Ideals in big Lipschitz algebras of analytic functions

by

THOMAS VILS PEDERSEN (Frederiksberg)

Abstract. For $0 < \gamma \leq 1$, let Λ_{γ}^+ be the big Lipschitz algebra of functions analytic on the open unit disc \mathbb{D} which satisfy a Lipschitz condition of order γ on $\overline{\mathbb{D}}$. For a closed set E on the unit circle \mathbb{T} and an inner function Q, let $J_{\gamma}(E, Q)$ be the closed ideal in Λ_{γ}^+ consisting of those functions $f \in \Lambda_{\gamma}^+$ for which

(i) f = 0 on E, (ii) $|f(z) - f(w)| = o(|z - w|^{\gamma})$ as $d(z, E), d(w, E) \to 0$, (iii) $f/Q \in \Lambda_{\gamma}^+$.

Also, for a closed ideal I in Λ_{γ}^+ , let $E_I = \{z \in \mathbb{T} : f(z) = 0 \text{ for every } f \in I\}$ and let Q_I be the greatest common divisor of the inner parts of non-zero functions in I. Our main conjecture about the ideal structure in Λ_{γ}^+ is that $J_{\gamma}(E_I, Q_I) \subseteq I$ for every closed ideal I in Λ_{γ}^+ . We confirm the conjecture for closed ideals I in Λ_{γ}^+ for which E_I is countable and obtain partial results in the case where $Q_I = 1$. Moreover, we show that every wk^{*} closed ideal in Λ_{γ}^+ is of the form $\{f \in \Lambda_{\gamma}^+ : f = 0 \text{ on } E \text{ and } f/Q \in \Lambda_{\gamma}^+\}$ for some closed set $E \subseteq \mathbb{T}$ and some inner function Q.

1. Introduction. Throughout this paper, we let $0 < \gamma \leq 1$ unless otherwise stated and denote all constants by C. Let Λ_{γ} be the big Lipschitz algebra of functions f on the unit circle \mathbb{T} for which

$$|f(z) - f(w)| \le C|z - w|^{\gamma}$$

for $z, w \in \mathbb{T}$. Equipped with the norm

$$\|f\|_{\Lambda_{\gamma}} = \|f\|_{\infty} + \sup\left\{\frac{|f(z) - f(w)|}{|z - w|^{\gamma}} : z, w \in \mathbb{T}, \ z \neq w\right\} \quad (f \in \Lambda_{\gamma}),$$

it is well known to be a Banach algebra. We shall be concerned with the closed subalgebra

$$\Lambda_{\gamma}^{+} = \{ f \in \Lambda_{\gamma} : \widehat{f}(n) = 0 \text{ for } n < 0 \}$$

of Λ_{γ} (where $\hat{f}(n)$ is the *n*th Fourier coefficient of f). Since every function in Λ_{γ}^+ has an extension to a function analytic in the open unit disc \mathbb{D} , we

²⁰⁰⁰ Mathematics Subject Classification: 46J20, 46J15, 30H05.

This work was carried out at Université Bordeaux 1 while the author was holding a TMR Marie Curie postdoctoral grant from the European Commission.

deduce that

$$\Lambda_{\gamma}^{+} = \Lambda_{\gamma} \cap \mathcal{A}(\overline{\mathbb{D}}),$$

where $\mathcal{A}(\overline{\mathbb{D}})$ is the usual disc algebra. Moreover, a function f analytic on \mathbb{D} belongs to Λ_{γ}^+ if and only if

(1)
$$|f'(z)| \le C(1-|z|)^{\gamma-1} \quad (z \in \mathbb{D}),$$

and

$$\|f\|_{\Lambda_{\gamma}^{+}} = \|f\|_{\infty} + \sup_{z \in \mathbb{D}} |f'(z)| (1 - |z|)^{1 - \gamma} \quad (f \in \Lambda_{\gamma}^{+})$$

defines an equivalent norm on Λ_{γ}^+ ([3, Theorem 5.1]). In particular, we have $f \in \Lambda_1^+$ if and only if $f' \in \mathcal{H}^{\infty}$ (the algebra of bounded analytic functions on \mathbb{D}). In passing, we mention that Dyakonov ([4]) has shown that

$$||f||_{\infty} + \sup\left\{\frac{\left||f(z)| - |f(w)|\right|}{|z - w|^{\gamma}} : z, w \in \overline{\mathbb{D}}, \, z \neq w\right\} \quad (f \in \Lambda_{\gamma}^+)$$

defines an equivalent norm on Λ_{γ}^+ . This is a remarkable result since this norm only depends on the moduli of the functions. However, for practical purposes the norm $\|\cdot\|_{\Lambda_{\gamma}^+}$ is easier to estimate.

In this paper, we describe certain closed ideals in Λ_{γ}^+ by means of zero sets and inner functions. For $f \in \Lambda_{\gamma}^+$, let

$$Z(f) = \{ z \in \overline{\mathbb{D}} : f(z) = 0 \}$$

be the zero set of f (counting multiplicities on \mathbb{D}). Also, for a closed ideal I in Λ_{γ}^+ , let

$$Z_I = \bigcap_{f \in I} Z(f)$$

be the hull of I, let

$$E_I = Z_I \cap \mathbb{T}$$

and let Q_I be the greatest common divisor of the inner parts of non-zero functions in I ([6, p. 85]). We shall use the following result of Havin and Shamoyan several times. (See, for instance, [15].)

THEOREM 1.1. If $f \in \Lambda_{\gamma}^+$ and Q is an inner function for which $f/Q \in \mathcal{H}^{\infty}$, then $f/Q \in \Lambda_{\gamma}^+$ and

$$\|f/Q\|_{A^+_{\gamma}} \le C \|f\|_{A^+_{\gamma}}.$$

In particular, if f belongs to a closed ideal I in Λ^+_{γ} , then $f/Q_I \in \Lambda^+_{\gamma}$.

Recall that a closed set $E \subseteq \mathbb{T}$ is called a $Carleson \; set \; \text{if}$

$$\int_{\mathbb{T}} \log d(e^{i\theta}, E) \, d\theta > -\infty.$$

34

Carleson ([2, Theorem 1]) proved that E is a Carleson set if and only if there exists a function $f \in \Lambda^+_{\gamma}$ with E = Z(f). In this case

$$I_{\gamma}(E) = \{ f \in \Lambda_{\gamma}^+ : f = 0 \text{ on } E \}$$

is a closed ideal in A^+_{γ} with $E_{I_{\gamma}(E)} = E$ and $Q_{I_{\gamma}(E)} = 1$. Now, let Q = BSbe an inner function, where B is a Blaschke product and S a singular inner function. Let Z(B) be the zeros of B (in \mathbb{D}) and let $\operatorname{supp}(S)$ be the support of the singular measure on \mathbb{T} that defines S. It follows from [9, Theorems 2 and 4] that there exists a function $f \in I_{\gamma}(E)$ with inner factor Q if and only if

(2)
$$\begin{cases} \int_{\mathbb{T}} \log d(e^{i\theta}, E \cup Z(B)) d\theta > -\infty, \\ \operatorname{supp}(S) \subseteq E, \\ \overline{Z(B)} \setminus Z(B) \subseteq E. \end{cases}$$

In this case $f/Q \in \Lambda^+_{\gamma}$ by the previous theorem and

$$I_{\gamma}(E,Q) = \{ f \in I_{\gamma}(E) : f/Q \in \Lambda_{\gamma}^+ \}$$

is a closed ideal in Λ^+_{γ} with $E_{I_{\gamma}(E,Q)} = E$ and $Q_{I_{\gamma}(E,Q)} = Q$. Clearly, $I_{\gamma}(E,Q)$ is the largest closed ideal I in Λ^+_{γ} with $E_I = E$ and $Q_I = Q$.

For $0 < \gamma < 1$, our results are motivated by the ideal structure in the little Lipschitz algebra λ_{γ}^+ , which is the closed subalgebra of Λ_{γ}^+ of functions f satisfying

$$|f(z) - f(w)| = o(|z - w|^{\gamma})$$

uniformly as $|z - w| \to 0$. Matheson ([11]) showed that

$$I = \{ f \in \lambda_{\gamma}^{+} : f = 0 \text{ on } E_{I} \text{ and } f/Q_{I} \in \mathcal{H}^{\infty} \} = I_{\gamma}(E_{I}, Q_{I}) \cap \lambda_{\gamma}^{+}$$

for every closed ideal I in λ_{γ}^+ . In the non-separable algebra Λ_{γ}^+ , it is not possible to obtain such a result. This is most easily seen for $\gamma = 1$. Let χ be a character on \mathcal{H}^{∞} belonging to the fiber at z = 1, that is, $\chi(\alpha) = 1$, where α denotes the function $z \mapsto z$ (see, for example, [6, Chapter 10]). Then

$$I_{\chi} = \{ f \in I_1(\{1\}) : \chi(f') = 0 \}$$

is a closed ideal in Λ_1^+ with $E_{I_{\chi}} = \{1\}$ and $Q_{I_{\chi}} = 1$. Moreover, $I_{\chi_1} \neq I_{\chi_2}$ if $\chi_1 \neq \chi_2$. Similarly, for $0 < \gamma < 1$, we shall see that there are uncountably many closed ideals I in Λ_{γ}^+ with $E_I = \{1\}$ and $Q_I = 1$. Nevertheless, we shall obtain certain results about the ideal structure in Λ_{γ}^+ .

In the algebra Λ_{γ} on \mathbb{T} , Sherbert ([14, Theorem 5.1]) proved that, for a closed set $E \subseteq \mathbb{T}$, the closed ideal

$$\{f \in \Lambda_{\gamma} : f = 0 \text{ on } E \text{ and } |f(z) - f(w)| = o(|z - w|^{\gamma})$$

as $d(z, E), d(w, E) \to 0\}$

is the smallest closed ideal in Λ_{γ} which has E as hull. We shall prove a

similar result for Λ^+_{γ} . For a Carleson set $E \subseteq \mathbb{T}$, let

$$J_{\gamma}(E) = \{ f \in I_{\gamma}(E) : |f(z) - f(w)| = o(|z - w|^{\gamma}) \text{ as } d(z, E), d(w, E) \to 0 \}.$$

It is easily seen that $J_{\gamma}(E)$ is a closed ideal in Λ_{γ}^+ . Also, for a closed set $E \subseteq \mathbb{T}$ and an inner function Q satisfying (2), let

$$J_{\gamma}(E,Q) = \{ f \in J_{\gamma}(E) : f/Q \in \mathcal{H}^{\infty} \}.$$

It follows from Theorem 1.1 that $J_{\gamma}(E,Q)$ is a closed ideal in Λ_{γ}^+ , and $E_{J_{\gamma}(E,Q)} = E$ and $Q_{J_{\gamma}(E,Q)} = Q$ by [9, Theorem 4]. The main result in this paper is that the following conjecture holds when E_I is countable.

CONJECTURE. Let I be a closed ideal in Λ_{γ}^+ . Then $J_{\gamma}(E_I, Q_I) \subseteq I$.

The proof of Matheson's result (and of other similar results in separable algebras—see, for instance, [1], [10] and [16]) was to a high extent based on the so-called Carleman transform. (See the next section for the definition.) Apparently, Hedenmalm ([5]) was the first to apply the Carleman transform to a non-separable Banach algebra, when he obtained certain results about the ideal structure in the algebra \mathcal{H}^{∞} .

The proof of our main result uses the Carleman transform and ideas by Bennett and Gilbert ([1]). The Carleman transform of a linear functional φ depends only on the restriction of φ to the separable subalgebra λ_{γ}^+ and we therefore find it interesting that it can be used to obtain results about Λ_{γ}^+ . Moreover, we use a representation of the Carleman transform which is different from the one used in [1], and by following the lines of our proof, one can actually obtain a simpler proof of the main result in [1].

The organization of the paper is as follows. We first obtain some basic facts about the Carleman transform (Section 2) and the ideal $J_{\gamma}(E, Q)$ (Section 3). In Section 4 we prove our main result, and in Section 5 we partially confirm our conjecture for closed ideals I in Λ_{γ}^+ with $Q_I = 1$. Finally, in Section 6 we show that the wk^{*} closed ideals in Λ_{γ}^+ are exactly the ideals $I_{\gamma}(E, Q)$, where the closed set $E \subseteq \mathbb{T}$ and the inner function Q satisfy (2).

2. The Carleman transform. For $\varphi \in (\Lambda_{\gamma}^+)^*$, we define the *Carleman transform* Φ of φ on $\mathbb{C} \setminus \overline{\mathbb{D}}$ by

$$\Phi(z) = \langle (z - \alpha)^{-1}, \varphi \rangle \quad (z \in \mathbb{C} \setminus \overline{\mathbb{D}}).$$

With $\widehat{\varphi}(n) = \langle \alpha^n, \varphi \rangle$ for $n \in \mathbb{N}_0$, we have

$$\Phi(z) = \sum_{n=0}^{\infty} \widehat{\varphi}(n) z^{-(n+1)} \quad (z \in \mathbb{C} \setminus \overline{\mathbb{D}}).$$

For $f \in \Lambda_{\gamma}^+$ and 0 < r < 1, let $f_r(z) = f(rz)$ $(z \in \overline{\mathbb{D}})$. For notational convenience, let

$$\lambda_1^+ = \{ f \in \Lambda_1^+ : f' \in \mathcal{A}(\overline{\mathbb{D}}) \}.$$

For $f \in \lambda_{\gamma}^+$, it is well known (see, for example, [8, I.2.13]) that $f_r \to f$ in λ_{γ}^+ as $r \to 1_-$. Hence

$$\begin{split} \langle f, \varphi \rangle &= \lim_{r \to 1_{-}} \langle f_r, \varphi \rangle = \lim_{r \to 1_{-}} \sum_{n=0}^{\infty} \widehat{f}(n) r^n \widehat{\varphi}(n) \\ &= \lim_{s \to 1_{+}} \frac{1}{2\pi} \int_{\mathbb{T}} f(e^{i\theta}) e^{i\theta} \varPhi(se^{i\theta}) \, d\theta \end{split}$$

and this was used by Matheson in his proof. However, for $f \in \Lambda_{\gamma}^+ \setminus \lambda_{\gamma}^+$, we do not have $f_r \to f$ in Λ_{γ}^+ as $r \to 1_-$, so this method does not work in our case.

Let I be a closed ideal in Λ_{γ}^+ , let

$$I^{\perp} = \{ \varphi \in (\Lambda_{\gamma}^{+})^{*} : \langle f, \varphi \rangle = 0 \text{ for every } f \in I \}$$

be the annihilator of I and let $\pi : \Lambda_{\gamma}^+ \to \Lambda_{\gamma}^+/I$ be the quotient map. Suppose that $\varphi \in I^{\perp} (= (\Lambda_{\gamma}^+/I)^*)$. It is well known that the character space of the algebra Λ_{γ}^+/I equals Z_I , so the spectrum of $\pi(\alpha)$ equals Z_I and the function

$$\Phi(z) = \langle (z - \pi(\alpha))^{-1}, \varphi \rangle \quad (z \in \mathbb{C} \setminus Z_I)$$

thus extends the domain of Φ to $\mathbb{C} \setminus Z_I$.

For $f \in \Lambda_{\gamma}^+$ and $z \in \mathbb{D}$, define $S_z f$ by

$$(S_z f)(w) = \begin{cases} \frac{f(z) - f(w)}{z - w} & \text{for } w \in \overline{\mathbb{D}} \setminus \{z\}, \\ f'(z) & \text{for } w = z. \end{cases}$$

Then $S_z f \in \Lambda_\gamma \cap \mathcal{A}(\overline{\mathbb{D}}) = \Lambda_\gamma^+$. It is easily seen that

(3)
$$\|(z-\alpha)^{-1}\|_{\Lambda_{\gamma}} \leq C |1-|z||^{-(1+\gamma)} \quad (z \in \mathbb{C} \setminus \mathbb{T}),$$

so we have

(4)
$$||S_z f||_{\Lambda^+_{\gamma}} \le C(1-|z|)^{-(1+\gamma)} \quad (z \in \mathbb{D}).$$

We shall often use the following representation of Φ .

LEMMA 2.1. Let I be a closed ideal in Λ^+_{γ} and let $\varphi \in I^{\perp}$. Then

$$\Phi(z) = \frac{\langle S_z g, \varphi \rangle}{g(z)} \quad (z \in \mathbb{D} \setminus Z(g))$$

for $g \in I$.

Proof. For $g \in I$ and $z \in \mathbb{D} \setminus Z(g)$, we have $(z - \alpha)S_zg = g(z) - g$ and thus $(z - \pi(\alpha))^{-1} = \pi(S_zg)/g(z)$, so the result follows.

The normal approach to the Carleman transform (see, for example, [1], [10], [11] and [16]) is to define Φ on $\mathbb{D} \setminus Z_I$ by the expression $\Phi(z) = \langle S_z g, \varphi \rangle / g(z)$ and then show that Φ extends analytically to $\mathbb{C} \setminus Z_I$. With the present definition, we obtained this as an immediate consequence of the general fact from Banach algebra theory that the character space of the algebra Λ_{γ}^+/I equals Z_I .

The following result is similar to [1, Theorem 2.4].

LEMMA 2.2. Let I be a closed ideal in Λ_{γ}^+ and let $\varphi \in I^{\perp}$. Suppose that $z_0 \in Z_I \cap \mathbb{D}$ is of multiplicity k. Then Φ has a pole of order at most k at z_0 .

Proof. There exist $g \in I$ and $h \in \Lambda^+_{\gamma}$ with $h(z_0) \neq 0$ such that $g = (\alpha - z_0)^k h$. By the previous lemma, we thus have

$$(z-z_0)^k \Phi(z) = (z-z_0)^k \frac{\langle S_z g, \varphi \rangle}{g(z)} = \frac{\langle S_z g, \varphi \rangle}{h(z)}$$

for z in a neighborhood of z_0 , which proves the lemma.

For
$$\varphi \in (\Lambda_{\gamma}^+)^*$$
 and $f \in \Lambda_{\gamma}^+$, we define $\varphi_f(=f\varphi) \in (\Lambda_{\gamma}^+)^*$ by

$$\langle g, \varphi_f \rangle = \langle fg, \varphi \rangle \quad (g \in \Lambda_{\gamma}^+).$$

If I is a closed ideal in Λ_{γ}^+ and $\varphi \in I^{\perp}$, then $\varphi_f \in I^{\perp}$ for $f \in \Lambda_{\gamma}^+$. We denote the Carleman transform of φ_f by Φ_f . Whereas Φ depends only on the restriction of φ to λ_{γ}^+ , the function Φ_f depends only on the restriction of φ to the subalgebra $\lambda_{\gamma}^+ f$ of Λ_{γ}^+ . Heuristically, this is the reason why the Carleman transform can be successfully applied to the non-separable algebra Λ_{γ}^+ .

LEMMA 2.3. Let $f \in \Lambda_{\gamma}^+$, let I be a closed ideal in Λ_{γ}^+ and let $\varphi \in I^{\perp}$. Then

$$\Phi_f(z) = f(z)\Phi(z) - \langle S_z f, \varphi \rangle$$

for $z \in \mathbb{D} \setminus Z_I$.

Proof. Let $z \in \mathbb{D} \setminus Z_I$ and choose $g \in I$ such that $g(z) \neq 0$. Since $gS_z f \in I$, we have

$$\begin{split} \Phi_f(z) - f(z)\Phi(z) &= \frac{\langle S_z g, \varphi_f \rangle - f(z) \langle S_z g, \varphi \rangle}{g(z)} \\ &= \frac{\langle (f - f(z)) S_z g, \varphi \rangle}{g(z)} = \frac{\langle (g - g(z)) S_z f, \varphi \rangle}{g(z)} = -\langle S_z f, \varphi \rangle \end{split}$$

as required. \blacksquare

3. The ideal $J_{\gamma}(E,Q)$. In this section, we prove some basic facts about $J_{\gamma}(E,Q)$. In order to use the characterization (1) of Λ_{γ}^+ , we need to describe $J_{\gamma}(E)$ in terms of derivatives.

PROPOSITION 3.1. For a closed set $E \subseteq \mathbb{T}$ and $f \in \Lambda_{\gamma}^+$, the following conditions are equivalent:

(a) $f \in J_{\gamma}(E)$. (b) $f \in I_{\gamma}(E)$ and $|f'(z)| = o((1 - |z|)^{\gamma - 1})$ as $d(z, E) \to 0$.

Proof. (a) \Rightarrow (b). Given $\varepsilon > 0$, we choose $\delta > 0$ such that $|f(z) - f(w)| < \varepsilon |z - w|^{\gamma}$ for $z, w \in \overline{\mathbb{D}}$ with $d(z, E), d(w, E) < \delta$. Let $z \in \mathbb{D}$ with $d(z, E) < \delta/2$ and let $r = 1 - |z| < \delta/2$. Then $d(w, E) < \delta$ for |w - z| = r, so Cauchy's formula

$$f'(z) = \frac{1}{2\pi i} \oint_{|w-z|=r} \frac{f(w) - f(z)}{(w-z)^2} du$$

shows that $|f'(z)| < \varepsilon r^{\gamma-1}$ as required.

(b) \Rightarrow (a). Let $\varepsilon > 0$ and choose $\delta_1 > 0$ such that $|f'(z)| < \varepsilon(1 - |z|)^{\gamma - 1}$ for $z \in \mathbb{D}$ with $d(z, E) < \delta_1$. Choose $\delta_2 > 0$ such that $|f(z)| < \varepsilon \delta_1^{\gamma}$ for $z \in \overline{\mathbb{D}}$ with $d(z, E) < \delta_2$ and let $\delta = \min\{\delta_1, \delta_2\}$. Let $z_1, z_2 \in \overline{\mathbb{D}}$ with $d(z_k, E) < \delta/3$ (k = 1, 2). If $|z_2 - z_1| \ge \delta_1/3$, then

$$|f(z_2) - f(z_1)| < 2\varepsilon \delta_1^{\gamma} \le 2 \cdot 3^{\gamma} \varepsilon |z_2 - z_1|^{\gamma},$$

so we may assume that $|z_2 - z_1| < \delta_1/3$. With $z_k = r_k e^{i\theta_k}$ (k = 1, 2), we may also assume that $r_1 \ge r_2$ and that $0 \le \theta_2 - \theta_1 \le \pi$. First, suppose that $|z_2 - z_1| \le 1 - r_1$. Since $d(w, E) < \delta$ and $|w| \le r_1$ for every point w on the line segment from z_1 to z_2 , we deduce that

$$|f(z_2) - f(z_1)| < |z_2 - z_1|\varepsilon(1 - r_1)^{\gamma - 1} \le \varepsilon |z_2 - z_1|^{\gamma}.$$

Now, suppose that $|z_2 - z_1| \ge 1 - r_1$. Let $\varrho = 1 - |z_2 - z_1|$ and let Γ be the curve

$$\Gamma = \{ re^{i\theta_1} : \varrho \le r \le r_1 \} \cup \{ \varrho e^{i\theta} : \theta_1 \le \theta \le \theta_2 \}$$
$$\cup \{ re^{i\theta_2} : r \text{ is between } \varrho \text{ and } r_2 \}.$$

Then $d(w, E) < \delta$ for $w \in \Gamma$, so

$$|f(\varrho e^{i\theta_1}) - f(z_1)| < \varepsilon \int_{\varrho}^{1} (1-r)^{\gamma-1} dr = (\varepsilon/\gamma)|z_2 - z_1|^{\gamma}.$$

Similarly, if $\rho \leq r_2$, then

$$|f(z_2) - f(\varrho e^{i\theta_2})| < \varepsilon |z_2 - z_1|^{\gamma}.$$

If $\rho \geq r_2$, then

$$|f(z_2) - f(\varrho e^{i\theta_2})| < \varepsilon \int_{r_2}^{\varrho} (1-r)^{\gamma-1} dr \le (\varepsilon/\gamma)((1-r_2)^{\gamma} - (1-r_1)^{\gamma}) \\ \le \varepsilon (r_1 - r_2)^{\gamma} \le \varepsilon |z_2 - z_1|^{\gamma}.$$

Moreover,

$$|f(\varrho e^{i\theta_2}) - f(\varrho e^{i\theta_1})| < \varepsilon(\theta_2 - \theta_1)(1 - \varrho)^{\gamma - 1} \le C\varepsilon|z_2 - z_1|^{\gamma},$$

so we obtain

$$|f(z_2) - f(z_1)| < (C+2)\varepsilon |z_2 - z_1|^2$$

as required. \blacksquare

For $\gamma = 1$, the previous proposition takes the following form. Let

$$\mathcal{H}_E^{\infty} = \{ f \in \mathcal{H}^{\infty} : f'(z) \to 0 \text{ as } d(z, E) \to 0 \}$$

for a closed set $E \subseteq \mathbb{T}$.

COROLLARY 3.2. For a closed set $E \subseteq \mathbb{T}$ and $f \in \Lambda_1^+$, we have $f \in J_1(E)$ if and only if $f \in I_1(E)$ and $f' \in \mathcal{H}_E^{\infty}$.

We shall use the notation

$$J_{\gamma,0} = J_{\gamma}(\{1\}), \quad I_{\gamma,0} = I_{\gamma}(\{1\}).$$

Also, for s > 0, let ψ_{-s} be the singular inner function defined by

$$\psi_{-s}(z) = \exp\left(-s\frac{1+z}{1-z}\right) \quad (z \in \overline{\mathbb{D}} \setminus \{1\})$$

and write

$$J_{\gamma,s} = J_{\gamma}(\{1\}, \psi_{-s}), \quad I_{\gamma,s} = I_{\gamma}(\{1\}, \psi_{-s}).$$

For $n \in \mathbb{N}$, let

$$K_n = \frac{1 - \alpha}{1 + 1/n - \alpha}$$

For many separable Banach algebras of analytic functions on \mathbb{D} , it is well known that the sequence (K_n) is an approximate identity for the maximal ideal of functions vanishing at z = 1. In our case, the local condition at z = 1 imposed on functions in $J_{\gamma,0}$ enables us to prove the following result.

LEMMA 3.3. For $f \in J_{\gamma,0}$, we have $K_n f \to f$ in Λ_{γ}^+ as $n \to \infty$. In particular, for $\gamma < 1$, the sequence (K_n) is an approximate identity for the ideal $J_{\gamma,0}$.

Proof. Let $f \in J_{\gamma,0}$ and let $p_n = 1 - K_n = n^{-1}(1 + 1/n - \alpha)^{-1}$ $(n \in \mathbb{N})$. Since $p_n \to 0$ uniformly on compact subsets of $\overline{\mathbb{D}} \setminus \{1\}$ as $n \to \infty$, it follows that

$$\sup_{z \in \mathbb{D}} |p_n(z)f'(z)| (1-|z|)^{1-\gamma} \to 0$$

40

as $n \to \infty$. Also,

$$\begin{aligned} |p'_n(z)f(z)|(1-|z|)^{1-\gamma} &\leq \varepsilon(|1-z|) \left| \frac{1-z}{n(1+1/n-z)^2} \right| \\ &= \varepsilon(|1-z|) \left| \frac{1-z}{1+1/n-z} \right| \left| \frac{1}{n(1+1/n-z)} \right| \\ &\leq \varepsilon(|1-z|) \quad (z \in \overline{\mathbb{D}}), \end{aligned}$$

where $\varepsilon(t) \to 0$ as $t \to 0$. Since

$$\frac{1-z}{n(1+1/n-z)^2} \to 0$$

uniformly on compact subsets of $\overline{\mathbb{D}} \setminus \{1\}$ as $n \to \infty$, it thus follows that

$$\sup_{z \in \mathbb{D}} |p'_n(z)f(z)| (1-|z|)^{1-\gamma} \to 0$$

as $n \to \infty$. Hence $p_n f \to 0$ in Λ_{γ}^+ as $n \to \infty$.

We finish this section with a description of the ideals $J_{\gamma,s}$ in terms of generators.

LEMMA 3.4. Let $\beta, s > 0$ and let $f = (1 - \alpha)^{\beta} \psi_{-s}$. Then $f \in \Lambda_{\gamma}^{+}$ if and only if $\beta \geq 2\gamma$ and $f \in J_{\gamma,s}$ if and only if $\beta > 2\gamma$.

Proof. We have

$$f' = -\beta (1-\alpha)^{\beta-1} \psi_{-s} - 2s(1-\alpha)^{\beta-2} \psi_{-s}.$$

For $z \in \mathbb{D}$, we write $1 - z = re^{i\theta}$. Then $1 - |z|^2 = r(2\cos\theta - r)$, so $2\cos\theta > r > 0$. Also,

$$\operatorname{Re}\left(\frac{1+z}{1-z}\right) = \frac{2\cos\theta}{r} - 1,$$

 \mathbf{SO}

$$\begin{aligned} |1-z|^{\beta-2}|\psi_{-s}(z)|(1-|z|^2)^{1-\gamma} \\ &= r^{\beta-2}\exp\left(-s\left(\frac{2\cos\theta}{r}-1\right)\right)(r(2\cos\theta-r))^{1-\gamma} \\ &= r^{\beta-2\gamma}\exp\left(-s\left(\frac{2\cos\theta}{r}-1\right)\right)\left(\frac{2\cos\theta}{r}-1\right)^{1-\gamma}, \end{aligned}$$

and the result follows. \blacksquare

PROPOSITION 3.5. (a) For $\beta > \gamma$, we have

$$J_{\gamma,0} = \overline{\Lambda_{\gamma}^+ (1-\alpha)^{\beta}}.$$

(b) For s > 0 and $\beta > 2\gamma$, we have

$$J_{\gamma,s} = \overline{\Lambda_{\gamma}^+ (1-\alpha)^\beta \psi_{-s}}.$$

Proof. (a) Since $(1 - \alpha)^{\beta} \in J_{\gamma,0}$, we have the inclusion $\overline{\Lambda_{\gamma}^{+}(1 - \alpha)^{\beta}} \subseteq J_{\gamma,0}$. Moreover, it follows from Lemma 3.3 that $J_{\gamma,0} = \overline{J_{\gamma,0}(1 - \alpha)}$ and thus $J_{\gamma,0} \subseteq \overline{\Lambda_{\gamma}^{+}(1 - \alpha)^{m}}$ for $m \in \mathbb{N}$, which proves the reverse inclusion.

(b) It follows from the previous lemma that

$$\Lambda_{\gamma}^{+}(1-\alpha)^{\beta}\psi_{-s} \subseteq J_{\gamma,s}.$$

Conversely, let $f \in J_{\gamma,s}$. By Lemma 3.3, we have $K_n f \to f$ in Λ_{γ}^+ as $n \to \infty$. Fix $n \in \mathbb{N}$ and let $g = K_n f$. Let 0 < a < 1 and let

$$T^{\varepsilon}(z) = \exp(-\varepsilon(1-z)^{-a}) \quad (z \in \overline{\mathbb{D}}).$$

Then $|T| \leq 1$ on $\overline{\mathbb{D}}$ and

$$T'(z) = -a(1-z)^{-(a+1)}T(z) \quad (z \in \overline{\mathbb{D}}),$$

so (T^{ε}) is a semigroup of outer functions in Λ_{γ}^+ . (In Section 6, we shall make use of a more general version of this semigroup.) Moreover,

$$(T^{\varepsilon}g)' = T^{\varepsilon}g' + \varepsilon(T'/T)T^{\varepsilon}g \quad (\varepsilon > 0).$$

Since $T^{\varepsilon} \to 1$ uniformly on compact subsets of $\overline{\mathbb{D}} \setminus \{1\}$ and since $|g(z)| \leq C|1-z|^{\gamma+1}$ for $z \in \overline{\mathbb{D}}$, we deduce that $T^{\varepsilon}g \to g$ in Λ^+_{γ} as $\varepsilon \to 0$. Finally, using (a), we choose a sequence (g_m) in Λ^+_{γ} such that

$$g_m(1-\alpha)^\beta \to g/\psi_{-s}$$

in Λ_{γ}^+ as $m \to \infty$. It is easily seen that $T^{\varepsilon}\psi_{-s} \in \Lambda_{\gamma}^+$, so

$$T^{\varepsilon}g_m(1-\alpha)^{\beta}\psi_{-s} \to T^{\varepsilon}g$$

in Λ_{γ}^+ as $m \to \infty$ for $\varepsilon > 0$, and it follows that $f \in \overline{\Lambda_{\gamma}^+(1-\alpha)^{\beta}\psi_{-s}}$.

4. Ideals with countable hull. Our main aim in this paper is to prove the following result.

THEOREM 4.1. We have

$$J_{\gamma}(E_I, Q_I) \subseteq I$$

for every closed ideal I in Λ^+_{γ} for which E_I is countable.

Before proceeding to the proof of the theorem, we present a few consequences. It follows from Theorem 1.1 that if $f \in I_{\gamma}(E,Q)$, then $f/Q \in I_{\gamma}(E)$. We do not know whether the corresponding result for $J_{\gamma}(E,Q)$ holds in general, but for E countable it follows easily from the theorem.

COROLLARY 4.2. Suppose that a closed set $E \subseteq \mathbb{T}$ and an inner function Q satisfy (2) and that E is countable. If $f \in J_{\gamma}(E,Q)$, then $f/Q \in J_{\gamma}(E)$. Proof. Consider the closed ideal

$$I = \{ f \in J_{\gamma}(E,Q) : f/Q \in J_{\gamma}(E) \}$$

in Λ_{γ}^+ . We have $E_I = E$ and $Q_I = Q$, so the previous theorem entails that $J_{\gamma}(E,Q) \subseteq I$ and the conclusion follows.

For $\gamma = 1$, Theorem 4.1 can be restated as follows with the use of Corollary 3.2.

COROLLARY 4.3. Let I be a closed ideal I in Λ_1^+ and suppose that E_I is countable. Then

$$\{f \in I_1(E_I, Q_I) : f' \in \mathcal{H}_{E_I}^\infty\} \subseteq I.$$

For the primary ideals, more can be said.

COROLLARY 4.4. Let $s \ge 0$. The closed ideals I in Λ^+_{γ} with $E_I = \{1\}$ and $Q_I = \psi_{-s}$ are exactly the closed subspaces I of Λ^+_{γ} with

$$J_{\gamma,s} \subseteq I \subseteq I_{\gamma,s}$$

Proof. Let I be a closed subspace of Λ_{γ}^+ with $J_{\gamma,s} \subseteq I \subseteq I_{\gamma,s}$. For $f \in \Lambda_{\gamma}^+$ and $g \in I$, we have

$$(f - f(1))g \in I_{\gamma,0} \cdot I_{\gamma,s} \subseteq J_{\gamma,s} \subseteq I,$$

so $fg \in I$ and the result follows.

In his paper [5] on the ideal structure in \mathcal{H}^{∞} , Hedenmalm stated the following result, which is now easily deduced from our results.

COROLLARY 4.5. Let I be a closed ideal in Λ_1^+ with $E_I = \{1\}$ and $Q_I = 1$. Then there is a closed subspace \mathcal{Z} in \mathcal{H}^{∞} containing $\mathcal{H}^{\infty}_{\{1\}}$ such that

$$I = \{ f \in I_1(\{1\}) : f' \in \mathcal{Z} \}.$$

Conversely, every such set I is a closed ideal in Λ_1^+ with $E_I = \{1\}$ and $Q_I = 1$.

Proof. For $f \in I_1(\{1\})$, we have $||f||_{\infty} \leq 2||f'||_{\infty}$, so $f \mapsto ||f'||_{\infty}$ defines a norm on $I_1(\{1\})$ which is equivalent to the Λ_1^+ norm. Hence $I \mapsto I' =$ $\{f': f \in I\}$ defines a bijective correspondence between the closed subspaces I in Λ_1^+ with $J_1(\{1\}) \subseteq I \subseteq I_1(\{1\})$ and the closed subspaces \mathcal{Z} in \mathcal{H}^{∞} with $\mathcal{H}_{\{1\}}^{\infty} \subseteq \mathcal{Z}$, so the result follows from the previous corollary.

Finally, we shall show that there are uncountably many closed ideals between $J_{\gamma,s}$ and $I_{\gamma,s}$.

LEMMA 4.6. Let
$$f_s = (1 - \alpha)^{2\gamma} \psi_{-s}$$
 (s > 0). For $0 < t_0 < s_0$, we have
 $\|f_s - f_t\|_{A^+_{\gamma}/J_{\gamma,0}} \ge C$

for $t_0 \leq t < s \leq s_0$.

Proof. We have

$$||f||_{A^+_{\gamma}/J_{\gamma,0}} \ge \limsup_{z \to 1} |f'(z)|(1-|z|)^{1-\gamma}$$

for $f \in \Lambda_{\gamma}^+$. Also,

$$f'_{s} = -2\gamma(1-\alpha)^{2\gamma-1}\psi_{-s} - 2s(1-\alpha)^{2\gamma-2}\psi_{-s},$$

 \mathbf{so}

$$\|f_s - f_t\|_{\Lambda^+_{\gamma}/J_{\gamma,0}} \ge \limsup_{z \to 1} |2(s-t)(1-z)^{2\gamma-2}\psi_{-s}(z) + 2t(1-z)^{2\gamma-2}(\psi_{-s}(z) - \psi_{-t}(z))|(1-|z|)^{1-\gamma}.$$

As in the proof of Lemma 3.4, we write $1 - z = re^{i\theta}$ for $z \in \mathbb{D}$. Then

$$\operatorname{Im}\left(\frac{1+z}{1-z}\right) = \frac{2\sin\theta}{r}$$

so there exists a sequence (z_n) tending to 1 such that

$$\operatorname{Im}\left(\frac{1+z_n}{1-z_n}\right) = \frac{(2n+1)\pi}{s-t}$$

and thus

$$|\psi_{-(s-t)}(z_n) - 1| \ge 1 - \operatorname{Re} \psi_{-(s-t)}(z_n) \ge 1.$$

It thus follows from the proof of Lemma 3.4 that

$$\limsup_{n \to \infty} \left| (1 - z_n)^{2\gamma - 2} (\psi_{-s}(z_n) - \psi_{-t}(z_n)) \right| (1 - |z_n|)^{1 - \gamma} \ge C.$$

Hence there exists $\delta > 0$ such that

$$\|f_s - f_t\|_{\Lambda^+_{\gamma}/J_{\gamma,0}} \ge t_0 C$$

for $0 < s - t < \delta$ and the result follows.

COROLLARY 4.7. For $s \ge 0$, there are uncountably many closed ideals I in Λ_{γ}^+ with $J_{\gamma,s} \subseteq I \subseteq I_{\gamma,s}$.

Proof. The inclusion map $\iota: I_{\gamma,s} \to I_{\gamma,0}$ induces a bounded linear map $\tilde{\iota}: I_{\gamma,s}/J_{\gamma,s} \to I_{\gamma,0}/J_{\gamma,0}$. Since $f_t \in I_{\gamma,s}$ for $t \ge s$, we deduce from the previous lemma that $I_{\gamma,s}/J_{\gamma,s}$ is non-separable, so the result follows from Corollary 4.4.

We now turn to the proof of Theorem 4.1. Recall the following definitions (with a few modifications) from [1]:

- H_+ : consists of the analytic functions f on \mathbb{D} for which $|f(z)| \leq C(1-|z|)^{-N}$ for $z \in \mathbb{D}$ for some $N \in \mathbb{N}$,
- *H*₋: consists of the analytic functions f on $\mathbb{C} \setminus \overline{\mathbb{D}}$ with $|f(z)| \leq C(|z|-1)^{-N}$ for $z \in \mathbb{C} \setminus \overline{\mathbb{D}}$ for some $N \in \mathbb{N}$ and $f(z) \to 0$ as $|z| \to \infty$,

 \mathcal{G} : consists of the analytic functions f on $\mathbb{C} \setminus \mathbb{T}$ for which $f \in H_-$ on $\mathbb{C} \setminus \mathbb{D}$ and f = g/h with $g \in H_+$ and $h \in \mathcal{H}^{\infty}$ on \mathbb{D} .

The following result as well as its proof are similar to [1, Theorem 4.3].

PROPOSITION 4.8. Let I be a closed ideal in Λ_{γ}^+ and let $\varphi \in I^{\perp}$. If $f \in J_{\gamma}(E_I, Q_I)$, then Φ_f does not have any isolated singularities.

Proof. It follows from Lemma 2.2 that $Q_I \Phi$ and thus $f \Phi$ is analytic on \mathbb{D} . Hence Φ_f is analytic on \mathbb{D} by Lemma 2.3, so the singularities of Φ_f belong to $Z_I \cap \mathbb{T} = E_I$. Moreover, by Lemmas 2.1 and 2.3, we have

$$\Phi_f(z) = \frac{(f(z)/Q(z))\langle S_z g, \varphi \rangle - (g(z)/Q(z))\langle S_z f, \varphi \rangle}{g(z)/Q(z)} \quad (z \in \mathbb{D} \setminus Z(g))$$

for $g \in I$. From (3) and (4), we thus deduce that $\Phi_f \in \mathcal{G}$, so it follows from [1, Theorem 3.2(ii)] that any isolated singularity of Φ_f is a pole.

Suppose that Φ_f has a pole of order p at (say) z = 1, so that the function Ψ defined by

(5)
$$\Psi = (1 - \alpha)^p \Phi_f$$

is analytic in a neighborhood U of 1 and $a = \Psi(1) \neq 0$. Since $f \in J_{\gamma,0}$, we have $K_n f \to f$ in Λ_{γ}^+ as $n \to \infty$ by Lemma 3.3. Moreover, $K_n \in \lambda_{\gamma}^+$ and the polynomials are dense in λ_{γ}^+ , so there exists a sequence (p_n) of polynomials with $p_n(1) = 1$ and $p_n f \to 0$ in Λ_{γ}^+ as $n \to \infty$. Let $\varphi_n = \varphi_{p_n f}$ and let Φ_n be the Carleman transform of φ_n . Since $\varphi_n = (\varphi_f)_{p_n}$, it follows from Lemma 2.3 that

(6)
$$\Phi_n(z) = p_n(z)\Phi_f(z) - \langle S_z p_n, \varphi_f \rangle \quad (z \in \mathbb{D} \setminus Z_I)$$

and $q_n(z) = \langle S_z p_n, \varphi_f \rangle$ is a polynomial in z. Combining (5) and (6), we obtain

$$(1-\alpha)^p \Phi_n = p_n \Psi - (1-\alpha)^p q_n$$

on U, so the function Ψ_n defined by $\Psi_n = (1 - \alpha)^p \Phi_n$ is analytic in U and $\Psi_n(1) = a$.

Choose a circle Γ centered at 1 and contained in U and a function $g \in I$ such that $g(z) \neq 0$ for $z \in \Gamma \cap \overline{\mathbb{D}}$. We have

(7)
$$\|\varphi_n\| \le \|p_n f\|_{A^+_{\gamma}} \cdot \|\varphi\| \to 0$$

as $n \to \infty$, so

$$|\Phi_n(z)| \le C(1-|z|)^{-(\gamma+1)} \quad (z \in \Gamma \cap \mathbb{D})$$

by (4) and

$$|\Phi_n(z)| \le C(|z|-1)^{-(\gamma+1)} \quad (z \in \Gamma \setminus \overline{\mathbb{D}})$$

by (3). It thus follows from the proof of [8, Lemma VI.8.3] that the sequence (Ψ_n) is uniformly bounded on some disc centered at 1. By (7), we have $\Phi_n \to 0$ pointwise on $\mathbb{C} \setminus Z_I$ as $n \to \infty$ and thus $\Psi_n \to 0$ pointwise on Γ

T. V. Pedersen

as $n \to \infty$. Hence $\Psi_n(1) \to 0$ as $n \to \infty$ by Cauchy's integral formula and Lebesgue's dominated convergence theorem, contradicting $\Psi_n(1) = a \neq 0$.

Proof of Theorem 4.1. Let I be a closed ideal in Λ_{γ}^+ , let $\varphi \in I^{\perp}$ and let $f \in J_{\gamma}(E_I, Q_I)$. We will use the same transfinite induction as in [1, p. 17] to prove that Φ_f is entire. Let $L_0 = E_I$ and inductively define L_σ for any ordinal σ in the following way: If $\sigma = \tau + 1$ is not a limit ordinal, we define L_{σ} to be the set of limit points of L_{τ} , and if σ is a limit ordinal, we let $L_{\sigma} = \bigcap_{\tau < \sigma} L_{\tau}$. If z_0 is a singularity of Φ_f , then $z_0 \in E_I = L_0$. Suppose that we have shown that $z_0 \in L_{\tau}$ for every ordinal $\tau < \sigma$. If $\sigma = \tau + 1$ is not a limit ordinal, then $L_{\sigma} \setminus L_{\tau}$ consists of isolated points, so it follows from the previous proposition that $z_0 \in L_{\sigma}$. The same conclusion clearly holds if σ is a limit ordinal, so we conclude that $z_0 \in L_{\sigma}$ for every ordinal σ . However, L_0 contains no perfect subsets, so $L_{\sigma} \subset L_{\tau}$ for every non-limit ordinal $\sigma = \tau + 1$, and it follows that there exists a first ordinal σ_0 such that L_{σ_0} is empty. This contradicts our earlier conclusion $z_0 \in L_{\sigma_0}$. Consequently, Φ_f does not have any singularities, so Φ_f is entire. Hence $\Phi_f = 0$ and since span{ $(z-\alpha)^{-1}: z \in \mathbb{C} \setminus \overline{\mathbb{D}}$ } is dense in λ_{γ}^+ , this is equivalent to $\varphi_f = 0$ on λ_{γ}^+ . Consequently,

$$\langle f, \varphi \rangle = \langle 1, \varphi_f \rangle = 0$$

and since $\varphi \in I^{\perp}$ was arbitrary, we conclude that $f \in I$.

For closed ideals with finite hull, we shall now give a proof of Theorem 4.1 which is more constructive and does not depend on Proposition 4.8. For simplicity, we consider only closed ideals I in Λ_{γ}^+ with $Z_I = \{1\}$. For $\gamma < 1$ and $Q_I = 1$, the main idea in the proof is to show that if $\varphi \in I^{\perp}$, then $\langle f, \varphi \rangle = af(1)$ for $f \in \lambda_{\gamma}^+$ for some $a \in \mathbb{C}$ (and similarly for $\gamma = 1$).

Proof of Theorem 4.1 when $Z_I = \{1\}$. First, suppose that $Q_I = 1$. For $\varphi \in I^{\perp}$, we have

(8)
$$|\Phi(z)| \le C(|z|-1)^{-(1+\gamma)} \quad (z \in \mathbb{C} \setminus \overline{\mathbb{D}})$$

by (3). Moreover, for $g \in I$ and $z \in \mathbb{D}$, it follows from (4) and Lemma 2.1 that

$$|g(z)\Phi(z)| \le C(1-|z|)^{-(1+\gamma)} \quad (z \in \mathbb{D}).$$

Hence Φ has a pole at z = 1 by [1, Theorem 3.2(ii)]. We first consider the case where $0 < \gamma < 1$. Then z = 1 is a simple pole of Φ by (8) and since $\Phi(z) \to 0$ as $|z| \to \infty$, we deduce that

$$\Phi(z) = a(z-1)^{-1} \quad (z \in \mathbb{C} \setminus \{1\})$$

for some $a \in \mathbb{C}$. Let $\delta_1 \in (\Lambda_{\gamma}^+)^*$ denote the point evaluation at z = 1. Then

$$\langle (z-\alpha)^{-1}, \delta_1 \rangle = (z-1)^{-1} \quad (z \in \mathbb{C} \setminus \overline{\mathbb{D}}),$$

so $\varphi = a\delta_1$ on the closed span of $\{(z - \alpha)^{-1} : |z| > 1\}$, that is, on λ_{γ}^+ . In particular, $\langle 1 - \alpha, \varphi \rangle = 0$. The Hahn–Banach theorem thus implies that $1 - \alpha \in I$, so $J_{\gamma,0} \subseteq I$ by Proposition 3.5. For $\gamma = 1$, the same method works with the following changes. From (8), we deduce that Φ has a pole of order 2 at z = 1, so

$$\Phi(z) = a(z-1)^{-1} + b(z-1)^{-2} \quad (z \in \mathbb{C} \setminus \{1\})$$

for some $a, b \in \mathbb{C}$. On λ_1^+ , we define δ'_1 by $\langle g, \delta'_1 \rangle = g'(1)$ $(g \in \lambda_1^+)$. Then $\langle (z - \alpha)^{-1}, \delta'_1 \rangle = (z - 1)^{-2} \quad (z \in \mathbb{C} \setminus \overline{\mathbb{D}}),$

so $\varphi = a\delta_1 + b\delta'_1$ on λ_1^+ . In particular, $\langle (1-\alpha)^2, \varphi \rangle = 0$, so $J_{1,0} \subseteq I$ by Proposition 3.5.

Now, suppose that $Q_I = \psi_{-s}$ for some s > 0. We have $(1 - \alpha)^2 \psi_{-s} \in \Lambda_{\gamma}^+$ and the division ideal

$$\widetilde{I} = \{ f \in I_{\gamma}(\{1\}) : (1 - \alpha)^2 \psi_{-s} f \in I \}$$

satisfies $E_{\widetilde{I}} = \{1\}$ and $Q_{\widetilde{I}} = 1$, so $J_{\gamma,0} \subseteq \widetilde{I}$ by the first part of the proof. Since $(1-\alpha)^2 \in J_{\gamma,0}$, we thus have $(1-\alpha)^4 \psi_{-s} \in I$, so the conclusion follows from Proposition 3.5.

5. Ideals with $Q_I = 1$. Our aim in this section is to prove the following result.

THEOREM 5.1. Let $E \subseteq \mathbb{T}$ be a Carleson set and let $F \in J_{\gamma}(E)$ be an outer function with Z(F) = E. Then

$$\overline{\Lambda_{\gamma}^+ F} = J_{\gamma}(E).$$

REMARKS. (1) We do not know whether a closed ideal I in Λ_{γ}^+ with $Q_I = 1$ necessarily contains an outer function F with $Z(F) = E_I$. However, if this is the case, then the theorem verifies our conjecture for this class of closed ideals. This is seen as follows: Let $H \in J_{\gamma}(E_I)$ be an outer function with $Z(H) = E_I$. Then $FH \in I \cap J_{\gamma}(E_I)$ and $Z(FH) = E_I$, so it follows from the theorem that

$$J_{\gamma}(E_I) = \overline{\Lambda_{\gamma}^+ F H} \subseteq \overline{\Lambda_{\gamma}^+ F} \subseteq I$$

as required.

(2) We do not know how to prove a version of the theorem for the ideals $J_{\gamma}(E,Q)$ with $Q \neq 1$.

For a closed set $E \subseteq \mathbb{T}$ and $p \in \mathbb{N}$, let

$$I^p_{\gamma}(E) = \{ f \in \Lambda^+_{\gamma} : |f(z)| \le Cd(z, E)^p \ (z \in \mathbb{T}) \}.$$

For $f \in I^p_{\gamma}(E)$, we have $|f(z)| \leq C|z-w|^p$ $(z \in \mathbb{T}, w \in E)$ and since $(\alpha - w)^p$ is outer, this holds for $z \in \overline{\mathbb{D}}$, so it follows that $|f(z)| \leq Cd(z, E)^p$ $(z \in \overline{\mathbb{D}})$.

Theorem 5.1 is an immediate consequence of the following two results.

PROPOSITION 5.2. Let $E \subseteq \mathbb{T}$ be a Carleson set, let $F \in J_{\gamma}(E)$ be an outer function with Z(F) = E and let $p \in \mathbb{N}$ with $p > 2\gamma$. Then

$$J_{\gamma}(E) \cap I^p_{\gamma}(E) \subseteq \overline{\Lambda^+_{\gamma}F}.$$

PROPOSITION 5.3. Let $E \subseteq \mathbb{T}$ be a Carleson set and let $p \in \mathbb{N}$. Then $J_{\gamma}(E) \cap I_{\gamma}^{p}(E)$ is dense in $J_{\gamma}(E)$.

For an outer function F and a measurable set $\Gamma \subseteq \mathbb{T}$, let

(9)
$$F_{\Gamma}(z) = \exp\left(\frac{1}{2\pi} \int_{\Gamma} \frac{e^{i\theta} + z}{e^{i\theta} - z} \log|F(e^{i\theta})| \, d\theta\right) \quad (z \in \mathbb{D}).$$

Observe that $|F_{\Gamma}| = |F|$ a.e. on Γ and $|F_{\Gamma}| = 1$ a.e. on $\mathbb{T} \setminus \Gamma$. Also, $F_{\Gamma} \to 1$ pointwise on \mathbb{D} as $m(\Gamma) \to 0$. The following proof is inspired by [13].

Proof of Proposition 5.2. Let $f \in J_{\gamma}(E) \cap I_{\gamma}^{p}(E)$ and write $\mathbb{T} \setminus E = \bigcup_{n=1}^{\infty} V_{n}$, where (V_{n}) is a sequence of pairwise disjoint, open arcs on \mathbb{T} with endpoints a_{n} and b_{n} . For $N \in \mathbb{N}$, let $\Gamma_{N} = \bigcup_{n=N+1}^{\infty} V_{n}$ and let $F_{N} = F_{\Gamma_{N}}$. We shall prove that

- (i) $F_N f \to f$ in Λ_{γ}^+ as $N \to \infty$.
- (ii) $F_N f \in \overline{\Lambda_{\gamma}^+ F}$ for $N \in \mathbb{N}$.
- (i): We have

$$(F_N f - f)' = (F_N - 1)f' + F'_N f.$$

Also, $F_N \to 1$ uniformly on compact subsets of $\overline{\mathbb{D}} \setminus E$, so $F_N f \to f$ uniformly on $\overline{\mathbb{D}}$ and

$$\sup_{z \in \mathbb{D}} |(F_N(z) - 1)f'(z)|(1 - |z|)^{1 - \gamma} \to 0$$

as $N \to \infty$. We shall now prove that

(10)
$$|F'_N(z)f(z)| = o((1-|z|)^{\gamma-1})$$

as $d(z, E) \to 0$ uniformly in N. For $N \in \mathbb{N}$, let $E_N = E \cap \overline{\Gamma}_N = \partial \Gamma_N$ and let

$$G_{1N} = \{ z = re^{it} \in \mathbb{D} : d(e^{it}, E_N) \le (1 - r)^{1/2} \},\$$

$$G_{2N} = \{ z = re^{it} \in \mathbb{D} : d(e^{it}, E_N) > (1 - r)^{1/2} \text{ and } e^{it} \notin \Gamma_N \},\$$

$$G_{3N} = \{ z = re^{it} \in \mathbb{D} : d(e^{it}, E_N) > (1 - r)^{1/2} \text{ and } e^{it} \in \Gamma_N \}.\$$

For $z = re^{it} \in G_{1N}$, choose $e^{i\theta} \in E_N$ such that

$$d(z, E_N)^2 = |z - e^{i\theta}|^2 = (1 - r)^2 + 4r\sin^2(\theta - t)/2$$

= $(1 - r)^2 + rd(e^{it}, E_N)^2 \le 1 - r.$

By Cauchy's inequalities, $|F'_N(z)| \leq C(1-r)^{-1}$, so

$$|F'_N(z)f(z)| \le Cd(z,E)^p(1-r)^{-1} \le C(1-r)^{p/2-1}$$

For
$$z = re^{it} \in G_{2N}$$
, we have $d(e^{it}, \Gamma_N) = d(e^{it}, E_N)$ and thus
 $d(z, \Gamma_N)^2 = (1 - r)^2 + rd(e^{it}, \Gamma_N)^2 = d(z, E_N)^2.$

Moreover,

$$F'_N(z) = rac{1}{\pi} \int\limits_{\Gamma_N} rac{e^{i heta}}{(e^{i heta} - z)^2} \log |F(e^{i heta})| \, d heta \cdot F_N(z),$$

 \mathbf{SO}

$$|F'_N(z)| \le C \int_{\mathbb{T}} \left| \log |F(e^{i\theta})| \right| d\theta \cdot d(z, E_N)^{-2}$$

and thus

$$|F'_N(z)f(z)| \le Cd(z, E_N)^{p-2}.$$

Also,
$$d(z, E_N)^2 = (1 - r)^2 + rd(e^{it}, E_N)^2 \ge 1 - r$$
, so
 $|F'_N(z)f(z)| \le Cd(z, E)^{p-2\gamma}(1 - r)^{\gamma-1}$

Now, let $z = re^{it} \in G_{3N}$. We have

$$F'_N(z) = \frac{F'(z)F_N(z)}{F(z)} - \frac{1}{\pi} \int_{\mathbb{T}\setminus\Gamma_N} \frac{e^{i\theta}}{(e^{i\theta} - z)^2} \log|F(e^{i\theta})| \, d\theta \cdot F_N(z).$$

Since $d(z, \mathbb{T} \setminus \Gamma_N) \geq d(z, E_N)$, the second term can be estimated as for $z \in G_{2N}$. For the first term, we apply [13, Lemma 1] with $\Gamma = \mathbb{T} \setminus \Gamma_N$ and $\eta = 1/2$ and obtain $|F_N(z)/F(z)| \leq C$. Since $F \in J_{\gamma}(E)$, we have verified (10).

For $\delta > 0$, let $E_{\delta} = \{z \in \mathbb{T} : d(z, E) < \delta\}$ and $U_{\delta} = \{z \in \mathbb{D} : d(z, E) < \delta\}$. Given $\varepsilon > 0$, it follows from (10) that there exists $\delta > 0$ such that

$$|F'_N(z)f(z)|(1-|z|)^{1-\gamma} \le \varepsilon$$

for $z \in U_{\delta}$ and $N \in \mathbb{N}$. Since $\overline{V}_n \cap E \neq \emptyset$ $(n \in \mathbb{N})$, there exists $N_0 \in \mathbb{N}$ such that $V_n \subseteq E_{\delta/2}$ for $n > N_0$ and thus $\Gamma_N \subseteq E_{\delta/2}$ for $N \ge N_0$. Hence $d(z, \Gamma_N) \ge \delta/2$ for $z \notin U_{\delta}$ and $N \ge N_0$, so

$$|F'_N(z)| \le Cd(z, \Gamma_N)^{-2} \int_{\Gamma_N} \left| \log |F(e^{i\theta})| \right| d\theta \to 0$$

uniformly on $\mathbb{D} \setminus U_{\delta}$ as $N \to \infty$. We thus conclude that $F_N f \in \Lambda_{\gamma}^+$ and that $F_N f \to f$ in Λ_{γ}^+ as $N \to \infty$.

(ii): Fix $N \in \mathbb{N}$. Since $f \in J_{\gamma}(E)$, it follows from (10) that $F_N f \in J_{\gamma}(E)$. For $a \in \mathbb{T}$ and $\mu > 0$, let

$$K_{a\mu}(z) = \frac{a-z}{(1+\mu)a-z} \quad (z \in \overline{\mathbb{D}}).$$

(This is a generalization of the sequence (K_n) introduced in Section 3.) With

$$\Phi_{\mu} = \left(\prod_{n=1}^{N} K_{a_n\mu} K_{b_n\mu}\right)^p,$$

it follows from Lemma 3.3 that

(11)
$$\Phi_{\mu}F_{N}f \to F_{N}f$$

in Λ_{γ}^+ as $\mu \to 0$. Now, fix $\mu > 0$. For $\varepsilon > 0$ and $n = 1, \ldots, N$, let $V_{n\varepsilon}$ be the subarc of V_n whose endpoints c_n and d_n are at a distance ε from a_n and b_n respectively. Let $D_{\varepsilon} = \bigcup_{n=1}^{N} V_{n\varepsilon}$ and let

$$\Phi_{\mu\varepsilon} = \Big(\prod_{n=1}^{N} K_{c_n\mu} K_{d_n\mu}\Big)^p.$$

We shall show that

(a)
$$\Phi_{\mu\varepsilon}F_{D_{\varepsilon}}^{-1} \in \Lambda_{\gamma}^{+}$$
 for $\varepsilon > 0$
(b) $\Phi_{\mu\varepsilon}F_{D_{\varepsilon}}^{-1}Ff \to \Phi_{\mu}F_{N}f$ in Λ_{γ}^{+} as $\varepsilon \to 0$.

It then follows from (11) that $F_N f \in \overline{\Lambda_{\gamma}^+ F}$. For simplicity, we only prove (a) and (b) for N = 1, but the proof is essentially the same in the general case.

(a): Let $\varepsilon > 0$. It follows from the proof of (10) that

$$|\Phi_{\mu\varepsilon}(z)F'_{D_{\varepsilon}}(z)| \le C(1-|z|)^{\gamma-1} \quad (z \in \mathbb{D}).$$

Also, the outer function $F_{D_{\varepsilon}}$ is bounded away from zero on \mathbb{T} and thus on $\overline{\mathbb{D}}$, so

$$\Phi_{\mu\varepsilon}(z)(F_{D_{\varepsilon}}^{-1})'(z)| \le C(1-|z|)^{\gamma-1} \quad (z \in \mathbb{D}),$$

and (a) follows.

(b): For $\varepsilon > 0$, let $W_{\varepsilon} = V_1 \setminus V_{1\varepsilon}$ so that $\partial W_{\varepsilon} = \{a_1, c_1, d_1, b_1\}$. Then $F_{V_{1\varepsilon}}^{-1}F = F_{W_{\varepsilon}}F_1$,

 \mathbf{SO}

(12)
$$(\Phi_{\mu\varepsilon}F_{V_{1\varepsilon}}^{-1}Ff - \Phi_{\mu}F_{1}f)' = (\Phi_{\mu\varepsilon}F_{W_{\varepsilon}}F_{1} - \Phi_{\mu}F_{1})f' + (\Phi_{\mu\varepsilon}F_{W_{\varepsilon}} - \Phi_{\mu})F_{1}'f + (\Phi'_{\mu\varepsilon}F_{W_{\varepsilon}} - \Phi'_{\mu})F_{1}f + \Phi_{\mu\varepsilon}F'_{W_{\varepsilon}}F_{1}f.$$

As $\varepsilon \to 0$, we have $\Phi_{\mu\varepsilon} \to \Phi_{\mu}$ and $\Phi'_{\mu\varepsilon} \to \Phi'_{\mu}$ uniformly on $\overline{\mathbb{D}}$ and $F_{W_{\varepsilon}} \to 1$ uniformly on compact subsets of $\overline{\mathbb{D}} \setminus \{a_1, b_1\}$, so

$$\sup_{z\in\mathbb{D}} \left| \left[(\Phi_{\mu\varepsilon}F_{W_{\varepsilon}}F_{1} - \Phi_{\mu}F_{1})f' + (\Phi_{\mu\varepsilon}F_{W_{\varepsilon}} - \Phi_{\mu})F_{1}'f + (\Phi_{\mu\varepsilon}'F_{W_{\varepsilon}} - \Phi_{\mu}')F_{1}f\right](z) \right| \cdot (1 - |z|)^{1-\gamma} \to 0.$$

In order to estimate the last term on the right-hand side of (12), we shall imitate the proof of (10). For $\varepsilon > 0$, let $f_{\varepsilon} = \Phi_{\mu\varepsilon} f \in I^p_{\gamma}(\partial W_{\varepsilon})$ and let

$$\begin{split} G_{1\varepsilon} &= \{ z = re^{it} \in \mathbb{D} : d(e^{it}, \partial W_{\varepsilon}) \leq (1-r)^{1/2} \}, \\ G_{2\varepsilon} &= \{ z = re^{it} \in \mathbb{D} : d(e^{it}, \partial W_{\varepsilon}) > (1-r)^{1/2} \text{ and } e^{it} \notin W_{\varepsilon} \}, \\ G_{3\varepsilon} &= \{ z = re^{it} \in \mathbb{D} : d(e^{it}, \partial W_{\varepsilon}) > (1-r)^{1/2} \text{ and } e^{it} \in W_{\varepsilon} \}. \end{split}$$

For $z = re^{it} \in G_{1\varepsilon}$, we have $d(z, \partial W_{\varepsilon})^2 \leq 1 - r$, so $|F'_{W_{\varepsilon}}(z)f_{\varepsilon}(z)| \leq C(1-r)^{p/2-1}$

uniformly for $\varepsilon > 0$. Moreover, $F'_{W_{\varepsilon}} \to 0$ uniformly on compact subsets of \mathbb{D} , so

$$\sup_{z \in G_{1\varepsilon}} |F'_{W_{\varepsilon}}(z)f_{\varepsilon}(z)|(1-|z|)^{1-\gamma} \to 0$$

as $\varepsilon \to 0$. Also, for $z = re^{it} \in G_{2\varepsilon}$, we have

$$|F'_{W_{\varepsilon}}(z)f_{\varepsilon}(z)|(1-r)^{1-\gamma} \le C \int_{W_{\varepsilon}} \left|\log|F(e^{i\theta})|\right| d\theta \to 0$$

as $\varepsilon \to 0$. For $z = re^{it} \in G_{3\varepsilon}$, we have $d(z, \partial W_{\varepsilon})^2 \leq 2d(e^{it}, \partial W_{\varepsilon})^2 \leq 2\varepsilon^2$. Moreover,

$$F'_{W_{\varepsilon}}(z) = \frac{F'(z)F_{W_{\varepsilon}}(z)}{F(z)} - \frac{1}{\pi} \int_{\mathbb{T}\setminus W_{\varepsilon}} \frac{e^{i\theta}}{(e^{i\theta} - z)^2} \log|F(e^{i\theta})| \, d\theta \cdot F_{W_{\varepsilon}}(z),$$

and $|F_{W_{\varepsilon}}(z)/F(z)| \leq C$ by [13, Lemma 1], so

$$|F'_{W_{\varepsilon}}(z)f_{\varepsilon}(z)|(1-r)^{1-\gamma} \leq Cd(z,\partial W_{\varepsilon})^{p}((1-r)^{\gamma-1}+d(z,\partial W_{\varepsilon})^{-2})(1-r)^{1-\gamma} \leq C(d(z,\partial W_{\varepsilon})^{p}+d(z,\partial W_{\varepsilon})^{p-2+2(1-\gamma)}) \leq C(\varepsilon^{p}+\varepsilon^{p-2\gamma}).$$

All in all, we conclude that

$$\sup_{z \in \mathbb{D}} |F'_{W_{\varepsilon}}(z)f_{\varepsilon}(z)|(1-|z|)^{1-\gamma} \to 0$$

as $\varepsilon \to 0$, so (b) follows from (12).

We now turn to the proof of Proposition 5.3. In the proof of the corresponding result for λ_{γ}^+ ([12, Theorem A]), the first step is that if $f \in \lambda_{\gamma}^+$ with f = FQ, where F is an outer and Q an inner function, then

$$f_t = F^{1+t}Q \to f$$

in λ_{γ}^+ as $t \to 0$, and moreover $f_t \in I_{\gamma}^{(1+t)\gamma}(Z(F))$. In our case, for $f \in J_{\gamma}(E)$, we only have $f_t \to f$ in Λ_{γ}^+ as $t \to 0$ if Z(F) = E, and this complicates the proof of Proposition 5.3. We shall need the following factorization result, which we find interesting in itself.

PROPOSITION 5.4. Let $F \in \Lambda_{\gamma}^+$ be an outer function and suppose that $Z(F) = E_1 \cup E_2$, where $E_1, E_2 \subseteq \mathbb{T}$ are closed, disjoint sets. Then there exist outer functions $F_1, F_2 \in \Lambda_{\gamma}^+$ such that $F = F_1F_2$ and $Z(F_k) = E_k$ (k = 1, 2).

Proof. Choose open sets $U_1, U_2, V_1, V_2 \subseteq \mathbb{T}$ such that $E_k \subseteq U_k, \overline{U}_k \subseteq V_k$ (k = 1, 2) and such that V_1 and V_2 are disjoint, and choose $\chi_1, \chi_2 \in \Lambda_\gamma$ such that $\chi_1 + \chi_2 = 1$ on \mathbb{T} and $\chi_k = 1$ on U_k (k = 1, 2). For k = 1, 2, let $\varphi_k = \chi_k \log |F|$ and define an outer function F_k by

$$F_k(z) = \exp\left(\frac{1}{2\pi} \int_{\mathbb{T}} \frac{e^{i\theta} + z}{e^{i\theta} - z} \varphi_k(e^{i\theta}) \, d\theta\right) \quad (z \in \mathbb{D})$$

Then $Z(F_k) = E_k$ and $F = F_1F_2$. Choose $\psi_k \in \Lambda_{\gamma}$ such that $\psi_k = \varphi_k$ on $\mathbb{T} \setminus U_k$ and let

$$G_{k}(z) = \exp\left(\frac{1}{2\pi} \int_{\mathbb{T}} \frac{e^{i\theta} + z}{e^{i\theta} - z} \psi_{k}(e^{i\theta}) d\theta\right),$$

$$H_{k}(z) = \exp\left(\frac{1}{2\pi} \int_{\mathbb{T}} \frac{e^{i\theta} + z}{e^{i\theta} - z} (\varphi_{k}(e^{i\theta}) - \psi_{k}(e^{i\theta})) d\theta\right)$$

for $z \in \mathbb{D}$, so that $F_k = G_k H_k$. Since Λ_γ is closed under harmonic conjugation ([17, Theorem III.13.29]), it follows that $\log G_k \in \Lambda_\gamma^+$ and thus $G_k, G_k^{-1} \in \Lambda_\gamma^+$. For $e^{i\theta} \in U_1$, the function $z \mapsto (e^{i\theta} + z)/(e^{i\theta} - z)$ belongs to $\Lambda_\gamma(\mathbb{T} \setminus V_1)$, so we deduce that $H_1 \in \Lambda_\gamma(\mathbb{T} \setminus V_1)$ and thus $F_1 \in \Lambda_\gamma(\mathbb{T} \setminus V_1)$. Similarly $F_2 \in \Lambda_\gamma(\mathbb{T} \setminus V_2)$, so $F_1 = F/F_2 \in \Lambda_\gamma(\mathbb{T} \setminus V_2)$ since F_2 has no zeros on $\mathbb{T} \setminus V_2$. Hence $F_1 \in \Lambda_\gamma$ and thus $F_1 \in \Lambda_\gamma^+$. Similarly $F_2 \in \Lambda_\gamma^+$.

Proof of Proposition 5.3. Let $f \in J_{\gamma}(E)$ with f = FQ, where F is an outer and Q an inner function, and let $\varepsilon > 0$. Choose $0 < \delta \leq \varepsilon$ such that

$$|f'(z)| < \varepsilon (1 - |z|)^{\gamma - 1}$$

for $z \in U_{\delta}$, where U_{δ} and E_{δ} are as in the proof of Proposition 5.2. It is easily seen that there exist closed, disjoint sets $E_1, E_2 \subseteq \mathbb{T}$ with $E \subseteq E_1 \subseteq E_{\delta}$ and $Z(F) = E_1 \cup E_2$, so it follows from the previous proposition that $F = F_1F_2$, where $F_1, F_2 \in \Lambda_{\gamma}^+$ are outer functions with $Z(F_k) = E_k$ (k = 1, 2). For t > 0, let

$$f_t = F_1^{1+t} F_2 Q = F_1^t f,$$

so that

(13)
$$f'_t = tF_1^{t-1}F_1'f + F_1^tf' = F_1^t(tF_1'F_2Q + f').$$

Since $F_1 = 0$ on $E_1 \supseteq E$, we deduce that $f_t \in J_{\gamma}(E) \cap I_{\gamma}^{(1+t)\gamma}(E)$. Moreover, $(f_t - f)' = tF_1^t F_1' F_2 Q + (F_1^t - 1)f'.$

Since $Z(F_1) \subseteq E_{\delta}$, we have $F_1^t \to 1$ uniformly on $\mathbb{D} \setminus U_{\delta}$ as $t \to 0$, so

$$\limsup_{t \to 0} \|f_t - f\|_{\Lambda_{\gamma}^+} \le C \sup_{z \in U_{\delta}} |f'(z)| (1 - |z|)^{1 - \gamma} < C\varepsilon.$$

Write $\mathbb{T} \setminus E_1 = \bigcup_{n=1}^{\infty} W_n$, where (W_n) is a sequence of pairwise disjoint, open arcs on \mathbb{T} . For $N \in \mathbb{N}$, let $\Omega_N = \bigcup_{n=N+1}^{\infty} W_n$ and let

$$F_{1N} = (F_1)_{\Omega_N}$$

(see (9)). Fix t > 0 and let $q \in \mathbb{N}$. We have $F_{1N}^q \to 1$ uniformly on compact subsets of $\overline{\mathbb{D}} \setminus E_1$ and $f_t = 0$ on E_1 , so $F_{1N}^q f_t \to f_t$ uniformly on $\overline{\mathbb{D}}$. To estimate $(F_{1N}^q)' f_t = qF_{1N}^{q-1}F_{1N}' f_t$ on $\mathbb{D} \setminus U_{\delta}$, we choose $N_0 \in \mathbb{N}$ such that $\Omega_N \subseteq E_{\delta/2}$ for $N \ge N_0$. We have

$$|F'_{1N}(z)| \le Cd(z, \Omega_N)^{-2} \int_{\Omega_N} \left| \log |F(e^{i\theta})| \right| d\theta \le C\delta^{-2} \int_{\Omega_N} \left| \log |F(e^{i\theta})| \right| d\theta \to 0$$

uniformly for $z \in \mathbb{D} \setminus U_{\delta}$ as $N \to \infty$. To estimate $(F_{1N}^q)' f_t$ on U_{δ} , we repeat the proof of [12, Theorem B] (for q sufficiently large) with $d(z) = d(z, E_1)$ and use the fact that

$$|f(z)| \le C|F_1(z)| \le Cd(z, E_1)^{\gamma} \le C\varepsilon^{\gamma},$$

and obtain

$$\limsup_{N \to \infty} \sup_{z \in U_{\delta}} |(F_{1N}^q)'(z)f_t(z)|(1-|z|)^{1-\gamma} = \kappa(\varepsilon)$$

where $\kappa(\varepsilon) \to 0$ as $\varepsilon \to 0$. Moreover, by (13), we have

$$\sup_{z \in U_{\delta}} |f'_t(z)| (1-|z|)^{1-\gamma} \le C \sup_{z \in U_{\delta}} |F_1^t(z)| \le C \delta^{t\gamma} \le C \varepsilon^{t\gamma},$$

 \mathbf{SO}

$$\limsup_{N \to \infty} \|f_t - F_{1N}^q f_t\|_{\Lambda_{\gamma}^+} = \widetilde{\kappa}(\varepsilon)$$

where $\widetilde{\kappa}(\varepsilon) \to 0$ as $\varepsilon \to 0$.

Now, fix $N \in \mathbb{N}$. It follows from the above that $F_{1N}^q f_t \in J_{\gamma}(E)$. Moreover,

$$|F_{1N}^q(z)| \le Cd(z,\partial\Omega_N)^p \quad (z\in\overline{\mathbb{D}})$$

for $q \ge p/\gamma$. Since $\partial(\mathbb{T} \setminus E_1) = E_1$, we deduce that $E \setminus \partial \Omega_N$ is finite, say $E \setminus \partial \Omega_N = \{a_1, \ldots, a_M\}$. By Lemma 3.3, we then have

$$\left(\prod_{m=1}^{M} K_{a_m\mu}\right)^p F_{1N}^q f_t \to F_{1N}^q f_t$$

in Λ_{γ}^+ as $\mu \to 0$, and since

$$\left(\prod_{m=1}^{M} K_{a_m\mu}\right)^p F_{1N}^q \in J_{\gamma}(E) \cap I_{\gamma}^p(E),$$

this finishes the proof. \blacksquare

6. Weak-star closed ideals. In this section, we characterize the wk^{*} closed ideals in Λ_{γ}^+ . We begin by describing the wk^{*} topology on Λ_{γ} and Λ_{γ}^+ . For $z \in \mathbb{T}$, let $\delta_z \in \Lambda_{\gamma}^*$ be the point evaluation functional at z, and let

$$Y_{\gamma} = \overline{\operatorname{span}\{\delta_z : z \in \mathbb{T}\}}$$

(norm closure in Λ^*_{γ}). Johnson ([7, Section 4]) proved that

$$Y_{\gamma}^* = \Lambda_{\gamma}.$$

Moreover, a bounded net in Λ_{γ} converges wk^{*} to zero in Λ_{γ} if and only if it converges pointwise to zero on \mathbb{T} , and in this case it actually converges uniformly to zero on \mathbb{T} . When $0 < \gamma < 1$, we further have $Y_{\gamma} = \lambda_{\gamma}^{*}$ and thus $\Lambda_{\gamma} = \lambda_{\gamma}^{**}$ ([7, Theorem 4.7]).

LEMMA 6.1. Multiplication is separately wk^* continuous in Λ_{γ} .

Proof. The space $Y_{\gamma}^{**} = \Lambda_{\gamma}^{*}$ is a Banach Λ_{γ} -module under the action

 $\langle f, g\varphi \rangle = \langle fg, \varphi \rangle \quad (f, g \in \Lambda_{\gamma}, \varphi \in Y_{\gamma}^{**}).$

For $z \in \mathbb{T}$ and $g \in \Lambda_{\gamma}$, we have

$$\langle f, g\delta_z \rangle = f(z)g(z) \quad (f \in \Lambda_\gamma),$$

so $g\delta_z = g(z)\delta_z$. Hence Y_{γ} is a Λ_{γ} -submodule and the conclusion follows.

Let (f_n) be a sequence in Λ_{γ}^+ which converges wk* to f in Λ_{γ} as $n \to \infty$. Then $\widehat{f}_n(m) \to \widehat{f}(m)$ as $n \to \infty$ for $m \in \mathbb{Z}$ by Lebesgue's dominated convergence theorem. Hence $f \in \Lambda_{\gamma}^+$, so Λ_{γ}^+ is wk* closed by the Krein–Šmulian theorem. Denoting the quotient space $Y_{\gamma}/^{\perp}(\Lambda_{\gamma}^+)$ by Y_{γ}^+ , we thus have

$$\Lambda_{\gamma}^{+} = (Y_{\gamma}^{+})^{*}.$$

The next result often provides us with the easiest way to show wk^{*} convergence in Λ_{γ}^+ .

LEMMA 6.2. Let (f_n) be a bounded sequence in Λ_{γ}^+ which converges pointwise to zero on \mathbb{D} as $n \to \infty$. Then $f_n \to 0$ wk^{*} in Λ_{γ}^+ as $n \to \infty$.

Proof. Let $z \in \mathbb{T}$ and $\varepsilon > 0$. Choose $w \in \mathbb{D}$ with $|z - w| < \varepsilon$. Since $f_n(w) \to 0$ as $n \to \infty$ and since (f_n) is bounded in Λ_{γ}^+ , it follows that $\limsup_{n\to\infty} |f_n(z)| \leq C\varepsilon^{\gamma}$. Hence $f_n \to 0$ pointwise on \mathbb{T} as $n \to \infty$ and the result follows.

We now turn our attention to wk^{*} closed ideals in Λ_{γ}^+ .

PROPOSITION 6.3. Suppose that a closed set $E \subseteq \mathbb{T}$ and an inner function Q satisfy (2). Then $I_{\gamma}(E, Q)$ is a wk^* closed ideal in Λ^+_{γ} .

Proof. Let (f_n) be a sequence in $I_{\gamma}(E,Q)$ and suppose that $f_n \to f$ wk^{*} in Λ_{γ}^+ as $n \to \infty$ for some $f \in \Lambda_{\gamma}^+$. Then $f \in I_{\gamma}(E)$ and it follows from Theorem 1.1 that (f_n/Q) is a bounded sequence in Λ_{γ}^+ . Moreover, $f_n/Q \to f/Q$ pointwise on \mathbb{T} as $n \to \infty$, so we deduce that $f_n/Q \to f/Q$ wk^{*} in Λ_{γ}^+ as $n \to \infty$. In particular, $f \in I_{\gamma}(E,Q)$. The Krein–Šmulian theorem thus implies that $I_{\gamma}(E,Q)$ is wk^{*} closed.

The aim of this section is to prove the following result, which states that the ideals $I_{\gamma}(E,Q)$ are the only wk^{*} closed ideals in Λ_{γ}^+ .

THEOREM 6.4. Let I be a wk^* closed ideal in Λ^+_{γ} . Then

 $I = I_{\gamma}(E_I, Q_I).$

The proof of the theorem takes up the rest of this paper. The idea in the proof is similar to that of [10] and [11]. Firstly, the Carleman transform is used to show that a wk^{*} closed ideal I in Λ^+_{γ} with $Q_I = 1$ necessarily contains a certain class of functions. Secondly, we show that every function in $I_{\gamma}(E, Q)$ can be approximated by sufficiently smooth functions. Finally, the result is deduced from these two facts.

For a (wk^{*}) closed ideal I in Λ^+_{γ} , we let

$${}^{\perp}I = \{\varphi \in Y_{\gamma}^{+} : \langle \varphi, f \rangle = 0 \text{ for every } f \in I\} = I^{\perp} \cap Y_{\gamma}^{+}.$$

Also, for an inner function Q, a closed set $Z \subseteq \overline{\mathbb{D}}$ and p > 0, let

 $I^p_{\gamma}(Z,Q) = \{ f \in \Lambda^+_{\gamma} : f/Q \in \Lambda^+_{\gamma} \text{ and } |f(z)| \le Cd(z,Z)^p \ (z \in \mathbb{T}) \},$

so that $I^p_{\gamma}(E) = I^p_{\gamma}(E, 1)$ for a closed set $E \subseteq \mathbb{T}$ (see the previous section). For $f \in \Lambda^+_{\gamma}$, we have $\|f_r\|_{\Lambda^+_{\gamma}} \leq \|f\|_{\Lambda^+_{\gamma}}$ for r < 1 and thus $f_r \to f$ wk* in Λ^+_{γ} as $r \to 1_-$, so we can use a method from [10] in the proof of the next result.

LEMMA 6.5. Let I be a wk^* closed ideal in Λ^+_{γ} with $Q_I = 1$. Then

$$I_{\gamma}^{2(1+\gamma)}(E_I,1) \subseteq I.$$

Proof. Let $f \in I_{\gamma}^{2(1+\gamma)}(E_I, 1)$ and suppose that $\varphi \in {}^{\perp}I$. Then

$$\langle \varphi, f \rangle = \lim_{r \to 1_{-}} \langle \varphi, f_r \rangle = \lim_{s \to 1_{+}} \frac{1}{2\pi} \int_{\mathbb{T}} f(e^{i\theta}) e^{i\theta} \Phi(se^{i\theta}) \, d\theta.$$

From the proof of [10, Lemma 3.3] (see also [11, Theorem 5]), we deduce that

$$|\Phi(z)| \le Cd(z, E_I)^{-2(1+\gamma)} \quad (z \in \mathbb{C} \setminus \overline{\mathbb{D}}),$$

so it follows from Lebesgue's dominated convergence theorem that

$$\langle \varphi, f \rangle = \frac{1}{2\pi} \int_{\mathbb{T}} f(e^{i\theta}) e^{i\theta} \Phi(e^{i\theta}) \, d\theta$$

By the Beurling–Rudin theorem, the space I is dense in the Hardy space \mathcal{H}^2 , so there exists a sequence (f_n) in I converging to 1 in \mathcal{H}^2 . Since $ff_n \in I$, we thus have

$$\langle \varphi, f \rangle = \lim_{n \to \infty} \frac{1}{2\pi} \int_{\mathbb{T}} f(e^{i\theta}) f_n(e^{i\theta}) e^{i\theta} \Phi(e^{i\theta}) \, d\theta = \lim_{n \to \infty} \langle \varphi, f f_n \rangle = 0.$$

Hence $f \in I$ by the Hahn–Banach theorem.

The main difficulty in the proof of Theorem 6.4 is contained in the following approximation result. PROPOSITION 6.6. Let p > 0 and suppose that a closed set $E \subseteq \mathbb{T}$ and an inner function Q satisfy (2). Let $Z = E \cup Z(B)$. Then $I^p_{\gamma}(Z,Q)$ is wk^* dense in $I_{\gamma}(E,Q)$.

In order to prove the proposition, we shall need a series of lemmas. The following result should be compared with the comments before the proof of Proposition 5.4.

LEMMA 6.7. Let $f = FQ \in \Lambda_{\gamma}^+$, where F is an outer and Q an inner function. Then $f_t = F^{1+t}Q \in \Lambda_{\gamma}^+$ for t > 0 and $f_t \to f \ wk^*$ in Λ_{γ}^+ as $t \to 0$.

Proof. We have $F \in \Lambda_{\gamma}^+$ by Theorem 1.1. Since f' = F'Q + FQ', it thus follows that

$$\sup_{z \in \mathbb{D}} |F(z)Q'(z)| (1 - |z|)^{1 - \gamma} < \infty.$$

Moreover, $f'_t = (1+t)F^tF'Q + F^{1+t}Q'$, so we deduce that (f_t) is bounded in Λ^+_{γ} as $t \to 0$. Finally, $f_t \to f$ pointwise on \mathbb{T} as $t \to 0$, so $f_t \to f$ wk* in Λ^+_{γ} as $t \to 0$.

For $a \in \mathbb{T}$ and $\mu > 0$, let $K_{a\mu}$ be as in the previous section. For $f \in \Lambda_{\gamma}^+$ with f(a) = 0, it follows from the proof of Lemma 3.3 that

$$\sup_{z \in \mathbb{D}} |K'_{a\mu}(z)f(z)| (1-|z|)^{1-\gamma} \le C$$

for $\mu > 0$. Hence $(K_{a\mu}f)$ is bounded in Λ_{γ}^+ , and since $K_{a\mu}f \to f$ pointwise on \mathbb{T} , we deduce that $K_{a\mu}f \to f$ wk^{*} in Λ_{γ}^+ as $\mu \to 0$. From this, it is easy to deduce the following result.

LEMMA 6.8. Let $p \ge 1$, let $f \in \Lambda_{\gamma}^+$ and let $\{a_1, \ldots, a_N\} \subseteq Z(f) \cap \mathbb{T}$. Then

$$\left(\prod_{n=1}^{N} K_{a_n\mu}\right)^p f \to f$$

 wk^* in Λ^+_{γ} as $\mu \to 0$.

For an outer function F and a measurable set $\Gamma \subseteq \mathbb{T}$, recall the definition of F_{Γ} from (9). From the proof of [12, Theorem B], we obtain the following result.

LEMMA 6.9. Let F be an outer function, Q an inner function and suppose that $FQ \in \Lambda_{\gamma}^+$. Let t > 0 and let $f = F^{1+t}Q$. Then there exists q_0 such that, for $q \ge q_0$, we have

 $F_{\Gamma}^q f \in \Lambda_{\gamma}^+ \quad with \quad \|F_{\Gamma}^q f\|_{\Lambda_{\gamma}^+} \le C$

for every open set $\Gamma \subseteq \mathbb{T}$ with $\partial \Gamma \subseteq Z(f)$ (where $\partial \Gamma$ denotes the boundary of Γ in \mathbb{T}).

Proof of Proposition 6.6. By Lemma 6.7, it is sufficient to prove that, whenever a function $f \in I_{\gamma}(E, Q)$ is of the form $f = F^{1+t}Q$, where t > 0, F is an outer function and Q an inner function such that $FQ \in \Lambda_{\gamma}^+$, then f can be approximated in the wk* topology on Λ_{γ}^+ by functions from $I_{\gamma}^p(Z,Q)$. Let $q = \max\{q_0, p/\gamma\}$. As in the proof of Proposition 5.2, let $\mathbb{T} \setminus E = \bigcup_{n=1}^{\infty} V_n$, where (V_n) is a sequence of pairwise disjoint, open arcs on \mathbb{T} with endpoints a_n and b_n , and for $N \in \mathbb{N}$, let $\Gamma_N = \bigcup_{n=N+1}^{\infty} V_n$ and $F_N = F_{\Gamma_N}$. As $N \to \infty$, we have $m(\Gamma_N) \to 0$ and thus $F_N \to 1$ pointwise on \mathbb{D} , so it follows from Lemmas 6.2 and 6.9 that $F_N^q f \to f$ wk* in Λ_{γ}^+ for every $q \ge q_0$.

Let $N \in \mathbb{N}$ be fixed. We have $E \setminus \overline{\Gamma}_N \subseteq \{a_1, b_1, \dots, a_N, b_N\}$ and

$$\left(\prod_{n=1}^{N} K_{a_n\mu} K_{b_n\mu}\right)^p F_N^q f \to F_N^q f$$

wk^{*} in Λ_{γ}^+ as $\mu \to 0$ by Lemma 6.8,

Fix $\mu > 0$. For $\varepsilon > 0$ and n = 1, ..., N, let $V_{n\varepsilon}$ be the subarc of V_n whose endpoints c_n and d_n are at a distance ε from a_n and b_n respectively. Let

$$g_{\varepsilon} = \left(\prod_{n=1}^{N} K_{a_n\mu} K_{c_n\mu} K_{d_n\mu} K_{b_n\mu}\right)^{p/2} \left(\prod_{n=1}^{N} F_{V_n \setminus V_{n\varepsilon}}\right)^q F_N^q f.$$

It follows from the proof of [12, Theorem B] that (g_{ε}) is bounded in Λ_{γ}^+ as $\varepsilon \to 0$, so

$$g_{\varepsilon} \to \left(\prod_{n=1}^{N} K_{a_n\mu} K_{b_n\mu}\right)^p F_N^q f$$

wk^{*} in Λ_{γ}^+ as $\varepsilon \to 0$ by Lemma 6.2.

Finally, fix $\varepsilon > 0$. For $z \in \overline{\Gamma}_N$, we have $|F_N(z)| = |f(z)|$, and for $z \in V_n \setminus V_{n\varepsilon}$ for some $n \in \{1, \ldots, N\}$, we have $|F_{V_n \setminus V_{n\varepsilon}}(z)| = |f(z)|$. In both cases, we thus have

$$|g_{\varepsilon}(z)| \le C|f(z)|^q \le Cd(z,Z)^p.$$

Clearly, this also holds for $z \in \bigcup_{n=1}^{N} \overline{V}_{n\varepsilon}$, so $g_{\varepsilon} \in I^{p}_{\gamma}(Z,Q)$, which finishes the proof.

It follows from Lemma 6.5 and Proposition 6.6 that Theorem 6.4 holds for closed ideals I with $Q_I = 1$. We now finish the proof of the general case.

Proof of Theorem 6.4. Korenblum ([9], see also [10]) has shown that there exists an outer function T satisfying the following conditions:

(i) $T^{\varepsilon}Q_I \in \Lambda^+_{\gamma}$ for every $\varepsilon > 0$, (ii) $Z(T) = E_I$, (iii) $|T'(z)/T(z)| \le Cd(z, Z_I)^{-2}$ $(z \in \mathbb{T})$. Let $\varepsilon > 0$ and consider the division ideal

$$I_{\varepsilon} = \{ f \in \Lambda_{\gamma}^+ : T^{\varepsilon} Q_I f \in I \}$$

in Λ_{γ}^+ . Since multiplication is separately wk^{*} continuous in Λ_{γ}^+ (Lemma 6.1), it follows that I_{ε} is wk^{*} closed. Moreover, for $g \in I$, we have $g/Q_I \in I_{\varepsilon}$, so we deduce that $Q_{I_{\varepsilon}} = 1$ and $E_{I_{\varepsilon}} = E_I$. As mentioned before the proof, we thus have $I_{\varepsilon} = I_{\gamma}(E_I, 1)$.

Now, let $g \in I^2_{\gamma}(Z_I, Q_I)$. Then $g/Q_I \in I_{\gamma}(E_I, 1) = I_{\varepsilon}$, so $T^{\varepsilon}g \in I$. It follows from (iii) that

$$|(T^{\varepsilon})'(z)g(z)| = |\varepsilon T^{\varepsilon}(z)(T'(z)/T(z))g(z)| \le C \quad (z \in \mathbb{T})$$

for $\varepsilon > 0$. Hence $T^{\varepsilon}g$ is bounded in Λ_{γ}^+ as $\varepsilon \to 0$ and since $T^{\varepsilon}g \to g$ pointwise on \mathbb{T} as $\varepsilon \to 0$, we have $T^{\varepsilon}g \to g$ wk^{*} in Λ_{γ}^+ as $\varepsilon \to 0$, so $g \in I$. Finally, $I_{\gamma}^2(Z_I, Q_I)$ is wk^{*} dense in $I_{\gamma}(E_I, Q_I)$ by Proposition 6.6, so the result follows.

References

- C. Bennett and J. E. Gilbert, Homogeneous algebras on the circle. I. Ideals of analytic functions, Ann. Inst. Fourier (Grenoble) 22 (1972), no. 3, 1–19.
- [2] L. Carleson, Sets of uniqueness for functions regular in the unit circle, Acta Math. 87 (1952), 325–345.
- [3] P. L. Duren, Theory of H^p Spaces, Academic Press, San Diego, 1970.
- [4] K. M. Dyakonov, Equivalent norms on Lipschitz-type spaces of holomorphic functions, Acta Math. 178 (1997), 143–167.
- [5] H. Hedenmalm, Bounded analytic functions and closed ideals, J. Anal. Math. 48 (1987), 142–166.
- [6] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, NJ, 1962.
- J. A. Johnson, Banach spaces of Lipschitz functions and vector-valued Lipschitz functions, Trans. Amer. Math. Soc. 148 (1970), 147–169.
- [8] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, New York, 1968.
- B. I. Korenblum, Functions holomorphic in a disc and smooth in its closure, Dokl. Akad. Nauk SSSR 200 (1971), 24–27 (in Russian); English transl.: Soviet Math. Dokl. 12 (1971), 1312–1315.
- [10] —, Closed ideals in the ring Aⁿ, Funktsional. Anal. i Prilozhen. 6 (1972), no. 3, 38–52 (in Russian); English transl.: Funct. Anal. Appl. 6 (1972), 203–214.
- [11] A. L. Matheson, Closed ideals in rings of analytic functions satisfying a Lipschitz condition, in: Banach Spaces of Analytic Functions (Kent, OH, 1976), J. Baker et al. (eds.), Lecture Notes in Math. 604, Springer, Berlin, 1977, 67–72.
- [12] —, Approximation of analytic functions satisfying a Lipschitz condition, Michigan Math. J. 25 (1978), 289–298.
- [13] —, Cyclic vectors for invariant subspaces in some classes of analytic functions, Illinois J. Math. 36 (1992), 136–144.
- [14] D. R. Sherbert, The structure of ideals and point derivations in Banach algebras of Lipschitz functions, Trans. Amer. Math. Soc. 111 (1964), 240–272.

- [15] N. A. Shirokov, Division and multiplication by inner functions in spaces of analytic functions smooth up to the boundary, in: Complex Analysis and Spectral Theory (Leningrad, 1979/80), V. P. Khavin and N. K. Nikol'skiĭ (eds.), Lecture Notes in Math. 864, Springer, Berlin, 1981, 413–439.
- [16] B. A. Taylor and D. L. Williams, Ideals in rings of analytic functions with smooth boundary values, Canad. J. Math. 22 (1970), 1266–1283.
- [17] A. Zygmund, Trigonometric Series, vol. 1, Cambridge Univ. Press, 2nd ed., 1959.

Department of Mathematics and Physics The Royal Veterinary and Agricultural University Thorvaldsensvej 40 DK-1871 Frederiksberg C, Denmark E-mail: vils@dina.kvl.dk

> Received May 13, 2002 Revised version March 31, 2003

(4945)