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Ideals in big Lipschitz algebras of analytic functions

by

Thomas Vils Pedersen (Frederiksberg)

Abstract. For 0 < γ ≤ 1, let Λ+
γ be the big Lipschitz algebra of functions analytic

on the open unit disc D which satisfy a Lipschitz condition of order γ on D. For a closed
set E on the unit circle T and an inner function Q, let Jγ(E,Q) be the closed ideal in Λ+

γ

consisting of those functions f ∈ Λ+
γ for which

(i) f = 0 on E,
(ii) |f(z)− f(w)| = o(|z − w|γ) as d(z,E), d(w,E)→ 0,

(iii) f/Q ∈ Λ+
γ .

Also, for a closed ideal I in Λ+
γ , let EI = {z ∈ T : f(z) = 0 for every f ∈ I} and let QI

be the greatest common divisor of the inner parts of non-zero functions in I. Our main
conjecture about the ideal structure in Λ+

γ is that Jγ(EI , QI) ⊆ I for every closed ideal
I in Λ+

γ . We confirm the conjecture for closed ideals I in Λ+
γ for which EI is countable

and obtain partial results in the case where QI = 1. Moreover, we show that every wk∗

closed ideal in Λ+
γ is of the form {f ∈ Λ+

γ : f = 0 on E and f/Q ∈ Λ+
γ } for some closed

set E ⊆ T and some inner function Q.

1. Introduction. Throughout this paper, we let 0 < γ ≤ 1 unless
otherwise stated and denote all constants by C. Let Λγ be the big Lipschitz
algebra of functions f on the unit circle T for which

|f(z)− f(w)| ≤ C|z − w|γ

for z, w ∈ T. Equipped with the norm

‖f‖Λγ = ‖f‖∞ + sup
{ |f(z)− f(w)|
|z − w|γ : z, w ∈ T, z 6= w

}
(f ∈ Λγ),

it is well known to be a Banach algebra. We shall be concerned with the
closed subalgebra

Λ+
γ = {f ∈ Λγ : f̂(n) = 0 for n < 0}

of Λγ (where f̂(n) is the nth Fourier coefficient of f). Since every function
in Λ+

γ has an extension to a function analytic in the open unit disc D, we
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deduce that
Λ+
γ = Λγ ∩ A(D),

where A(D) is the usual disc algebra. Moreover, a function f analytic on D
belongs to Λ+

γ if and only if

|f ′(z)| ≤ C(1− |z|)γ−1 (z ∈ D),(1)

and
‖f‖Λ+

γ
= ‖f‖∞ + sup

z∈D
|f ′(z)|(1− |z|)1−γ (f ∈ Λ+

γ )

defines an equivalent norm on Λ+
γ ([3, Theorem 5.1]). In particular, we have

f ∈ Λ+
1 if and only if f ′ ∈ H∞ (the algebra of bounded analytic functions

on D). In passing, we mention that Dyakonov ([4]) has shown that

‖f‖∞ + sup
{∣∣|f(z)| − |f(w)|

∣∣
|z − w|γ : z, w ∈ D, z 6= w

}
(f ∈ Λ+

γ )

defines an equivalent norm on Λ+
γ . This is a remarkable result since this

norm only depends on the moduli of the functions. However, for practical
purposes the norm ‖ · ‖Λ+

γ
is easier to estimate.

In this paper, we describe certain closed ideals in Λ+
γ by means of zero

sets and inner functions. For f ∈ Λ+
γ , let

Z(f) = {z ∈ D : f(z) = 0}
be the zero set of f (counting multiplicities on D). Also, for a closed ideal I
in Λ+

γ , let

ZI =
⋂

f∈I
Z(f)

be the hull of I, let
EI = ZI ∩ T

and let QI be the greatest common divisor of the inner parts of non-zero
functions in I ([6, p. 85]). We shall use the following result of Havin and
Shamoyan several times. (See, for instance, [15].)

Theorem 1.1. If f ∈ Λ+
γ and Q is an inner function for which f/Q

∈ H∞, then f/Q ∈ Λ+
γ and

‖f/Q‖Λ+
γ
≤ C‖f‖Λ+

γ
.

In particular , if f belongs to a closed ideal I in Λ+
γ , then f/QI ∈ Λ+

γ .

Recall that a closed set E ⊆ T is called a Carleson set if
�

T
log d(eiθ, E) dθ > −∞.
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Carleson ([2, Theorem 1]) proved that E is a Carleson set if and only if there
exists a function f ∈ Λ+

γ with E = Z(f). In this case

Iγ(E) = {f ∈ Λ+
γ : f = 0 on E}

is a closed ideal in Λ+
γ with EIγ(E) = E and QIγ(E) = 1. Now, let Q = BS

be an inner function, where B is a Blaschke product and S a singular inner
function. Let Z(B) be the zeros of B (in D) and let supp(S) be the support
of the singular measure on T that defines S. It follows from [9, Theorems 2
and 4] that there exists a function f ∈ Iγ(E) with inner factor Q if and only
if 




�
T log d(eiθ, E ∪ Z(B)) dθ > −∞,

supp(S) ⊆ E,
Z(B) \ Z(B) ⊆ E.

(2)

In this case f/Q ∈ Λ+
γ by the previous theorem and

Iγ(E,Q) = {f ∈ Iγ(E) : f/Q ∈ Λ+
γ }

is a closed ideal in Λ+
γ with EIγ(E,Q) = E and QIγ(E,Q) = Q. Clearly,

Iγ(E,Q) is the largest closed ideal I in Λ+
γ with EI = E and QI = Q.

For 0 < γ < 1, our results are motivated by the ideal structure in the
little Lipschitz algebra λ+

γ , which is the closed subalgebra of Λ+
γ of functions

f satisfying
|f(z)− f(w)| = o(|z − w|γ)

uniformly as |z − w| → 0. Matheson ([11]) showed that

I = {f ∈ λ+
γ : f = 0 on EI and f/QI ∈ H∞} = Iγ(EI , QI) ∩ λ+

γ

for every closed ideal I in λ+
γ . In the non-separable algebra Λ+

γ , it is not
possible to obtain such a result. This is most easily seen for γ = 1. Let χ be
a character on H∞ belonging to the fiber at z = 1, that is, χ(α) = 1, where
α denotes the function z 7→ z (see, for example, [6, Chapter 10]). Then

Iχ = {f ∈ I1({1}) : χ(f ′) = 0}
is a closed ideal in Λ+

1 with EIχ = {1} and QIχ = 1. Moreover, Iχ1 6= Iχ2 if
χ1 6= χ2. Similarly, for 0 < γ < 1, we shall see that there are uncountably
many closed ideals I in Λ+

γ with EI = {1} and QI = 1. Nevertheless, we
shall obtain certain results about the ideal structure in Λ+

γ .
In the algebra Λγ on T, Sherbert ([14, Theorem 5.1]) proved that, for a

closed set E ⊆ T, the closed ideal

{f ∈ Λγ : f = 0 on E and |f(z)− f(w)| = o(|z − w|γ)

as d(z,E), d(w,E)→ 0}
is the smallest closed ideal in Λγ which has E as hull. We shall prove a
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similar result for Λ+
γ . For a Carleson set E ⊆ T, let

Jγ(E) = {f ∈ Iγ(E) : |f(z)− f(w)| = o(|z − w|γ) as d(z,E), d(w,E)→ 0}.

It is easily seen that Jγ(E) is a closed ideal in Λ+
γ . Also, for a closed set

E ⊆ T and an inner function Q satisfying (2), let

Jγ(E,Q) = {f ∈ Jγ(E) : f/Q ∈ H∞}.

It follows from Theorem 1.1 that Jγ(E,Q) is a closed ideal in Λ+
γ , and

EJγ(E,Q) = E and QJγ(E,Q) = Q by [9, Theorem 4]. The main result in this
paper is that the following conjecture holds when EI is countable.

Conjecture. Let I be a closed ideal in Λ+
γ . Then Jγ(EI , QI) ⊆ I.

The proof of Matheson’s result (and of other similar results in separable
algebras—see, for instance, [1], [10] and [16]) was to a high extent based on
the so-called Carleman transform. (See the next section for the definition.)
Apparently, Hedenmalm ([5]) was the first to apply the Carleman transform
to a non-separable Banach algebra, when he obtained certain results about
the ideal structure in the algebra H∞.

The proof of our main result uses the Carleman transform and ideas by
Bennett and Gilbert ([1]). The Carleman transform of a linear functional ϕ
depends only on the restriction of ϕ to the separable subalgebra λ+

γ and we
therefore find it interesting that it can be used to obtain results about Λ+

γ .
Moreover, we use a representation of the Carleman transform which is dif-
ferent from the one used in [1], and by following the lines of our proof, one
can actually obtain a simpler proof of the main result in [1].

The organization of the paper is as follows. We first obtain some basic
facts about the Carleman transform (Section 2) and the ideal Jγ(E,Q) (Sec-
tion 3). In Section 4 we prove our main result, and in Section 5 we partially
confirm our conjecture for closed ideals I in Λ+

γ with QI = 1. Finally, in
Section 6 we show that the wk∗ closed ideals in Λ+

γ are exactly the ideals
Iγ(E,Q), where the closed set E ⊆ T and the inner function Q satisfy (2).

2. The Carleman transform. For ϕ ∈ (Λ+
γ )∗, we define the Carleman

transform Φ of ϕ on C \ D by

Φ(z) = 〈(z − α)−1, ϕ〉 (z ∈ C \ D).

With ϕ̂(n) = 〈αn, ϕ〉 for n ∈ N0, we have

Φ(z) =
∞∑

n=0

ϕ̂(n)z−(n+1) (z ∈ C \ D).
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For f ∈ Λ+
γ and 0 < r < 1, let fr(z) = f(rz) (z ∈ D). For notational

convenience, let
λ+

1 = {f ∈ Λ+
1 : f ′ ∈ A(D)}.

For f ∈ λ+
γ , it is well known (see, for example, [8, I.2.13]) that fr → f in

λ+
γ as r → 1−. Hence

〈f, ϕ〉 = lim
r→1−

〈fr, ϕ〉 = lim
r→1−

∞∑

n=0

f̂(n)rnϕ̂(n)

= lim
s→1+

1
2π

�

T
f(eiθ)eiθΦ(seiθ) dθ

and this was used by Matheson in his proof. However, for f ∈ Λ+
γ \ λ+

γ , we
do not have fr → f in Λ+

γ as r → 1−, so this method does not work in our
case.

Let I be a closed ideal in Λ+
γ , let

I⊥ = {ϕ ∈ (Λ+
γ )∗ : 〈f, ϕ〉 = 0 for every f ∈ I}

be the annihilator of I and let π : Λ+
γ → Λ+

γ /I be the quotient map. Suppose
that ϕ ∈ I⊥ (= (Λ+

γ /I)∗). It is well known that the character space of the
algebra Λ+

γ /I equals ZI , so the spectrum of π(α) equals ZI and the function

Φ(z) = 〈(z − π(α))−1, ϕ〉 (z ∈ C \ ZI)
thus extends the domain of Φ to C \ ZI .

For f ∈ Λ+
γ and z ∈ D, define Szf by

(Szf)(w) =





f(z)− f(w)
z − w for w ∈ D \ {z},

f ′(z) for w = z.

Then Szf ∈ Λγ ∩ A(D) = Λ+
γ . It is easily seen that

‖(z − α)−1‖Λγ ≤ C
∣∣1− |z|

∣∣−(1+γ) (z ∈ C \ T),(3)

so we have
‖Szf‖Λ+

γ
≤ C(1− |z|)−(1+γ) (z ∈ D).(4)

We shall often use the following representation of Φ.

Lemma 2.1. Let I be a closed ideal in Λ+
γ and let ϕ ∈ I⊥. Then

Φ(z) =
〈Szg, ϕ〉
g(z)

(z ∈ D \ Z(g))

for g ∈ I.

Proof. For g ∈ I and z ∈ D \ Z(g), we have (z − α)Szg = g(z)− g and
thus (z − π(α))−1 = π(Szg)/g(z), so the result follows.
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The normal approach to the Carleman transform (see, for example, [1],
[10], [11] and [16]) is to define Φ on D \ ZI by the expression Φ(z) =
〈Szg, ϕ〉/g(z) and then show that Φ extends analytically to C \ ZI . With
the present definition, we obtained this as an immediate consequence of the
general fact from Banach algebra theory that the character space of the
algebra Λ+

γ /I equals ZI .
The following result is similar to [1, Theorem 2.4].

Lemma 2.2. Let I be a closed ideal in Λ+
γ and let ϕ ∈ I⊥. Suppose that

z0 ∈ ZI ∩D is of multiplicity k. Then Φ has a pole of order at most k at z0.

Proof. There exist g ∈ I and h ∈ Λ+
γ with h(z0) 6= 0 such that g =

(α− z0)kh. By the previous lemma, we thus have

(z − z0)kΦ(z) = (z − z0)k
〈Szg, ϕ〉
g(z)

=
〈Szg, ϕ〉
h(z)

for z in a neighborhood of z0, which proves the lemma.

For ϕ ∈ (Λ+
γ )∗ and f ∈ Λ+

γ , we define ϕf (= fϕ) ∈ (Λ+
γ )∗ by

〈g, ϕf〉 = 〈fg, ϕ〉 (g ∈ Λ+
γ ).

If I is a closed ideal in Λ+
γ and ϕ ∈ I⊥, then ϕf ∈ I⊥ for f ∈ Λ+

γ . We
denote the Carleman transform of ϕf by Φf . Whereas Φ depends only on
the restriction of ϕ to λ+

γ , the function Φf depends only on the restriction
of ϕ to the subalgebra λ+

γ f of Λ+
γ . Heuristically, this is the reason why

the Carleman transform can be successfully applied to the non-separable
algebra Λ+

γ .

Lemma 2.3. Let f ∈ Λ+
γ , let I be a closed ideal in Λ+

γ and let ϕ ∈ I⊥.
Then

Φf (z) = f(z)Φ(z)− 〈Szf, ϕ〉
for z ∈ D \ ZI .

Proof. Let z ∈ D \ ZI and choose g ∈ I such that g(z) 6= 0. Since
gSzf ∈ I, we have

Φf (z)− f(z)Φ(z) =
〈Szg, ϕf 〉 − f(z)〈Szg, ϕ〉

g(z)

=
〈(f − f(z))Szg, ϕ〉

g(z)
=
〈(g − g(z))Szf, ϕ〉

g(z)
= −〈Szf, ϕ〉

as required.

3. The ideal Jγ(E,Q). In this section, we prove some basic facts about
Jγ(E,Q). In order to use the characterization (1) of Λ+

γ , we need to describe
Jγ(E) in terms of derivatives.
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Proposition 3.1. For a closed set E ⊆ T and f ∈ Λ+
γ , the following

conditions are equivalent :

(a) f ∈ Jγ(E).
(b) f ∈ Iγ(E) and |f ′(z)| = o((1− |z|)γ−1) as d(z,E)→ 0.

Proof. (a)⇒(b). Given ε > 0, we choose δ > 0 such that |f(z)−f(w)| <
ε|z−w|γ for z, w ∈ D with d(z,E), d(w,E) < δ. Let z ∈ D with d(z,E) < δ/2
and let r = 1 − |z| < δ/2. Then d(w,E) < δ for |w − z| = r, so Cauchy’s
formula

f ′(z) =
1

2πi

�

|w−z|=r

f(w)− f(z)
(w − z)2 dw

shows that |f ′(z)| < εrγ−1 as required.
(b)⇒(a). Let ε > 0 and choose δ1 > 0 such that |f ′(z)| < ε(1− |z|)γ−1

for z ∈ D with d(z,E) < δ1. Choose δ2 > 0 such that |f(z)| < εδγ1 for
z ∈ D with d(z,E) < δ2 and let δ = min{δ1, δ2}. Let z1, z2 ∈ D with
d(zk, E) < δ/3 (k = 1, 2). If |z2 − z1| ≥ δ1/3, then

|f(z2)− f(z1)| < 2εδγ1 ≤ 2 · 3γε|z2 − z1|γ,
so we may assume that |z2 − z1| < δ1/3. With zk = rke

iθk (k = 1, 2), we
may also assume that r1 ≥ r2 and that 0 ≤ θ2 − θ1 ≤ π. First, suppose that
|z2 − z1| ≤ 1− r1. Since d(w,E) < δ and |w| ≤ r1 for every point w on the
line segment from z1 to z2, we deduce that

|f(z2)− f(z1)| < |z2 − z1|ε(1− r1)γ−1 ≤ ε|z2 − z1|γ .
Now, suppose that |z2 − z1| ≥ 1− r1. Let % = 1− |z2 − z1| and let Γ be the
curve

Γ = {reiθ1 : % ≤ r ≤ r1} ∪ {%eiθ : θ1 ≤ θ ≤ θ2}
∪ {reiθ2 : r is between % and r2}.

Then d(w,E) < δ for w ∈ Γ , so

|f(%eiθ1)− f(z1)| < ε

1�

%

(1− r)γ−1 dr = (ε/γ)|z2 − z1|γ .

Similarly, if % ≤ r2, then

|f(z2)− f(%eiθ2)| < ε|z2 − z1|γ.
If % ≥ r2, then

|f(z2)− f(%eiθ2)| < ε

%�

r2

(1− r)γ−1 dr ≤ (ε/γ)((1− r2)γ − (1− r1)γ)

≤ ε(r1 − r2)γ ≤ ε|z2 − z1|γ.
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Moreover,

|f(%eiθ2)− f(%eiθ1)| < ε(θ2 − θ1)(1− %)γ−1 ≤ Cε|z2 − z1|γ,
so we obtain

|f(z2)− f(z1)| < (C + 2)ε|z2 − z1|γ

as required.

For γ = 1, the previous proposition takes the following form. Let

H∞E = {f ∈ H∞ : f ′(z)→ 0 as d(z,E)→ 0}
for a closed set E ⊆ T.

Corollary 3.2. For a closed set E ⊆ T and f ∈ Λ+
1 , we have f ∈ J1(E)

if and only if f ∈ I1(E) and f ′ ∈ H∞E .

We shall use the notation

Jγ,0 = Jγ({1}), Iγ,0 = Iγ({1}).
Also, for s > 0, let ψ−s be the singular inner function defined by

ψ−s(z) = exp
(
−s 1 + z

1− z

)
(z ∈ D \ {1})

and write

Jγ,s = Jγ({1}, ψ−s), Iγ,s = Iγ({1}, ψ−s).
For n ∈ N, let

Kn =
1− α

1 + 1/n− α.

For many separable Banach algebras of analytic functions on D, it is well
known that the sequence (Kn) is an approximate identity for the maximal
ideal of functions vanishing at z = 1. In our case, the local condition at
z = 1 imposed on functions in Jγ,0 enables us to prove the following result.

Lemma 3.3. For f ∈ Jγ,0, we have Knf → f in Λ+
γ as n → ∞. In

particular , for γ < 1, the sequence (Kn) is an approximate identity for the
ideal Jγ,0.

Proof. Let f ∈ Jγ,0 and let pn = 1−Kn = n−1(1 + 1/n− α)−1 (n ∈ N).
Since pn → 0 uniformly on compact subsets of D \ {1} as n→∞, it follows
that

sup
z∈D
|pn(z)f ′(z)|(1− |z|)1−γ → 0
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as n→∞. Also,

|p′n(z)f(z)|(1− |z|)1−γ ≤ ε(|1− z|)
∣∣∣∣

1− z
n(1 + 1/n− z)2

∣∣∣∣

= ε(|1− z|)
∣∣∣∣

1− z
1 + 1/n− z

∣∣∣∣
∣∣∣∣

1
n(1 + 1/n− z)

∣∣∣∣
≤ ε(|1− z|) (z ∈ D),

where ε(t)→ 0 as t→ 0. Since
1− z

n(1 + 1/n− z)2 → 0

uniformly on compact subsets of D \ {1} as n→∞, it thus follows that

sup
z∈D
|p′n(z)f(z)|(1− |z|)1−γ → 0

as n→∞. Hence pnf → 0 in Λ+
γ as n→∞.

We finish this section with a description of the ideals Jγ,s in terms of
generators.

Lemma 3.4. Let β, s > 0 and let f = (1− α)βψ−s. Then f ∈ Λ+
γ if and

only if β ≥ 2γ and f ∈ Jγ,s if and only if β > 2γ.

Proof. We have

f ′ = −β(1− α)β−1ψ−s − 2s(1− α)β−2ψ−s.

For z ∈ D, we write 1− z = reiθ. Then 1− |z|2 = r(2 cos θ− r), so 2 cos θ >
r > 0. Also,

Re
(

1 + z

1− z

)
=

2 cos θ
r
− 1,

so

|1− z|β−2|ψ−s(z)|(1− |z|2)1−γ

= rβ−2 exp
(
−s
(

2 cos θ
r
− 1
))

(r(2 cos θ − r))1−γ

= rβ−2γ exp
(
−s
(

2 cos θ
r
− 1
))(

2 cos θ
r
− 1
)1−γ

,

and the result follows.

Proposition 3.5. (a) For β > γ, we have

Jγ,0 = Λ+
γ (1− α)β.

(b) For s > 0 and β > 2γ, we have

Jγ,s = Λ+
γ (1− α)βψ−s.
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Proof. (a) Since (1 − α)β ∈ Jγ,0, we have the inclusion Λ+
γ (1− α)β

⊆ Jγ,0. Moreover, it follows from Lemma 3.3 that Jγ,0 = Jγ,0(1− α) and
thus Jγ,0 ⊆ Λ+

γ (1− α)m for m ∈ N, which proves the reverse inclusion.
(b) It follows from the previous lemma that

Λ+
γ (1− α)βψ−s ⊆ Jγ,s.

Conversely, let f ∈ Jγ,s. By Lemma 3.3, we have Knf → f in Λ+
γ as n→∞.

Fix n ∈ N and let g = Knf . Let 0 < a < 1 and let

T ε(z) = exp(−ε(1− z)−a) (z ∈ D).

Then |T | ≤ 1 on D and

T ′(z) = −a(1− z)−(a+1)T (z) (z ∈ D),

so (T ε) is a semigroup of outer functions in Λ+
γ . (In Section 6, we shall make

use of a more general version of this semigroup.) Moreover,

(T εg)′ = T εg′ + ε(T ′/T )T εg (ε > 0).

Since T ε → 1 uniformly on compact subsets of D \ {1} and since |g(z)| ≤
C|1 − z|γ+1 for z ∈ D, we deduce that T εg → g in Λ+

γ as ε → 0. Finally,
using (a), we choose a sequence (gm) in Λ+

γ such that

gm(1− α)β → g/ψ−s

in Λ+
γ as m→∞. It is easily seen that T εψ−s ∈ Λ+

γ , so

T εgm(1− α)βψ−s → T εg

in Λ+
γ as m→∞ for ε > 0, and it follows that f ∈ Λ+

γ (1− α)βψ−s.

4. Ideals with countable hull. Our main aim in this paper is to prove
the following result.

Theorem 4.1. We have

Jγ(EI , QI) ⊆ I
for every closed ideal I in Λ+

γ for which EI is countable.

Before proceeding to the proof of the theorem, we present a few con-
sequences. It follows from Theorem 1.1 that if f ∈ Iγ(E,Q), then f/Q ∈
Iγ(E). We do not know whether the corresponding result for Jγ(E,Q) holds
in general, but for E countable it follows easily from the theorem.

Corollary 4.2. Suppose that a closed set E ⊆ T and an inner func-
tion Q satisfy (2) and that E is countable. If f ∈ Jγ(E,Q), then f/Q ∈
Jγ(E).
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Proof. Consider the closed ideal

I = {f ∈ Jγ(E,Q) : f/Q ∈ Jγ(E)}
in Λ+

γ . We have EI = E and QI = Q, so the previous theorem entails that
Jγ(E,Q) ⊆ I and the conclusion follows.

For γ = 1, Theorem 4.1 can be restated as follows with the use of Corol-
lary 3.2.

Corollary 4.3. Let I be a closed ideal I in Λ+
1 and suppose that EI

is countable. Then

{f ∈ I1(EI , QI) : f ′ ∈ H∞EI} ⊆ I.
For the primary ideals, more can be said.

Corollary 4.4. Let s ≥ 0. The closed ideals I in Λ+
γ with EI = {1}

and QI = ψ−s are exactly the closed subspaces I of Λ+
γ with

Jγ,s ⊆ I ⊆ Iγ,s.
Proof. Let I be a closed subspace of Λ+

γ with Jγ,s ⊆ I ⊆ Iγ,s. For f ∈ Λ+
γ

and g ∈ I, we have

(f − f(1))g ∈ Iγ,0 · Iγ,s ⊆ Jγ,s ⊆ I,
so fg ∈ I and the result follows.

In his paper [5] on the ideal structure in H∞, Hedenmalm stated the
following result, which is now easily deduced from our results.

Corollary 4.5. Let I be a closed ideal in Λ+
1 with EI = {1} and

QI = 1. Then there is a closed subspace Z in H∞ containing H∞{1} such
that

I = {f ∈ I1({1}) : f ′ ∈ Z}.
Conversely , every such set I is a closed ideal in Λ+

1 with EI = {1} and
QI = 1.

Proof. For f ∈ I1({1}), we have ‖f‖∞ ≤ 2‖f ′‖∞, so f 7→ ‖f ′‖∞ defines
a norm on I1({1}) which is equivalent to the Λ+

1 norm. Hence I 7→ I ′ =
{f ′ : f ∈ I} defines a bijective correspondence between the closed subspaces
I in Λ+

1 with J1({1}) ⊆ I ⊆ I1({1}) and the closed subspaces Z in H∞ with
H∞{1} ⊆ Z, so the result follows from the previous corollary.

Finally, we shall show that there are uncountably many closed ideals
between Jγ,s and Iγ,s.

Lemma 4.6. Let fs = (1− α)2γψ−s (s > 0). For 0 < t0 < s0, we have

‖fs − ft‖Λ+
γ /Jγ,0

≥ C
for t0 ≤ t < s ≤ s0.
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Proof. We have

‖f‖Λ+
γ /Jγ,0

≥ lim sup
z→1

|f ′(z)|(1− |z|)1−γ

for f ∈ Λ+
γ . Also,

f ′s = −2γ(1− α)2γ−1ψ−s − 2s(1− α)2γ−2ψ−s,

so

‖fs − ft‖Λ+
γ /Jγ,0

≥ lim sup
z→1

∣∣2(s− t)(1− z)2γ−2ψ−s(z)

+ 2t(1− z)2γ−2(ψ−s(z)− ψ−t(z))
∣∣(1− |z|)1−γ.

As in the proof of Lemma 3.4, we write 1− z = reiθ for z ∈ D. Then

Im
(

1 + z

1− z

)
=

2 sin θ
r

,

so there exists a sequence (zn) tending to 1 such that

Im
(

1 + zn
1− zn

)
=

(2n+ 1)π
s− t

and thus
|ψ−(s−t)(zn)− 1| ≥ 1−Reψ−(s−t)(zn) ≥ 1.

It thus follows from the proof of Lemma 3.4 that

lim sup
n→∞

∣∣(1− zn)2γ−2(ψ−s(zn)− ψ−t(zn))
∣∣(1− |zn|)1−γ ≥ C.

Hence there exists δ > 0 such that

‖fs − ft‖Λ+
γ /Jγ,0

≥ t0C
for 0 < s− t < δ and the result follows.

Corollary 4.7. For s ≥ 0, there are uncountably many closed ideals I
in Λ+

γ with Jγ,s ⊆ I ⊆ Iγ,s.
Proof. The inclusion map ι : Iγ,s → Iγ,0 induces a bounded linear map

ι̃ : Iγ,s/Jγ,s → Iγ,0/Jγ,0. Since ft ∈ Iγ,s for t ≥ s, we deduce from the
previous lemma that Iγ,s/Jγ,s is non-separable, so the result follows from
Corollary 4.4.

We now turn to the proof of Theorem 4.1. Recall the following definitions
(with a few modifications) from [1]:

H+: consists of the analytic functions f on D for which |f(z)| ≤ C(1−|z|)−N
for z ∈ D for some N ∈ N,

H−: consists of the analytic functions f on C\D with |f(z)| ≤ C(|z|−1)−N

for z ∈ C \ D for some N ∈ N and f(z)→ 0 as |z| → ∞,
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G: consists of the analytic functions f on C \ T for which f ∈ H− on C \ D
and f = g/h with g ∈ H+ and h ∈ H∞ on D.

The following result as well as its proof are similar to [1, Theorem 4.3].

Proposition 4.8. Let I be a closed ideal in Λ+
γ and let ϕ ∈ I⊥. If

f ∈ Jγ(EI , QI), then Φf does not have any isolated singularities.

Proof. It follows from Lemma 2.2 that QIΦ and thus fΦ is analytic on D.
Hence Φf is analytic on D by Lemma 2.3, so the singularities of Φf belong
to ZI ∩ T = EI . Moreover, by Lemmas 2.1 and 2.3, we have

Φf (z) =
(f(z)/Q(z))〈Szg, ϕ〉 − (g(z)/Q(z))〈Szf, ϕ〉

g(z)/Q(z)
(z ∈ D \ Z(g))

for g ∈ I. From (3) and (4), we thus deduce that Φf ∈ G, so it follows from
[1, Theorem 3.2(ii)] that any isolated singularity of Φf is a pole.

Suppose that Φf has a pole of order p at (say) z = 1, so that the func-
tion Ψ defined by

Ψ = (1− α)pΦf(5)

is analytic in a neighborhood U of 1 and a = Ψ(1) 6= 0. Since f ∈ Jγ,0, we
have Knf → f in Λ+

γ as n→∞ by Lemma 3.3. Moreover, Kn ∈ λ+
γ and the

polynomials are dense in λ+
γ , so there exists a sequence (pn) of polynomials

with pn(1) = 1 and pnf → 0 in Λ+
γ as n → ∞. Let ϕn = ϕpnf and let

Φn be the Carleman transform of ϕn. Since ϕn = (ϕf )pn , it follows from
Lemma 2.3 that

Φn(z) = pn(z)Φf (z)− 〈Szpn, ϕf 〉 (z ∈ D \ ZI)(6)

and qn(z) = 〈Szpn, ϕf 〉 is a polynomial in z. Combining (5) and (6), we
obtain

(1− α)pΦn = pnΨ − (1− α)pqn

on U , so the function Ψn defined by Ψn = (1 − α)pΦn is analytic in U and
Ψn(1) = a.

Choose a circle Γ centered at 1 and contained in U and a function g ∈ I
such that g(z) 6= 0 for z ∈ Γ ∩ D. We have

‖ϕn‖ ≤ ‖pnf‖Λ+
γ
· ‖ϕ‖ → 0(7)

as n→∞, so

|Φn(z)| ≤ C(1− |z|)−(γ+1) (z ∈ Γ ∩ D)

by (4) and
|Φn(z)| ≤ C(|z| − 1)−(γ+1) (z ∈ Γ \ D)

by (3). It thus follows from the proof of [8, Lemma VI.8.3] that the sequence
(Ψn) is uniformly bounded on some disc centered at 1. By (7), we have
Φn → 0 pointwise on C \ ZI as n → ∞ and thus Ψn → 0 pointwise on Γ
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as n → ∞. Hence Ψn(1) → 0 as n → ∞ by Cauchy’s integral formula and
Lebesgue’s dominated convergence theorem, contradicting Ψn(1) = a 6= 0.

Proof of Theorem 4.1. Let I be a closed ideal in Λ+
γ , let ϕ ∈ I⊥ and let

f ∈ Jγ(EI , QI). We will use the same transfinite induction as in [1, p. 17]
to prove that Φf is entire. Let L0 = EI and inductively define Lσ for any
ordinal σ in the following way: If σ = τ + 1 is not a limit ordinal, we define
Lσ to be the set of limit points of Lτ , and if σ is a limit ordinal, we let
Lσ =

⋂
τ<σ Lτ . If z0 is a singularity of Φf , then z0 ∈ EI = L0. Suppose that

we have shown that z0 ∈ Lτ for every ordinal τ < σ. If σ = τ + 1 is not a
limit ordinal, then Lσ \Lτ consists of isolated points, so it follows from the
previous proposition that z0 ∈ Lσ. The same conclusion clearly holds if σ is
a limit ordinal, so we conclude that z0 ∈ Lσ for every ordinal σ. However,
L0 contains no perfect subsets, so Lσ ⊂ Lτ for every non-limit ordinal
σ = τ + 1, and it follows that there exists a first ordinal σ0 such that Lσ0

is empty. This contradicts our earlier conclusion z0 ∈ Lσ0 . Consequently,
Φf does not have any singularities, so Φf is entire. Hence Φf = 0 and since
span{(z − α)−1 : z ∈ C \ D} is dense in λ+

γ , this is equivalent to ϕf = 0
on λ+

γ . Consequently,
〈f, ϕ〉 = 〈1, ϕf 〉 = 0

and since ϕ ∈ I⊥ was arbitary, we conclude that f ∈ I.

For closed ideals with finite hull, we shall now give a proof of Theorem 4.1
which is more constructive and does not depend on Proposition 4.8. For
simplicity, we consider only closed ideals I in Λ+

γ with ZI = {1}. For γ < 1
and QI = 1, the main idea in the proof is to show that if ϕ ∈ I⊥, then
〈f, ϕ〉 = af(1) for f ∈ λ+

γ for some a ∈ C (and similarly for γ = 1).

Proof of Theorem 4.1 when ZI = {1}. First, suppose that QI = 1. For
ϕ ∈ I⊥, we have

|Φ(z)| ≤ C(|z| − 1)−(1+γ) (z ∈ C \ D)(8)

by (3). Moreover, for g ∈ I and z ∈ D, it follows from (4) and Lemma 2.1
that

|g(z)Φ(z)| ≤ C(1− |z|)−(1+γ) (z ∈ D).

Hence Φ has a pole at z = 1 by [1, Theorem 3.2(ii)]. We first consider the
case where 0 < γ < 1. Then z = 1 is a simple pole of Φ by (8) and since
Φ(z)→ 0 as |z| → ∞, we deduce that

Φ(z) = a(z − 1)−1 (z ∈ C \ {1})
for some a ∈ C. Let δ1 ∈ (Λ+

γ )∗ denote the point evaluation at z = 1. Then

〈(z − α)−1, δ1〉 = (z − 1)−1 (z ∈ C \ D),
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so ϕ = aδ1 on the closed span of {(z − α)−1 : |z| > 1}, that is, on λ+
γ .

In particular, 〈1− α,ϕ〉 = 0. The Hahn–Banach theorem thus implies that
1 − α ∈ I, so Jγ,0 ⊆ I by Proposition 3.5. For γ = 1, the same method
works with the following changes. From (8), we deduce that Φ has a pole of
order 2 at z = 1, so

Φ(z) = a(z − 1)−1 + b(z − 1)−2 (z ∈ C \ {1})
for some a, b ∈ C. On λ+

1 , we define δ′1 by 〈g, δ′1〉 = g′(1) (g ∈ λ+
1 ). Then

〈(z − α)−1, δ′1〉 = (z − 1)−2 (z ∈ C \ D),

so ϕ = aδ1 + bδ′1 on λ+
1 . In particular, 〈(1 − α)2, ϕ〉 = 0, so J1,0 ⊆ I by

Proposition 3.5.
Now, suppose that QI = ψ−s for some s > 0. We have (1−α)2ψ−s ∈ Λ+

γ

and the division ideal

Ĩ = {f ∈ Iγ({1}) : (1− α)2ψ−sf ∈ I}
satisfies EĨ = {1} and QĨ = 1, so Jγ,0 ⊆ Ĩ by the first part of the proof.
Since (1−α)2 ∈ Jγ,0, we thus have (1−α)4ψ−s ∈ I, so the conclusion follows
from Proposition 3.5.

5. Ideals with QI = 1. Our aim in this section is to prove the following
result.

Theorem 5.1. Let E ⊆ T be a Carleson set and let F ∈ Jγ(E) be an
outer function with Z(F ) = E. Then

Λ+
γ F = Jγ(E).

Remarks. (1) We do not know whether a closed ideal I in Λ+
γ with

QI = 1 necessarily contains an outer function F with Z(F ) = EI . However,
if this is the case, then the theorem verifies our conjecture for this class of
closed ideals. This is seen as follows: Let H ∈ Jγ(EI) be an outer function
with Z(H) = EI . Then FH ∈ I ∩ Jγ(EI) and Z(FH) = EI , so it follows
from the theorem that

Jγ(EI) = Λ+
γ FH ⊆ Λ+

γ F ⊆ I
as required.

(2) We do not know how to prove a version of the theorem for the ideals
Jγ(E,Q) with Q 6= 1.

For a closed set E ⊆ T and p ∈ N, let

Ipγ(E) = {f ∈ Λ+
γ : |f(z)| ≤ Cd(z,E)p (z ∈ T)}.

For f ∈ Ipγ(E), we have |f(z)| ≤ C|z−w|p (z ∈ T, w ∈ E) and since (α−w)p

is outer, this holds for z ∈ D, so it follows that |f(z)| ≤ Cd(z,E)p (z ∈ D).
Theorem 5.1 is an immediate consequence of the following two results.
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Proposition 5.2. Let E ⊆ T be a Carleson set , let F ∈ Jγ(E) be an
outer function with Z(F ) = E and let p ∈ N with p > 2γ. Then

Jγ(E) ∩ Ipγ(E) ⊆ Λ+
γ F.

Proposition 5.3. Let E ⊆ T be a Carleson set and let p ∈ N. Then
Jγ(E) ∩ Ipγ(E) is dense in Jγ(E).

For an outer function F and a measurable set Γ ⊆ T, let

FΓ (z) = exp
(

1
2π

�

Γ

eiθ + z

eiθ − z log |F (eiθ)| dθ
)

(z ∈ D).(9)

Observe that |FΓ | = |F | a.e. on Γ and |FΓ | = 1 a.e. on T \ Γ . Also, FΓ → 1
pointwise on D as m(Γ )→ 0. The following proof is inspired by [13].

Proof of Proposition 5.2. Let f ∈ Jγ(E) ∩ Ipγ(E) and write T \ E =⋃∞
n=1 Vn, where (Vn) is a sequence of pairwise disjoint, open arcs on T with

endpoints an and bn. For N ∈ N, let ΓN =
⋃∞
n=N+1 Vn and let FN = FΓN .

We shall prove that

(i) FNf → f in Λ+
γ as N →∞.

(ii) FNf ∈ Λ+
γ F for N ∈ N.

(i): We have
(FNf − f)′ = (FN − 1)f ′ + F ′Nf.

Also, FN → 1 uniformly on compact subsets of D\E, so FNf → f uniformly
on D and

sup
z∈D
|(FN (z)− 1)f ′(z)|(1− |z|)1−γ → 0

as N →∞. We shall now prove that

|F ′N (z)f(z)| = o((1− |z|)γ−1)(10)

as d(z,E) → 0 uniformly in N . For N ∈ N, let EN = E ∩ ΓN = ∂ΓN and
let

G1N = {z = reit ∈ D : d(eit, EN ) ≤ (1− r)1/2},
G2N = {z = reit ∈ D : d(eit, EN ) > (1− r)1/2 and eit 6∈ ΓN},
G3N = {z = reit ∈ D : d(eit, EN ) > (1− r)1/2 and eit ∈ ΓN}.

For z = reit ∈ G1N , choose eiθ ∈ EN such that

d(z,EN)2 = |z − eiθ|2 = (1− r)2 + 4r sin2(θ − t)/2
= (1− r)2 + rd(eit, EN )2 ≤ 1− r.

By Cauchy’s inequalities, |F ′N (z)| ≤ C(1− r)−1, so

|F ′N (z)f(z)| ≤ Cd(z,E)p(1− r)−1 ≤ C(1− r)p/2−1.
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For z = reit ∈ G2N , we have d(eit, ΓN ) = d(eit, EN ) and thus

d(z, ΓN )2 = (1− r)2 + rd(eit, ΓN )2 = d(z,EN)2.

Moreover,

F ′N (z) =
1
π

�

ΓN

eiθ

(eiθ − z)2 log |F (eiθ)| dθ · FN (z),

so
|F ′N (z)| ≤ C

�

T

∣∣log |F (eiθ)|
∣∣ dθ · d(z,EN)−2

and thus
|F ′N(z)f(z)| ≤ Cd(z,EN)p−2.

Also, d(z,EN)2 = (1− r)2 + rd(eit, EN )2 ≥ 1− r, so

|F ′N (z)f(z)| ≤ Cd(z,E)p−2γ(1− r)γ−1.

Now, let z = reit ∈ G3N . We have

F ′N (z) =
F ′(z)FN (z)

F (z)
− 1
π

�

T\ΓN

eiθ

(eiθ − z)2 log |F (eiθ)| dθ · FN (z).

Since d(z,T \ ΓN ) ≥ d(z,EN ), the second term can be estimated as for
z ∈ G2N . For the first term, we apply [13, Lemma 1] with Γ = T \ ΓN
and η = 1/2 and obtain |FN (z)/F (z)| ≤ C. Since F ∈ Jγ(E), we have
verified (10).

For δ > 0, let Eδ = {z ∈ T : d(z,E) < δ} and Uδ = {z ∈ D : d(z,E) < δ}.
Given ε > 0, it follows from (10) that there exists δ > 0 such that

|F ′N (z)f(z)|(1− |z|)1−γ ≤ ε
for z ∈ Uδ and N ∈ N. Since V n ∩ E 6= ∅ (n ∈ N), there exists N0 ∈ N
such that Vn ⊆ Eδ/2 for n > N0 and thus ΓN ⊆ Eδ/2 for N ≥ N0. Hence
d(z, ΓN) ≥ δ/2 for z 6∈ Uδ and N ≥ N0, so

|F ′N (z)| ≤ Cd(z, ΓN)−2
�

ΓN

∣∣log |F (eiθ)|
∣∣ dθ → 0

uniformly on D \Uδ as N →∞. We thus conclude that FNf ∈ Λ+
γ and that

FNf → f in Λ+
γ as N →∞.

(ii): Fix N ∈ N. Since f ∈ Jγ(E), it follows from (10) that FNf ∈ Jγ(E).
For a ∈ T and µ > 0, let

Kaµ(z) =
a− z

(1 + µ)a− z (z ∈ D).

(This is a generalization of the sequence (Kn) introduced in Section 3.) With

Φµ =
( N∏

n=1

KanµKbnµ

)p
,
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it follows from Lemma 3.3 that

ΦµFNf → FNf(11)

in Λ+
γ as µ→ 0. Now, fix µ > 0. For ε > 0 and n = 1, . . . , N , let Vnε be the

subarc of Vn whose endpoints cn and dn are at a distance ε from an and bn
respectively. Let Dε =

⋃N
n=1 Vnε and let

Φµε =
( N∏

n=1

KcnµKdnµ

)p
.

We shall show that

(a) ΦµεF−1
Dε
∈ Λ+

γ for ε > 0
(b) ΦµεF−1

Dε
Ff → ΦµFNf in Λ+

γ as ε→ 0.

It then follows from (11) that FNf ∈ Λ+
γ F . For simplicity, we only prove (a)

and (b) for N = 1, but the proof is essentially the same in the general case.
(a): Let ε > 0. It follows from the proof of (10) that

|Φµε(z)F ′Dε(z)| ≤ C(1− |z|)γ−1 (z ∈ D).

Also, the outer function FDε is bounded away from zero on T and thus on D,
so

|Φµε(z)(F−1
Dε

)′(z)| ≤ C(1− |z|)γ−1 (z ∈ D),

and (a) follows.
(b): For ε > 0, let Wε = V1 \ V1ε so that ∂Wε = {a1, c1, d1, b1}. Then

F−1
V1ε
F = FWεF1,

so

(12) (ΦµεF−1
V1ε
Ff − ΦµF1f)′

= (ΦµεFWεF1 − ΦµF1)f ′ + (ΦµεFWε − Φµ)F ′1f

+ (Φ′µεFWε − Φ′µ)F1f + ΦµεF
′
Wε
F1f.

As ε → 0, we have Φµε → Φµ and Φ′µε → Φ′µ uniformly on D and FWε → 1
uniformly on compact subsets of D \ {a1, b1}, so

sup
z∈D

∣∣[(ΦµεFWεF1 − ΦµF1)f ′ + (ΦµεFWε − Φµ)F ′1f

+ (Φ′µεFWε − Φ′µ)F1f ](z)
∣∣ · (1− |z|)1−γ → 0.

In order to estimate the last term on the right-hand side of (12), we shall
imitate the proof of (10). For ε > 0, let fε = Φµεf ∈ Ipγ(∂Wε) and let

G1ε = {z = reit ∈ D : d(eit, ∂Wε) ≤ (1− r)1/2},
G2ε = {z = reit ∈ D : d(eit, ∂Wε) > (1− r)1/2 and eit 6∈Wε},
G3ε = {z = reit ∈ D : d(eit, ∂Wε) > (1− r)1/2 and eit ∈Wε}.
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For z = reit ∈ G1ε, we have d(z, ∂Wε)2 ≤ 1− r, so

|F ′Wε
(z)fε(z)| ≤ C(1− r)p/2−1

uniformly for ε > 0. Moreover, F ′Wε
→ 0 uniformly on compact subsets

of D, so
sup
z∈G1ε

|F ′Wε
(z)fε(z)|(1− |z|)1−γ → 0

as ε→ 0. Also, for z = reit ∈ G2ε, we have

|F ′Wε
(z)fε(z)|(1− r)1−γ ≤ C

�

Wε

∣∣log |F (eiθ)|
∣∣ dθ → 0

as ε → 0. For z = reit ∈ G3ε, we have d(z, ∂Wε)2 ≤ 2d(eit, ∂Wε)2 ≤ 2ε2.
Moreover,

F ′Wε
(z) =

F ′(z)FWε(z)
F (z)

− 1
π

�

T\Wε

eiθ

(eiθ − z)2 log |F (eiθ)| dθ · FWε(z),

and |FWε(z)/F (z)| ≤ C by [13, Lemma 1], so

|F ′Wε
(z)fε(z)|(1− r)1−γ

≤ Cd(z, ∂Wε)p((1− r)γ−1 + d(z, ∂Wε)−2)(1− r)1−γ

≤ C(d(z, ∂Wε)p + d(z, ∂Wε)p−2+2(1−γ)) ≤ C(εp + εp−2γ).

All in all, we conclude that

sup
z∈D
|F ′Wε

(z)fε(z)|(1− |z|)1−γ → 0

as ε→ 0, so (b) follows from (12).

We now turn to the proof of Proposition 5.3. In the proof of the corre-
sponding result for λ+

γ ([12, Theorem A]), the first step is that if f ∈ λ+
γ

with f = FQ, where F is an outer and Q an inner function, then

ft = F 1+tQ→ f

in λ+
γ as t→ 0, and moreover ft ∈ I(1+t)γ

γ (Z(F )). In our case, for f ∈ Jγ(E),
we only have ft → f in Λ+

γ as t→ 0 if Z(F ) = E, and this complicates the
proof of Proposition 5.3. We shall need the following factorization result,
which we find interesting in itself.

Proposition 5.4. Let F ∈ Λ+
γ be an outer function and suppose that

Z(F ) = E1∪E2, where E1, E2 ⊆ T are closed , disjoint sets. Then there exist
outer functions F1, F2 ∈ Λ+

γ such that F = F1F2 and Z(Fk) = Ek (k = 1, 2).

Proof. Choose open sets U1, U2, V1, V2 ⊆ T such that Ek ⊆ Uk, Uk ⊆ Vk
(k = 1, 2) and such that V1 and V2 are disjoint, and choose χ1, χ2 ∈ Λγ
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such that χ1 + χ2 = 1 on T and χk = 1 on Uk (k = 1, 2). For k = 1, 2, let
ϕk = χk log |F | and define an outer function Fk by

Fk(z) = exp
(

1
2π

�

T

eiθ + z

eiθ − z ϕk(e
iθ) dθ

)
(z ∈ D).

Then Z(Fk) = Ek and F = F1F2. Choose ψk ∈ Λγ such that ψk = ϕk on
T \ Uk and let

Gk(z) = exp
(

1
2π

�

T

eiθ + z

eiθ − z ψk(e
iθ) dθ

)
,

Hk(z) = exp
(

1
2π

�

T

eiθ + z

eiθ − z (ϕk(eiθ)− ψk(eiθ)) dθ
)

for z ∈ D, so that Fk = GkHk. Since Λγ is closed under harmonic conjugation
([17, Theorem III.13.29]), it follows that logGk ∈Λ+

γ and thus Gk, G
−1
k ∈Λ+

γ .
For eiθ ∈ U1, the function z 7→ (eiθ + z)/(eiθ − z) belongs to Λγ(T \ V1),
so we deduce that H1 ∈ Λγ(T \ V1) and thus F1 ∈ Λγ(T \ V1). Similarly
F2 ∈ Λγ(T \V2), so F1 = F/F2 ∈ Λγ(T \V2) since F2 has no zeros on T \V2.
Hence F1 ∈ Λγ and thus F1 ∈ Λ+

γ . Similarly F2 ∈ Λ+
γ .

Proof of Proposition 5.3. Let f ∈ Jγ(E) with f = FQ, where F is an
outer and Q an inner function, and let ε > 0. Choose 0 < δ ≤ ε such that

|f ′(z)| < ε(1− |z|)γ−1

for z ∈ Uδ, where Uδ and Eδ are as in the proof of Proposition 5.2. It is easily
seen that there exist closed, disjoint sets E1, E2 ⊆ T with E ⊆ E1 ⊆ Eδ and
Z(F ) = E1 ∪E2, so it follows from the previous proposition that F = F1F2,
where F1, F2 ∈ Λ+

γ are outer functions with Z(Fk) = Ek (k = 1, 2). For
t > 0, let

ft = F 1+t
1 F2Q = F t1f,

so that
f ′t = tF t−1

1 F ′1f + F t1f
′ = F t1(tF ′1F2Q+ f ′).(13)

Since F1 = 0 on E1 ⊇ E, we deduce that ft ∈ Jγ(E)∩ I(1+t)γ
γ (E). Moreover,

(ft − f)′ = tF t1F
′
1F2Q+ (F t1 − 1)f ′.

Since Z(F1) ⊆ Eδ, we have F t1 → 1 uniformly on D \ Uδ as t→ 0, so

lim sup
t→0

‖ft − f‖Λ+
γ
≤ C sup

z∈Uδ
|f ′(z)|(1− |z|)1−γ < Cε.

Write T \ E1 =
⋃∞
n=1Wn, where (Wn) is a sequence of pairwise disjoint,

open arcs on T. For N ∈ N, let ΩN =
⋃∞
n=N+1Wn and let

F1N = (F1)ΩN
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(see (9)). Fix t > 0 and let q ∈ N. We have F q1N → 1 uniformly on compact
subsets of D \ E1 and ft = 0 on E1, so F q1Nft → ft uniformly on D. To
estimate (F q1N)′ft = qF q−1

1N F ′1Nft on D \ Uδ, we choose N0 ∈ N such that
ΩN ⊆ Eδ/2 for N ≥ N0. We have

|F ′1N (z)| ≤ Cd(z,ΩN)−2
�

ΩN

∣∣log |F (eiθ)|
∣∣ dθ ≤ Cδ−2

�

ΩN

∣∣log |F (eiθ)|
∣∣ dθ → 0

uniformly for z ∈ D \Uδ as N →∞. To estimate (F q1N )′ft on Uδ, we repeat
the proof of [12, Theorem B] (for q sufficiently large) with d(z) = d(z,E1)
and use the fact that

|f(z)| ≤ C|F1(z)| ≤ Cd(z,E1)γ ≤ Cεγ,
and obtain

lim sup
N→∞

sup
z∈Uδ
|(F q1N)′(z)ft(z)|(1− |z|)1−γ = κ(ε),

where κ(ε)→ 0 as ε→ 0. Moreover, by (13), we have

sup
z∈Uδ
|f ′t(z)|(1− |z|)1−γ ≤ C sup

z∈Uδ
|F t1(z)| ≤ Cδtγ ≤ Cεtγ,

so
lim sup
N→∞

‖ft − F q1Nft‖Λ+
γ

= κ̃(ε)

where κ̃(ε)→ 0 as ε→ 0.
Now, fix N ∈ N. It follows from the above that F q1Nft ∈ Jγ(E). Moreover,

|F q1N(z)| ≤ Cd(z, ∂ΩN)p (z ∈ D)

for q ≥ p/γ. Since ∂(T \ E1) = E1, we deduce that E \ ∂ΩN is finite, say
E \ ∂ΩN = {a1, . . . , aM}. By Lemma 3.3, we then have

( M∏

m=1

Kamµ

)p
F q1Nft → F q1Nft

in Λ+
γ as µ→ 0, and since

( M∏

m=1

Kamµ

)p
F q1N ∈ Jγ(E) ∩ Ipγ(E),

this finishes the proof.

6. Weak-star closed ideals. In this section, we characterize the wk∗

closed ideals in Λ+
γ . We begin by describing the wk∗ topology on Λγ and

Λ+
γ . For z ∈ T, let δz ∈ Λ∗γ be the point evaluation functional at z, and let

Yγ = span{δz : z ∈ T}
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(norm closure in Λ∗γ). Johnson ([7, Section 4]) proved that

Y ∗γ = Λγ .

Moreover, a bounded net in Λγ converges wk∗ to zero in Λγ if and only if
it converges pointwise to zero on T, and in this case it actually converges
uniformly to zero on T. When 0 < γ < 1, we further have Yγ = λ∗γ and thus
Λγ = λ∗∗γ ([7, Theorem 4.7]).

Lemma 6.1. Multiplication is separately wk∗ continuous in Λγ.

Proof. The space Y ∗∗γ = Λ∗γ is a Banach Λγ-module under the action

〈f, gϕ〉 = 〈fg, ϕ〉 (f, g ∈ Λγ , ϕ ∈ Y ∗∗γ ).

For z ∈ T and g ∈ Λγ , we have

〈f, gδz〉 = f(z)g(z) (f ∈ Λγ),

so gδz = g(z)δz. Hence Yγ is a Λγ-submodule and the conclusion follows.

Let (fn) be a sequence in Λ+
γ which converges wk∗ to f in Λγ as n→∞.

Then f̂n(m)→ f̂(m) as n→∞ for m ∈ Z by Lebesgue’s dominated conver-
gence theorem. Hence f ∈ Λ+

γ , so Λ+
γ is wk∗ closed by the Krein–Šmulian

theorem. Denoting the quotient space Yγ/⊥(Λ+
γ ) by Y +

γ , we thus have

Λ+
γ = (Y +

γ )∗.

The next result often provides us with the easiest way to show wk∗ conver-
gence in Λ+

γ .

Lemma 6.2. Let (fn) be a bounded sequence in Λ+
γ which converges

pointwise to zero on D as n→∞. Then fn → 0 wk∗ in Λ+
γ as n→∞.

Proof. Let z ∈ T and ε > 0. Choose w ∈ D with |z − w| < ε. Since
fn(w) → 0 as n → ∞ and since (fn) is bounded in Λ+

γ , it follows that
lim supn→∞ |fn(z)| ≤ Cεγ . Hence fn → 0 pointwise on T as n→∞ and the
result follows.

We now turn our attention to wk∗ closed ideals in Λ+
γ .

Proposition 6.3. Suppose that a closed set E ⊆ T and an inner func-
tion Q satisfy (2). Then Iγ(E,Q) is a wk∗ closed ideal in Λ+

γ .

Proof. Let (fn) be a sequence in Iγ(E,Q) and suppose that fn → f
wk∗ in Λ+

γ as n → ∞ for some f ∈ Λ+
γ . Then f ∈ Iγ(E) and it follows

from Theorem 1.1 that (fn/Q) is a bounded sequence in Λ+
γ . Moreover,

fn/Q → f/Q pointwise on T as n → ∞, so we deduce that fn/Q → f/Q
wk∗ in Λ+

γ as n → ∞. In particular, f ∈ Iγ(E,Q). The Krein–Šmulian
theorem thus implies that Iγ(E,Q) is wk∗ closed.

The aim of this section is to prove the following result, which states that
the ideals Iγ(E,Q) are the only wk∗ closed ideals in Λ+

γ .
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Theorem 6.4. Let I be a wk∗ closed ideal in Λ+
γ . Then

I = Iγ(EI , QI).

The proof of the theorem takes up the rest of this paper. The idea in
the proof is similar to that of [10] and [11]. Firstly, the Carleman transform
is used to show that a wk∗ closed ideal I in Λ+

γ with QI = 1 necessarily
contains a certain class of functions. Secondly, we show that every function
in Iγ(E,Q) can be approximated by sufficiently smooth functions. Finally,
the result is deduced from these two facts.

For a (wk∗) closed ideal I in Λ+
γ , we let

⊥I = {ϕ ∈ Y +
γ : 〈ϕ, f〉 = 0 for every f ∈ I} = I⊥ ∩ Y +

γ .

Also, for an inner function Q, a closed set Z ⊆ D and p > 0, let

Ipγ(Z,Q) = {f ∈ Λ+
γ : f/Q ∈ Λ+

γ and |f(z)| ≤ Cd(z, Z)p (z ∈ T)},
so that Ipγ(E) = Ipγ(E, 1) for a closed set E ⊆ T (see the previous section).
For f ∈ Λ+

γ , we have ‖fr‖Λ+
γ
≤ ‖f‖Λ+

γ
for r < 1 and thus fr → f wk∗ in Λ+

γ

as r → 1−, so we can use a method from [10] in the proof of the next result.

Lemma 6.5. Let I be a wk∗ closed ideal in Λ+
γ with QI = 1. Then

I2(1+γ)
γ (EI , 1) ⊆ I.

Proof. Let f ∈ I2(1+γ)
γ (EI , 1) and suppose that ϕ ∈⊥I. Then

〈ϕ, f〉 = lim
r→1−

〈ϕ, fr〉 = lim
s→1+

1
2π

�

T
f(eiθ)eiθΦ(seiθ) dθ.

From the proof of [10, Lemma 3.3] (see also [11, Theorem 5]), we deduce
that

|Φ(z)| ≤ Cd(z,EI)−2(1+γ) (z ∈ C \ D),

so it follows from Lebesgue’s dominated convergence theorem that

〈ϕ, f〉 =
1

2π

�

T
f(eiθ)eiθΦ(eiθ) dθ.

By the Beurling–Rudin theorem, the space I is dense in the Hardy space
H2, so there exists a sequence (fn) in I converging to 1 in H2. Since ffn ∈ I,
we thus have

〈ϕ, f〉 = lim
n→∞

1
2π

�

T
f(eiθ)fn(eiθ)eiθΦ(eiθ) dθ = lim

n→∞
〈ϕ, ffn〉 = 0.

Hence f ∈ I by the Hahn–Banach theorem.

The main difficulty in the proof of Theorem 6.4 is contained in the fol-
lowing approximation result.
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Proposition 6.6. Let p > 0 and suppose that a closed set E ⊆ T and
an inner function Q satisfy (2). Let Z = E ∪ Z(B). Then Ipγ(Z,Q) is wk∗

dense in Iγ(E,Q).

In order to prove the proposition, we shall need a series of lemmas. The
following result should be compared with the comments before the proof of
Proposition 5.4.

Lemma 6.7. Let f = FQ ∈ Λ+
γ , where F is an outer and Q an inner

function. Then ft = F 1+tQ ∈ Λ+
γ for t > 0 and ft → f wk∗ in Λ+

γ as t→ 0.

Proof. We have F ∈ Λ+
γ by Theorem 1.1. Since f ′ = F ′Q+ FQ′, it thus

follows that
sup
z∈D
|F (z)Q′(z)|(1− |z|)1−γ <∞.

Moreover, f ′t = (1 + t)F tF ′Q + F 1+tQ′, so we deduce that (ft) is bounded
in Λ+

γ as t → 0. Finally, ft → f pointwise on T as t→ 0, so ft → f wk∗ in
Λ+
γ as t→ 0.

For a ∈ T and µ > 0, let Kaµ be as in the previous section. For f ∈ Λ+
γ

with f(a) = 0, it follows from the proof of Lemma 3.3 that

sup
z∈D
|K ′aµ(z)f(z)|(1− |z|)1−γ ≤ C

for µ > 0. Hence (Kaµf) is bounded in Λ+
γ , and since Kaµf → f pointwise

on T, we deduce that Kaµf → f wk∗ in Λ+
γ as µ→ 0. From this, it is easy

to deduce the following result.

Lemma 6.8. Let p ≥ 1, let f ∈ Λ+
γ and let {a1, . . . , aN} ⊆ Z(f) ∩ T.

Then
( N∏

n=1

Kanµ

)p
f → f

wk∗ in Λ+
γ as µ→ 0.

For an outer function F and a measurable set Γ ⊆ T, recall the definition
of FΓ from (9). From the proof of [12, Theorem B], we obtain the following
result.

Lemma 6.9. Let F be an outer function, Q an inner function and sup-
pose that FQ ∈ Λ+

γ . Let t > 0 and let f = F 1+tQ. Then there exists q0 such
that , for q ≥ q0, we have

F qΓ f ∈ Λ+
γ with ‖F qΓ f‖Λ+

γ
≤ C

for every open set Γ ⊆ T with ∂Γ ⊆ Z(f) (where ∂Γ denotes the boundary
of Γ in T).

Proof of Proposition 6.6. By Lemma 6.7, it is sufficient to prove that,
whenever a function f ∈ Iγ(E,Q) is of the form f = F 1+tQ, where t > 0,
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F is an outer function and Q an inner function such that FQ ∈ Λ+
γ ,

then f can be approximated in the wk∗ topology on Λ+
γ by functions from

Ipγ(Z,Q). Let q = max{q0, p/γ}. As in the proof of Proposition 5.2, let
T \ E =

⋃∞
n=1 Vn, where (Vn) is a sequence of pairwise disjoint, open arcs

on T with endpoints an and bn, and for N ∈ N, let ΓN =
⋃∞
n=N+1 Vn and

FN = FΓN . As N → ∞, we have m(ΓN) → 0 and thus FN → 1 pointwise
on D, so it follows from Lemmas 6.2 and 6.9 that F qNf → f wk∗ in Λ+

γ for
every q ≥ q0.

Let N ∈ N be fixed. We have E \ ΓN ⊆ {a1, b1, . . . , aN , bN} and

( N∏

n=1

KanµKbnµ

)p
F qNf → F qNf

wk∗ in Λ+
γ as µ→ 0 by Lemma 6.8,

Fix µ > 0. For ε > 0 and n = 1, . . . , N , let Vnε be the subarc of Vn whose
endpoints cn and dn are at a distance ε from an and bn respectively. Let

gε =
( N∏

n=1

KanµKcnµKdnµKbnµ

)p/2( N∏

n=1

FVn\Vnε
)q
F qNf.

It follows from the proof of [12, Theorem B] that (gε) is bounded in Λ+
γ as

ε→ 0, so

gε →
( N∏

n=1

KanµKbnµ

)p
F qNf

wk∗ in Λ+
γ as ε→ 0 by Lemma 6.2.

Finally, fix ε > 0. For z ∈ ΓN , we have |FN (z)| = |f(z)|, and for z ∈
Vn \ Vnε for some n ∈ {1, . . . , N}, we have |FVn\Vnε(z)| = |f(z)|. In both
cases, we thus have

|gε(z)| ≤ C|f(z)|q ≤ Cd(z, Z)p.

Clearly, this also holds for z ∈ ⋃N
n=1 V nε, so gε ∈ Ipγ(Z,Q), which finishes

the proof.

It follows from Lemma 6.5 and Proposition 6.6 that Theorem 6.4 holds
for closed ideals I with QI = 1. We now finish the proof of the general case.

Proof of Theorem 6.4. Korenblum ([9], see also [10]) has shown that
there exists an outer function T satisfying the following conditions:

(i) T εQI ∈ Λ+
γ for every ε > 0,

(ii) Z(T ) = EI ,
(iii) |T ′(z)/T (z)| ≤ Cd(z, ZI)−2 (z ∈ T).
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Let ε > 0 and consider the division ideal

Iε = {f ∈ Λ+
γ : T εQIf ∈ I}

in Λ+
γ . Since multiplication is separately wk∗ continuous in Λ+

γ (Lemma 6.1),
it follows that Iε is wk∗ closed. Moreover, for g ∈ I, we have g/QI ∈ Iε, so
we deduce that QIε = 1 and EIε = EI . As mentioned before the proof, we
thus have Iε = Iγ(EI , 1).

Now, let g ∈ I2
γ(ZI , QI). Then g/QI ∈ Iγ(EI , 1) = Iε, so T εg ∈ I. It

follows from (iii) that

|(T ε)′(z)g(z)| = |εT ε(z)(T ′(z)/T (z))g(z)| ≤ C (z ∈ T)

for ε > 0. Hence T εg is bounded in Λ+
γ as ε → 0 and since T εg → g

pointwise on T as ε → 0, we have T εg → g wk∗ in Λ+
γ as ε → 0, so g ∈ I.

Finally, I2
γ(ZI , QI) is wk∗ dense in Iγ(EI , QI) by Proposition 6.6, so the

result follows.
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