Define Kn =
⋃
i≥0 f

i(I1
n) for all n ≥ 0 and K =

⋂
n≥0Kn. According to

Lemma 3.1, Kn is the disjoint union of the intervals (f i(J0
n))0≤i≤2n−1. The

set K has a Cantor-like construction: at each step a middle part of every
connected component of Kn is removed to get Kn+1. However, K is not a
Cantor set because its interior is not empty (see Proposition 3.3). Proposi-
tion 3.2 states that the entropy of f is null. Next we show in Proposition 3.3
that the set ω(0, f) contains ∂K. Then we prove that ω(0, f) is transitive
and sensitive to initial conditions.

Proposition 3.2. Let f be the map defined above. Then htop(f) = 0.

Proof. By definition the restriction f |Ln is linear decreasing and thus
f(Ln) ⊂ [0, f(max I0

n)]. Moreover f(max I0
n) = maxJ0

n−1 by (3), so that

f(Ln) ⊂ J0
n−1. Then Lemma 3.1(iii) implies that f 2n−1|Ln is linear decreas-

ing. Since f2n−1|I0
n

is linear increasing and f 2n−1
(I0
n) = I1

n by Lemma 3.1(ix),

it follows that f2n−1
(minLn) = max I1

n = 1; moreover f2n−1
(I1
n) = I0

n by

Lemma 3.1(x), and thus f 2n−1
(maxLn) ∈ I0

n. We deduce that f2n−1
(Ln) ⊃

Ln ∪ I1
n, and by Lemma 2.4 there exists zn ∈ Ln such that f2n−1

(zn) = zn.
The period of zn is exactly 2n−1 because Ln ⊂ I1

n−1 and the intervals

(f i(I1
n−1))0≤i<2n are pairwise disjoint by Lemma 3.1(xi).

By definition |Ln| ≤ |I1
n|, hence slope(f2n−1|Ln) ≤ −2. If the points

x, f2n−1
(x), . . . , fk2n−1

(x) belong to Ln then |f (k+1)2n−1
(x)−zn| ≥ 2k|x−zn|;

thus, for all x ∈ Ln, x 6= zn, there exists k ≥ 1 such that fk2n−1
(x) 6∈ Ln.

Since I1
n−1 = I0

n∪Ln∪I1
n and f2n−1

(I1
n−1) = I1

n−1 by Lemma 3.1(xi), this im-

plies that fk2n−1
(x) ∈ I0

n∪I1
n. In addition f2n−1

(I0
n) = I1

n by Lemma 3.1(ix),
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and therefore

∀x ∈ I1
n−1, x 6= zn, ∃k ≥ 0, fk(x) ∈ I1

n.

Starting with I1
0 = [0, 1], a straightforward induction shows that, for all

x ∈ [0, 1], if the orbit of x does not meet {zn | n ≥ 1} then for all integers
n ≥ 1 there exists k ≥ 0 such that f k(x) ∈ I1

n; in particular ω(x, f) ⊂ K.
According to Lemma 3.1(xi) the set K contains no periodic point because
K ⊂ ⋃i≥0 f

i(I1
n) for all n ≥ 1; thus every periodic point is in the orbit of

some zn, and therefore its period is a power of 2. Finally, htop(f) = 0 by
Theorem 1.9.

The orbit of 0 obviously enters f i(J0
n) for all n ≥ 0 and 0 ≤ i < 2n,

and so ω(0, f) meets all connected components of K. We show in the next
lemma that ω(0, f) contains ∂K; the proof relies on the idea that the smaller
of the intervals J0

n+1 and J1
n+1 contains alternately either minJ0

n or maxJ0
n

when n varies, so that both endpoints of a connected component of K can
be approximated by small intervals of the form f i(J0

n).

Proposition 3.3. Let f and K be as defined above. Then ∂K ⊂ ω(0, f).
In particular ω(0, f) is infinite and contains 0, and f |ω(0,f) is transitive.

Proof. According to the definition of K, the connected components of K
are exactly the non-empty sets of the form

⋂
n≥0 f

jn(J0
n) with 0 ≤ jn < 2n.

Let y be a point in ∂K. For all n ≥ 0 there exists 0 ≤ jn < 2n such that
y ∈ f jn(J0

n), and there exists a sequence (yn)n≥0 such that y = limn→+∞ yn
and yn ∈ ∂f jn(J0

n) = {min f jn(J0
n),max f jn(J0

n)}. Let ε > 0 and N ≥ 0. Let
n be an even integer such that 1/3n+1 < ε and |yn − y| < ε, and let k ≥ 0
be such that k2n+1 ≥ N .

First, suppose that yn = min f jn(J0
n). Since 0 ∈ J0

n+1 and f2n+1
(J0
n+1) =

J0
n+1 by Lemma 3.1(viii), it follows that f k2n+1+jn(0) ∈ f jn(J0

n+1). By

Lemma 3.1(iii) one has min f jn(J0
n+1) = min f jn(J0

n) = yn and

|f jn(J0
n+1)|

|f jn(J0
n)| =

|J0
n+1|
|J0
n|

=
1

3n+1
< ε,

and therefore |fk2n+1+jn(0)− yn| < ε|f jn(J0
n)| ≤ ε.

Secondly, suppose that yn = max f jn(J0
n). The point fk2n+2

(0) belongs

to J0
n+2 and f2n+1

(J0
n+2) = J1

n+2 by Lemma 3.1(vii), so

fk2n+2+2n+1+2n+jn(0) ∈ f2n+jn(J1
n+2).

According to Lemma 3.1(iii)–(vii) one has

max f2n+jn(J1
n+2)=max f2n+jn(J0

n+1)=max f jn(J1
n+1)=max f jn(J0

n) = yn.

Moreover
f2n(J1

n+2) ⊂ f2n(J0
n+1) = J1

n+1 ⊂ J0
n.
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Thus

|f jn+2n(J1
n+2)|

|f jn(J0
n)| =

|f2n(J1
n+2)|

|J0
n|

=
|f2n(J1

n+2)|
|f2n(J0

n+1)| ·
|J1
n+1|
|J0
n|

=
1

3n+2

(
1− 2

3n+1

)
.

Consequently, |fk2n+2+2n+1+2n+jn(0)− yn| ≤ |f jn+2n(J1
n+2)| < ε.

In both cases there exists p ≥ N such that |f p(0) − yn| < ε, hence
|fp(0) − y| < 2ε. This means that y ∈ ω(0, f), that is, ∂K ⊂ ω(0, f). The
point {0} =

⋂
n≥0 J

0
n belongs to ∂K, so 0 ∈ ω(0, f) and f |ω(0,f) is transi-

tive. Finally, Kn has 2n connected components, each of which contains two
connected components of Kn+1; thus K has an infinite number of connected
components, which implies that ∂K is infinite.

In the proof of the next proposition, we first show that K contains a
non-degenerate connected component B.

Proposition 3.4. Let f be the map defined above. Then f |ω(0,f) is sen-
sitive to initial conditions.

Proof. First we define by induction a sequence of intervals Bn = f in(J0
n)

for some 0 ≤ in < 2n such that Bn ⊂ Bn−1 and |Bn| = (1− 2/3n)|Bn−1| for
all n ≥ 1.

• Take B0 = J0 = [0, 1].
• Suppose that Bn−1 = f in−1(J0

n−1) is already built. If n is even, take

in = in−1 and Bn = f in(J0
n). The map f in−1 |J0

n−1
is linear ↑ by

Lemma 3.1(iii) and J0
n ⊂ J0

n−1, so that

|Bn|
|Bn−1|

=
|J0
n|

|J0
n−1|

= 1− 2

3n
.

If n is odd, take in = in−1 + 2n−1 and Bn = f in(J0
n). According to

Lemma 3.1(vii)–(iii) one has Bn = f in−1(J1
n) and f in−1|J0

n−1
is linear ↑,

so
|Bn|
|Bn−1|

=
|J1
n|

|J0
n−1|

= 1− 2

3n
.

Let B =
⋂
n≥0Bn. This is a compact interval and it is non-degenerate

because

log |B| = log |B0|+
∑

n≥1

log

(
1− 2

3n

)
> −∞.

Moreover B is a connected component of K, so ∂B ⊂ ∂K. Let b0 = minB
and b1 = maxB; one has b0, b1 ∈ ω(0, f) by Proposition 3.3.

The set ω(0, f) is included in the periodic orbit of J0
n, and consequently

fk(J0
n∩ω(0, f)) = fk(J0

n)∩ω(0, f) for all k ≥ 0. Let ε > 0 and k ≥ 1. There
exists n ≥ 0 such that |J0

n| < ε and there exist x0, x1 ∈ J0
n∩ω(0, f) such that
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f in+k2n(x0) = b0 and f in+k2n(x1) = b1. Let δ = |b1 − b0|/4. The triangular
inequality implies that either |f in+k2n(0)−b0)| ≥ 2δ or |f in+k2n(0)−b1| ≥ 2δ.
In other words, for all ε > 0 and k ≥ 1 there exist x ∈ [0, ε] ∩ ω(0, f) and
i ≥ k such that |f i(0) − f i(x)| ≥ 2δ. Let y ∈ ω(0, f) and ε > 0; there
exists k ≥ 0 such that |fk(0) − y| < ε/2. By continuity of f k there is
η > 0 such that fk([0, η]) ⊂ [y − ε, y + ε]. What precedes shows that there
exist x ∈ [0, η] ∩ ω(0, f) and i > k such that |f i(0) − f i(x)| ≥ 2δ, and if
z = fk(x), z′ = fk(0) and j = i − n we find that z, z′ ∈ [y − ε, y + ε]
and |f j(z)− f j(z′)| ≥ 2δ. Then the triangular inequality implies that either
|f j(y) − f j(z)| ≥ δ or |f j(y) − f j(′z)| ≥ δ. We conclude that f |ω(0,f) is
sensitive to initial conditions.

Finally, Propositions 3.2, 3.3 and 3.4 give Theorem 1.6.

Remark 3.5. According to Theorem 1.7 and Proposition 3.4, the map
f is chaotic in the sense of Li–Yorke. It can be proven directly that b0, b1
are f -non-separable, so Theorem 2.2 applies.

4. Li–Yorke chaos does not imply Wiggins chaos. The aim of
this section is to exhibit an interval map which is chaotic in the sense of
Li–Yorke but has no transitive sensitive subsystem. This map resembles the
one of Section 3: the construction on the set

⋃
I0
n is the same except that

the lengths of the intervals differ; the dynamics on Ln is different.

4.1. Definition of the map g. We are going to build a continuous map
g : [0, 3/2]→ [0, 3/2]. Let (an)n≥0 be an increasing sequence of numbers less
than 1 such that a0 = 0. Define I1

0 = [a0, 1] and for all n ≥ 1,

I0
n = [a2n−2, a2n−1], Ln = [a2n−1, a2n], I1

n = [a2n, 1].

Then I0
n ∪ Ln ∪ I1

n = I1
n−1.

Fix (an)n≥0 such that the lengths of the intervals satisfy

∀n ≥ 1, |I0
n| = |Ln| =

1

3n
|I1
n−1| and |I1

n| =
(

1− 2

3n

)
|I1
n−1|.

Let a = limn→+∞ an. Then
⋃
n≥1(I0

n ∪ Ln) = [0, a) and a < 1 because

log(1− a) =
+∞∑

n=1

log

(
1− 2

3n

)
> −∞.

For all n ≥ 1, let ϕn : I0
n → I1

n be the increasing linear homeomorphism
mapping I0

n onto I1
n. Define the map g : [0, 3/2] → [0, 3/2] such that g is

continuous on [0, 3/2] \ {a} and

• g(x) = ϕ−1
1 ◦ ϕ−2

2 ◦ · · · ◦ ϕ−1
n−1 ◦ ϕn(x) for all x ∈ I0

n, n ≥ 1,
• g is linear ↑ of slope λn on [minLn,mid(Ln)] for all n ≥ 1,
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• g is linear ↓ on [mid(Ln),maxLn] for all n ≥ 1,
• g(x) = 0 for all x ∈ [a, 1],
• g(x) = x− 1 for all x ∈ [1, 3/2],

where the slopes (λn) will be defined below. We will also show that g is
continuous at a. The map g is pictured in Figure 2.

L1
0I2 L2

0

1

3/2

1+x1 3/2=1+x0a 1

0
2

0
2

1I2J J
I0
1 I1

1

Fig. 2. The graph of g; this map is Li–Yorke chaotic but not Wiggins chaotic.

Let J0
0 = [0, 1] and for all n ≥ 1 define the subintervals J0

n, J
1
n ⊂ J0

n−1

such that minJ0
n = 0, maxJ1

n = maxJ0
n−1 and |J in|/|J0

n−1| = |Iin|/|I1
n−1| for

i = 0, 1; let Mn = [maxJ0
n,minJ1

n].
Note that on

⋃
n≥1 I

0
n the map g is defined similarly to the map f of

Section 3, and therefore the assertions of Lemma 3.1 remain valid for g,
except (i) and its derived results (viii), (x), (xi).

Lemma 4.1. Let g be the map defined above. Then for all n ≥ 1:

(i) g(I0
n) = J1

n,
(ii) gi|J0

n
is linear ↑ for all 0 ≤ i ≤ 2n − 1,

(iii) g2n−1−1(J0
n) = I0

n and g2n−1(J0
n) = I1

n,
(iv) gi(J0

n) ⊂ ⋃1≤k≤n I
0
k for all 0 ≤ i ≤ 2n − 2,

(v) (gi(J0
n))0≤i<2n are pairwise disjoint.

(vi) g2n−1|I0
n

is linear ↑ and g2n−1
(I0
n) = I1

n,

(vii) g2n−1−1|Mn is linear ↑ and g2n−1−1(Mn) = Ln,
(viii) g(minLn) = minMn−1,

(ix) g2n−2
(minLn) = minLn−1.

Proof. For assertions (i) to (vi) see the proof of Lemma 3.1.
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According to (ii), the map g2n−1−1|Mn is linear ↑ because Mn is included
in J0

n−1. Since Mn = [maxJ0
n,minJ1

n] and Ln = [max I0
n,min I1

n], assertions

(i), (ii) and (iii) imply that g2n−1−1(Mn) = Ln, which is (vii).
The map g|I0

n
is increasing and minLn = max I0

n, hence, according to (i),

one has g(minLn) = maxJ1
n = maxJ0

n−1 = minMn−1; this is (viii).
Finally, (vii) and (viii) imply (ix).

For all n ≥ 0, define xn = mid(Mn+1), that is, xn = 3
2

∏n+1
i=1 1/3i. It is a

decreasing sequence and x0 = 1/2; therefore, for all n ≥ 0, g(1 + xn) is well
defined and equal to xn.

For all n ≥ 0 let tn = slope(g2n−1|J0
n
); by convention g0 is the identity

map so t0 = 1. Fix λ1 = 2x1/|L1| and for all n ≥ 2 define inductively λn
such that

(4)
|Ln|

2

n∏

i=1

λi

n−2∏

i=0

ti = xn.

By convention an empty product is equal to 1, so (4) is satisfied for n = 1.

The slopes (λn)n≥1 satisfy g2n−1
([minLn,mid(Ln)]) = [1, 1 + xn], as

proven in the next lemma. This means that under the action of g2n−1
the im-

age of Ln falls outside of [0, 1] but remains close to 1. We also list properties
of g on the intervals Ln, I1

n and [1, 1 + xn].

Lemma 4.2. Let g be the map defined above. Then:

(i) g2n|[1,1+xn] is linear ↑ and g2n([1, 1 + xn]) = [min I0
n+1,mid(Ln+1)]

for all n ≥ 0,

(ii) g2n−1|[minLn,mid(Ln)] is linear ↑ and g2n−1
([minLn,mid(Ln)]) =

[1, 1 + xn] for all n ≥ 1,

(iii) g2n+1|[1,1+xn] is ↑ and g2n+1
([1, 1 +xn]) = I1

n+1∪ [1, 1 +xn+1] for all
n ≥ 1,

(iv) g(I1
n) ⊂ [0,mid(Mn)] for all n ≥ 1,

(v) g2n([min I1
n, 1+xn]) ⊂ [min I1

n, 1+xn] and gi([min I1
n, 1+xn]) ⊂ [0, 1]

for all 1 ≤ i ≤ 2n − 1, n ≥ 1.

Proof. The map g|[1,1+xn] is linear ↑ and g([1, 1 + xn]) = [0,mid(Mn+1)]

⊂ J0
n, so g2n|[1,1+xn] is linear ↑ by Lemma 4.1(ii). Moreover g2n−1(0) =

min I0
n+1 and g2n−1(mid(Mn+1))=mid(Ln+1) by Lemma 4.1(iii)+(iv), which

gives (i).
Before proving (ii) we show some intermediate results. Let n ≥ 2 and

2 ≤ k ≤ n. Then

λn · · ·λk · tn−2 · · · tk−2 =

∏n
i=1 λi

∏n−2
i=0 ti∏k−1

i=1 λi
∏k−3
i=0 ti

=
xn/|Ln|

xk−1/|Lk−1|
by (4)
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=
n+1∏

i=k+1

1

3i

n−1∏

i=k−1

1

1− 2/3i
· 3n

3k−1

=
1

3n−k+1

n−1∏

i=k−1

1

3i − 2

and so

(5) λn · · ·λk · tn−2 · · · tk−2 < 1.

By definition, g(mid(Ln)) = g(minLn) + λn|Ln|/2, and by (4),

λn
|Ln|

2
=

xn

tn−2
∏n−1
i=1 λi

∏n−3
i=0 ti

=
xn|Ln−1|

2xn−1tn−2

=
1

3n+1

|Mn−1|
2

because tn−2 =
|Ln−1|
|Mn−1|

by Lemma 4.1(vii)

<
|Mn−1|

2
.

Moreover g(minLn) = minMn−1 by Lemma 4.1(viii), hence

(6) g([minLn,mid(Ln)]) ⊂ [minMn−1,mid(Mn−1)] for all n ≥ 2.

We show by induction on k = n, . . . , 2 that

– the map g2n−2+2n−3+···+2k−2
is linear ↑ of slope λn · · ·λktn−2 · · · tk−2

on [minLn,mid(Ln)] and maps minLn to minLk−1,
– gi([minLn,mid(Ln)]) ⊂ [0, 1] for all 0 ≤ i ≤ 2n−2 + 2n−3 + · · ·+ 2k−2.

• By (6) one has

g([minLn,mid(Ln)]) ⊂Mn−1 ⊂ J0
n−2,

so g2n−2|[minLn,mid(Ln)] is linear ↑ of slope λntn−2. According to Lemma

4.1(ix) one has g2n−2
(minLn) = minLn−1. Now (6) and Lemma

4.1(iii)+(iv) imply that gi([minLn,mid(Ln)]) ⊂ [0, 1] for all 1 ≤ i ≤
2n−2. This is our statement for k = n.
• Suppose that the statement is true for k with 3 ≤ k ≤ n. By (5) one

has λn · · ·λk · tn−2 · · · tk−2|Ln|/2 ≤ |Lk−1|/2 so that

g2n−2+2n−3+···+2k−2
([minLn,mid(Ln)]) ⊂ [minLk−1,mid(Lk−1)].

The map g is of slope λk−1 on this interval, g(minLk−1) = minMk−2

by Lemma 4.1(viii), and g([minLk−1,mid(Lk−1)]) ⊂ Mk−2 by (6).

Since Mk−2 ⊂ J0
n−1, the map g2n−2+2n−3+···+2k−2+2k−3

is linear ↑ of
slope λn . . . λk−1 · tn−2 . . . tk−3 on [minLn,mid(Ln)], and it maps
minLn to minLk−2 by Lemma 4.1(ix). Moreover gi([minLn,mid(Ln)])
⊂ [0, 1] for all 0 ≤ i ≤ 2n−2+2n−3+· · ·+2k−2+2k−3 by Lemma 4.1(iv)
and the induction hypothesis. This is the statement for k − 1.
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For k = 2 we conclude that g2n−2+···+20
= g2n−1−1 is linear ↑ of slope∏n

i=2 λi
∏n−2
i=0 ti on [minLn,mid(Ln)], with g2n−1−1(minLn) = minL1 and

g2n−1−1([minLn,mid(Ln)]) ⊂ [minL1,mid(L1)]. The map g is of slope λ1

on this interval, hence, according to the definition of λn, assertion (ii) holds
for all n ≥ 2; it also trivially holds for n = 1. The inductive statement for
k = 2 also shows that

(7) gi([minLn,mid(Ln)]) ⊂ [0, 1] for all 0 ≤ i ≤ 2n−1 − 1, n ≥ 1.

Assertions (i) and (ii) and Lemma 4.1(vi) imply (iii).
One has I1

n =
⋃
k≥n+1(I0

k ∪ Lk) ∪ [a, 1]. From the definition of g one can
see that

max{g(x) | x ∈ I0
k ∪ Lk} = g(mid(Lk)),

and therefore g(I0
k ∪ Lk) ⊂ [0,mid(Mk−1)] by (6). Hence

g(I1
n) ⊂ [0,mid(Mn)] = J0

n ∪ [minMn,mid(Mn)],

which is (iv).
By Lemma 4.1(iii)+(vii), g2n−1(J0

n)=I1
n and

g2n−1−1([minMn,mid(Mn)]) = [minLn,mid(Ln)],

and by (ii), g2n−1
([minLn,mid(Ln)]) = [1, 1 + xn]. Combining with (iv) we

get

(8) g2n(I1
n) ⊂ I1

n ∪ [1, 1 + xn].

Moreover gi(J0
n) ⊂ [0, 1] for all 0 ≤ i ≤ 2n− 2 and gi([minMn,mid(Mn)]) ⊂

[0, 1] for all 0 ≤ i ≤ 2n−1 − 2 according to Lemma 4.1(iv). In addition,

g2n−1+i−1([minMn,mid(Mn)]) = gi([minLn,mid(Ln)]) ⊂ [0, 1] for all 0 ≤
i ≤ 2n−1 − 1 by (7). Therefore

(9) gi(I1
n) ⊂ [0, 1] for all 0 ≤ i < 2n.

Finally, g([1, 1 + xn]) = [0,mid(Mn+1)] ⊂ J0
n, and (i) implies that

g2n([1, 1 + xn]) ⊂ I1
n. Combined with (9), (8) and Lemma 4.1(iv), this

gives (v).

Now we show that g is continuous at the point a, as claimed at the
beginning of the section.

Lemma 4.3. The map g defined above is continuous.

Proof. We just have to show the continuity at a. It is clear from the
definition that g is continuous at a+. According to Lemma 4.2(iv) one has
g(I1

n)⊂J0
n−1. This implies that g is continuous at a− since limn→+∞maxJ0

n

= 0.
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To end this subsection, let us explain the main underlying ideas of the
construction of g by comparing it with the map f built in Section 3. The
map g and f are similar on the set

⋃
n≥1 I

0
n (which is the core of the dynamics

of f); the only difference is the length of the intervals. For f we showed that

K =
⋂
n≥0

⋃2n−1
i=0 f i(J0

n) has a non-degenerate connected component B and
it can be proven that the endpoints of B are f -non-separable. The same
remains true for g with B = [a, 1] =

⋂
n≥0 I

1
n (the fact that a, 1 are g-non-

separable will be proven in Proposition 4.4). For f we proved that ∂K ⊂
ω(0, f), hence ∂B ⊂ ω(0, f); for g it is not true that {a, 1} ⊂ ω(0, g) because
the orbit of 0 stays in [0, a]. The construction of g on the intervals Ln allows
one to approach 1 from the outside of [0, 1]: we will see in Proposition 4.4
that ω(1 + x0, g) contains both a and 1, which implies chaos in the sense of
Li–Yorke. On the other hand, the proof showing that f |ω(0,f) is transitive and
sensitive fails for g because ω(0, g) does not contain {a, 1} and ω(1 + x0, g)
is not transitive. We will see in Proposition 4.7 that g has no transitive
sensitive subsystem at all.

4.2. g is chaotic in the sense of Li–Yorke

Proposition 4.4. Let g be the map defined in Section 4.1. Then the set
ω(1+x0, g) is infinite and contains the points a, 1, which are g-non-separable.
Consequently , the map g is chaotic in the sense of Li–Yorke.

Proof. Lemma 4.2(iii) implies that g2n+1
(1 + xn) = 1 + xn+1 for all

n ≥ 0. Since xn → 0 as n goes to infinity, this implies that 1 ∈ ω(1 + x0, g).
Moreover Lemma 4.2(i) implies that g2n(1) = min I0

n+1 = a2n for all n ≥ 1,
hence a ∈ ω(1, g) ⊂ ω(1 + x0, g).

Suppose A1, A2 are two periodic intervals such that a ∈ A1 and 1 ∈ A2,
and let p be a common multiple of their periods. Since g(a) = g(1) = 0,
it follows that gp(a) = gp(1) ∈ A1 ∩ A2, and A1, A2 are not disjoint. This
means that a, 1 are g-non-separable.

It is well known that a finite ω-limit set is cyclic. Therefore, if y0, y1

are two distinct points in a finite ω-set, the degenerate intervals {y0}, {y1}
are periodic and y0, y1 are g-separable. This implies that ω(1 + x0, g) is
infinite. We deduce that the map g is chaotic in the sense of Li–Yorke by
Theorem 2.2.

4.3. g is not chaotic in the sense of Wiggins. The main result of this
subsection is Proposition 4.7 stating that g has no transitive sensitive sub-
system. The next lemma is about the location of transitive subsystems.

Lemma 4.5. Let g be the map defined in Section 4.1 and Y ⊂ [0, 3/2]
a closed invariant subset with no isolated point such that g|Y is transitive.
Then
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(i) Y ⊂ [0, a],

(ii) Y ⊂ ⋃2n−1
i=0 gi(J0

n) for all n ≥ 1,

(iii) gi(J0
n ∩ Y ) = gi(J0

n) ∩ Y = gi mod 2n(J0
n) ∩ Y for all i ≥ 0, n ≥ 0.

Proof. By transitivity there exists y0 ∈ Y such that ω(y0, g) = Y ; in
particular the set Y ′ = {gk(y0) | k ≥ 0} is dense in Y and y ∈ ω(y, g) for all
y ∈ Y ′.

Let n ≥ 0. By Lemma 4.2(iii), g2n+1
([1, 1+xn]) = I1

n+1∪ [1, 1+xn+1] and

hence Lemma 4.2(v) shows that for all integers k ≥ 1, gk2n+1
([1, 1 + xn]) ⊂

I1
n+1 ∪ [1, 1 + xn+1] and gi([1, 1 + xn]) ⊂ [0, 1] for all i > 2n+1, i 6∈ 2n+1N.

This implies that

gi((1 + xn+1, 1 + xn]) ⊂ [0, 1 + xn+1] for all i ≥ 2n+1.

Consequently, there is no y ∈ (1, 3/2] =
⋃
n≥0(1 + xn+1, 1 + xn] such that

y ∈ ω(y, g), hence Y ′ ∩ (1, 3/2] = ∅ and by density Y ∩ (1, 3/2] = ∅.
Since g2n−1(0) = a2n by Lemma 4.1(ii)+(iii), the point 0 is not periodic,

hence gk(0) 6∈ [a, 1] for all k ≥ 1. If y ∈ (a, 1) then g(y) = 0 and gk(y) 6∈ [a, 1]
for all k ≥ 1, which implies that y 6∈ ω(y, g). Consequently, Y ∩ (a, 1) = ∅.
We find that Y ⊂ [0, a] ∪ {1}, and 1 6∈ Y because Y has no isolated point;
this gives (i).

Let n ≥ 1. Since minLn = max I0
n and maxLn = min I0

n+1, it follows that

g(minLn) = maxJ1
n and g(maxLn) = minJ1

n+1 by Lemma 4.1(i). Moreover
g|[minLn,mid(Ln)] is ↑ and g|[mid(Ln),maxLn] is linear ↓, so there exists cn in
[mid(Ln),maxLn] such that g(cn) = g(minLn).

Since g([cn,maxLn]) = [minJ1
n+1,maxJ1

n] is included in J0
n−1, the map

g2n−1|[cn,maxLn] is linear ↓ by Lemma 4.1(ii). MoreoverMn ⊂ g([cn,maxLn]),

hence g2n−1
([cn,maxLn]) contains Ln by Lemma 4.1(vii). Consequently,

there exists zn ∈ [cn,maxLn] such that g2n−1
(zn) = zn (Lemma 2.4) and

slope(g2n−1|[cn,maxLn]) ≤ −2. Then for every x ∈ [cn,maxLn], x 6= zn, there

exists k ≥ 1 such that gk2n−1
(x) 6∈ [cn,maxLn]. By Lemma 4.2(v) one has

g2n−1
(I1
n−1 ∪ [1, 1 + xn−1]) ⊂ I1

n−1 ∪ [1, 1 + xn−1], which implies that

(10) ∀x ∈ [cn,maxLn], x 6= zn, ∃k ≥ 1,

gk2n−1
(x) ∈ I0

n ∪ [minLn, cn] ∪ I1
n ∪ [1, 1 + xn−1].

We show by induction on n that

(11) ∀n ≥ 0, Y ′ ∩ I1
n 6= ∅.

This is true for n = 0 because Y ⊂ [0, 1] = I1
0 by (i). Suppose that there

exists y ∈ Y ′ ∩ I1
n−1. Write In−1 = I1

n−1 = I0
n ∪ Ln ∪ I1

n; to prove that

Y ′ ∩ I1
n 6= ∅ we split into four cases.
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• If y ∈ I1
n there is nothing to do.

• If y ∈ I0
n then g2n−1

(y) ∈ I1
n by Lemma 4.1(vi) and g2n−1

(y) ∈ Y ′.
• If y ∈ [minLn, cn] then g(y) ∈ g([minLn,mid(Ln)] and g2n−1

(y) ∈
[1, 1 + xn] by Lemma 4.2(ii), which is impossible because Y ⊂ [0, a]
by (i).
• If y ∈ [cn,maxLn] then y 6= zn because Y is infinite. In addition
gj(y) ∈ [0, 1] for all j ≥ 0 according to (i). Then (10) says that there
exists j ≥ 1 such that gj(y′) ∈ I0

n ∪ [minLn, cn] ∪ I1
n and one of the

first three cases applies.

One has g(I1
n) ⊂ J0

n ∪ [minMn,mid(Mn)] by Lemma 4.2(iv) and also

g2n−1([minMn,mid(Mn)]) = g2n−1
([minLn,mid(Ln)]) = [1, 1+xn] by Lem-

mas 4.1(vii) and 4.2(ii). Together with (i) this implies that

(12) g(Y ∩ I1
n) ⊂ J0

n.

Now (11) and (12) combined with Lemma 4.1(i)+(iii) imply that

Y ⊂
2n−1⋃

i=0

gi(J0
n) for all n ≥ 1,

which is (ii); furthermore Y ∩ gi(J0
n) = Y ∩ gi mod 2n(J0

n) for all i ≥ 0. Since
g(Y ) = Y it is clear that gi(J0

n∩Y ) ⊂ gi(J0
n)∩Y and that g2n(gi(J0

n)∩Y ) ⊂
g2n+i(J0

n) ∩ Y ; thus

gi(J0
n ∩ Y ) = gi(J0

n) ∩ Y = gi mod 2n(J0
n) ∩ Y for all i ≥ 0.

The next lemma is the key tool in the proof of Proposition 4.7. It relies
on the knowledge of the precise location of gi(J0

n) in
⋃

1≤k≤n I
0
n.

Lemma 4.6. Let g be the map defined in Section 4.1. For all n ≥ 1 and
all 0 ≤ k ≤ 2n − 1 one has slope(g2n−1−k|gk(J0

n)) ≥ 1.

Proof. A (finite) word B is an element of Nn for some n ∈ N. If B,B′

are two words, BB′ denotes their concatenation and |B| = n is the length
of B.

We define inductively a sequence (Bn)n≥1 of words by:

• B1 = 1,
• Bn = nB1B2 . . . Bn−1,

and we define the infinite word ω = (ω(i))i≥1 by concatenating the Bn’s: ω =
B1B2B3 . . . Bn . . . . A straightforward induction shows that |Bn| = 2n−1;
thus |B1| + |B2| + · · · + |Bk| = 2k − 1 and the word Bk+1 begins at ω(2k),
which gives

ω(2k) = k + 1,(13)

ω(2k + 1) . . . ω(2k+1 − 1) = B1 . . . Bk = ω(1) . . . ω(2k − 1).(14)



Transitive interval maps 101

We prove by induction on k ≥ 1 that

(15) gi−1(J0
n) ⊂ I0

ω(i) for all n ≥ k, 1 ≤ i ≤ 2k − 1.

• Case k = 1: J0
n ⊂ I0

1 = I0
ω(1) for all n ≥ 1.

• Suppose that (15) holds for k and let n ≥ k + 1. Since J0
n ⊂ J0

k+1,

Lemma 4.1(iii) implies that g2k−1(J0
n) ⊂ I0

k+1, and thus g2k(J0
n) ⊂ J0

k

by Lemma 4.1(i). By induction one has gi−1(J0
k ) ⊂ I0

ω(i) for all 1 ≤
i ≤ 1k − 1, and (14) yields ω(i) = ω(2k + i) for all 1 ≤ i ≤ 2k − 1.

Consequently, g2k+i−1(J0
n) ⊂ I0

ω(2k+i)
for all 1 ≤ i ≤ 2k − 1. Together

with the induction hypothesis this gives (15) for k + 1.

Let µn = slope(g|I0
n
). By definition of g one has

µn =
slope(ϕn)∏n−1
i=1 slope(ϕi)

.

It is straightforward from (15) that for all 2 ≤ k ≤ 2n − 1,

(16) slope(gk−1|J0
n
) =

k−1∏

i=1

µω(i).

By Lemma 4.1(ii)+(iii) the map g2n−1|J0
n

is linear and g2n−1(J0
n) = I1

n, thus

slope(g2n−1|J0
n
) =
|I1
n|
|J0
n|

=
n∏

i=1

1− 2/3i

1/3i
.

Since slope(ϕi) =
|I1
i |
|I0
i |

= 1−2/3i

1/3i
, we get

(17) slope(g2n−1|J0
n
) =

2n−1∏

i=1

µω(i) =

n∏

i=1

slope(ϕi).

We show by induction on n ≥ 1 that for all 1 ≤ k ≤ 2n − 1,

(18)
k∏

i=1

µω(i) =
n∏

i=1

slope(ϕi)
εi for some εi = ε(i, k, n) ∈ {0, 1}.

• µω(1) = µ1 = slope(ϕ1); this gives the case n = 1.
• Suppose that the statement is true for n. Then

2n∏

i=1

µω(i) =
2n−1∏

i=1

µω(i) · µn+1 by (13)

=
n∏

i=1

slope(ϕi)
slope(ϕn+1)∏n
i=1 slope(ϕi)

by (17)

= slope(ϕn+1).

This is (18) for n + 1 and k = 2n with ε(i, k, n1) = 0 for 1 ≤ i ≤ n
and ε(n+ 1, 2n, n+ 1) = 1.
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Next, ω(2n + 1) . . . ω(2n+1 − 1) = ω(1) . . . ω(2n − 1) by (14), so if
2n + 1 ≤ k ≤ 2n+1 − 1 then

k∏

i=1

µω(i) =
2n∏

i=1

µω(i)

k∏

i=2n+1

µω(i) = slope(ϕn+1)
k−2n∏

i=1

µω(i)

= slope(ϕn+1)
n∏

i=1

slope(ϕi)
ε(i,kn2 ,n)

That is, (18) holds with ε(i, k, n+ 1) = ε(i, k− 2n, n) for all 1 ≤ i ≤ n
and ε(n+ 1, k, n+ 1) = 1. This concludes the induction.

Equations (16) and (18) show that for all 1 ≤ k ≤ 2n − 1,

(19) slope(gk|Jn) =
k+1∏

i=1

µω(i) =
n∏

i=1

slope(ϕi)
εi for some εi ∈ {0, 1}.

Since

slope(g2n−1−k|gk(J0
n)) =

slope(g2n−1|J0
n
)

slope(gk|J0
n
)
,

(17) and (19) imply that slope(g2n−1−k|gk(Jn)) is a product of at most n

terms of the form slope(ϕi). This concludes the proof of the lemma because
slope(ϕi) ≥ 1 for all i ≥ 1.

Proposition 4.7. The map g defined in Section 4.1 is not Wiggins
chaotic.

Proof. Let Y ⊂ [0, 3/2] be a closed invariant subset such that g|Y is
transitive. We assume that Y has no isolated point, otherwise g|Y is not
sensitive.

The sets (gi(J0
n ∩ Y ))0≤i≤2n−1 are closed and by Lemma 4.1(v) they

are pairwise disjoint; let δn > 0 be the minimal distance between two of
them. If x, x′ ∈ Y and |x − x′| < δn then there is 0 ≤ i ≤ 2n − 1 such
that x, x′ ∈ gi(J0

n) and gk(x), gk(x′) ∈ gi+k mod 2n(J0
n) for all k ≥ 0 by

Lemma 4.5(ii)+(iii). Let

εn = max{diam(gi(J0
n) ∩ Y ) | 0 ≤ i < 2n}.

By Lemma 4.6, diam(gk(J0
n) ∩ Y ) ≤ diam(g2n−1(J0

n) ∩ Y ) for all 0 ≤ k ≤
2n − 1. By Lemma 4.1(iii) one has g2n−1(J0

n) = I1
n and by Lemma 4.5(i)

one has I1
n ∩ Y ⊂ [a2n, a]; thus εn ≤ diam(I1

n ∩ Y ) ≤ a− a2n, which implies
that

lim
n→+∞

εn = 0.

This shows that g|Y is not sensitive.

Theorem 1.8 now follows from Propositions 4.4 and 4.7.
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