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Weighted norm inequalities for vector-valued
singular integrals on homogeneous spaces

by

Sergio Antonio Tozoni (Campinas)

Abstract. Let X be a homogeneous space and let E be a UMD Banach space with a
normalized unconditional basis (ej)j≥1. Given an operator T from L∞c (X) to L1(X), we

consider the vector-valued extension T̃ of T given by T̃ (
∑
j fjej) =

∑
j T (fj)ej . We prove

a weighted integral inequality for the vector-valued extension of the Hardy–Littlewood
maximal operator and a weighted Fefferman–Stein inequality between the vector-valued
extensions of the Hardy–Littlewood and the sharp maximal operators, in the context of
Orlicz spaces. We give sufficient conditions on the kernel of a singular integral operator to
have the boundedness of the vector-valued extension of this operator on Lp(X,Wdµ;E)
for 1 < p < ∞ and for a weight W in the Muckenhoupt class Ap(X). Applications to
singular integral operators on the unit sphere Sn and on a finite product of local fields
Kn are given. The versions of all these results for vector-valued extensions of operators on
functions defined on a homogeneous space X and with values in a UMD Banach lattice
are also given.

1. Introduction. The UMD property for Banach spaces plays a central
role in the development of vector-valued Fourier analysis. Although they
have been extensively studied (see e.g. [5, 3, 4, 21, 20, 11]), we point out
that all the maximal operators and singular integral operators considered in
these studies act on functions defined on the Euclidian space Rn or on the
torus Tn.

J. Bourgain [3] extended a result for vector-valued singular integral op-
erators due to Benedek, Calderón and Panzone [1] to the context of UMD
Banach spaces. The main goal of this paper is to prove a weighted extension
of the result of J. Bourgain for vector-valued singular integral operators of
functions defined on a homogeneous space (Theorem 1.4).

Let E be a Banach space with a normalized unconditional basis (ej)j≥1
and let S be the square function operator defined on martingales. Bour-
gain proved in [3] that the vector-valued extension S̃ of S, S̃(

∑
j fjej) =
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∑
j S(fj)ej, is bounded on Lp([0, 1], dt;E) if and only if E has the UMD

property. In our paper, the necessity of the UMD condition is stated as
Theorem 2.2 and it is a consequence of the above-mentioned result by Bour-
gain.

The main difficulty compared to the Euclidian situation is in the trans-
ference method given in Section 3, which allows us to get an integral estimate
between continuous maximal operators from harmonic analysis, using an in-
tegral estimate between dyadic maximal operators from martingale theory.
This method for the Euclidean space was introduced by C. Fefferman and
E. M. Stein in [8], when they proved the boundedness of a vector-valued ex-
tension of the Hardy–Littlewood maximal operator on Lp(Rn, dx; `q), using
the boundedness of a dyadic maximal operator on Lp([0, 1]n, dx; `q).

Several important singular integral operators on homogeneous spaces
were studied, e.g., in Coifman–Weiss [7], Korányi–Vági [16], Levine [17] and
Phillips–Taibleson [19]. We show that Theorem 1.4 can be applied to study
vector-valued extensions of several singular integral operators from these
works.

In Section 2 we study weighted integral estimates for vector-valued ex-
tensions of maximal operators from martingale theory in the context of
Orlicz spaces.

In Section 3 we apply the results of Section 2 to prove a weighted integral
inequality for a vector-valued extension of the Hardy–Littlewood maximal
operator (Theorem 1.1) and a weighted Fefferman–Stein inequality between
vector-valued extensions of the Hardy–Littlewood and the sharp maximal
operators (Theorem 1.2), in the context of Orlicz spaces.

In Section 4 we study singular integral operators. The proofs of Theorems
1.3, 1.4 and Corollary 1.1 are in Section 4.

In the present section we give the statements of the main results of this
paper.

Corollaries 1.1 and 1.2 are applications to vector-valued singular integral
operators on functions defined on the unit sphere Sn and on a finite product
of local fields Kn, respectively.

In Theorems 1.5–1.7 we consider vector-valued extensions of operators
for functions defined on a homogeneous space X and with values in a UMD
Banach lattice.

LetG be a locally compact Hausdorff topological group with unit element
e, H a compact subgroup of G, and π : G → G/H the canonical map. Let
dg denote a left Haar measure on G, which we assume to be normalized in
the case of G compact. If A is a Borel subset of G, we denote by |A| the
Haar measure of A. The homogeneous space X = G/H is the set of all left
cosets π(g) = gH, g ∈ G, provided with the quotient topology. The Haar
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measure dg induces a measure µ on the Borel σ-field on X. For f ∈ L1(X),
�

X

f(x) dµ(x) =
�

G

f ◦ π(g) dg.

The measure µ on X is invariant under the action of G, that is, if f ∈ L1(X),
g ∈ G and Rgf(x) = f(g−1x), then

�

X

f(x) dµ(x) =
�

X

Rgf(x) dµ(x).

A quasi-distance on X is a map d : X ×X → [0,∞) satisfying:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(gx, gy) = d(x, y) for all g ∈ G, x, y ∈ X;
(iv) there exists a constant η ≥ 1 such that for all x, y, z ∈ X,

d(x, y) ≤ η[d(x, z) + d(z, y)];

(v) the balls B(x, l) = {y ∈ X : d(x, y) < l}, x ∈ X, l > 0, are
relatively compact and measurable, and the balls B( � , l), l > 0, form a basis
of neighborhoods of � = π(e);

(vi) (doubling condition) there exists a constant A ≥ 1 such that for all
l > 0 and x ∈ X,

µ(B(x, 2l)) ≤ Aµ(B(x, l)).

Given a quasi-distance d on X, there exists a distance % on X and a
positive real number γ such that d is equivalent to %γ (see [18]). Therefore
the family of d-balls is equivalent to the family of %γ-balls, and %γ-balls are
open sets. We can show that µ(B(x, l)) > 0 for x ∈ X, l > 0, and that X is
separable.

In this paper X will denote a homogeneous space provided with a quasi-
distance d.

Given a Banach space E with norm ‖ · ‖ and a positive locally integrable
function W on X, we denote by Lp(X,Wdµ;E) or LpE(W ), 1 ≤ p <∞, the
Bochner–Lebesgue space consisting of all E-valued (strongly) measurable
functions f defined on X such that

‖f‖LpE(W ) =
( �

X

‖f(x)‖pW (x) dµ(x)
)1/p

<∞.

We write LpE(W ) = Lp(W ) when E = R, and LpE(W ) = LpE(X) = LpE when
W = 1. For the definition of the UMD property of a Banach space see e.g.
[5, 3, 4, 21].

We say that a non-decreasing real-valued continuous function Φ on [0,∞)
with Φ(0) = 0 satisfies the 42-condition if there exists a constant c > 0 such
that
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Φ(2λ) ≤ cΦ(λ), λ > 0.(1.1)

We put Φ(∞) = limλ→∞ Φ(λ).
Let W be a positive locally integrable function on X and let 1 < p <∞.

If there exists a constant C such that(
1

µ(B)

�

B

W dµ
)( 1

µ(B)

�

B

W−1/(p−1) dµ
)p−1

≤ C(1.2)

for all balls B = B(x, l), l > 0, x ∈ X, we say that W is a weight in
the Muckenhoupt class Ap(X). If W ∈ Ap(X), we denote by C(p,W ) the
smallest constant C that satisfies (1.2). The class A∞(X) is defined as the
union of the classes Ap(X) for 1 < p <∞. In Remark 3.1 we prove that for
p1, p2 ∈ X and 0 < γ1, γ2 < 1 the weight

W (x) =
(µ(B( � , d(p2, x))))γ2(p−1)

(µ(B( � , d(p1, x))))γ1

is in the class Ap(X).
Let f be a real-valued locally integrable function on X. The Hardy–

Littlewood maximal operator M and the sharp maximal operator M ] are
defined at f by

Mf(x) = sup
B

1
µ(B)

�

B

|f(y)| dµ(y),

M ]f(x) = sup
B

1
µ(B)

�

B

|f(y)− fB | dµ(y),

where
fB =

1
µ(B)

�

B

f(y) dµ

and the suprema are taken over all balls B such that x ∈ B.
The following theorem extends results for the Hardy–Littlewood maxi-

mal operator given in [8, 3, 26].

Theorem 1.1. Let E be a Banach space with the UMD property and with
a normalized unconditional basis (ej)j≥1, let Φ be a non-decreasing convex
function on [0,∞) with Φ(0) = 0 and satisfying the 42-condition, and let
W ∈ A∞(X). Then there exists a constant C, depending only on E, Φ, X
and W , such that

�

X

Φ
(

sup
k≥1

∥∥∥
k∑

j=1

Mfjej

∥∥∥
)
W dµ ≤ C

�

X

Φ(M(‖f‖))W dµ(1.3)

for all f =
∑

j fjej ∈ L1
E. Moreover , if 1 < p < ∞, W ∈ Ap(X) and

f ∈ LpE(W ), then
∑

jMfjej converges in LpE(W ) to a function M̃f and the

operator M̃ is bounded on LpE(W ).
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There is an intimate relation between the Hardy–Littlewood maximal
operator and the sharp maximal operator. This relation is contained in the
inequality ‖Mf‖p ≤ C‖M ]f‖p, f ∈ Lp0(Rn), 0 < p0 ≤ p < ∞. This in-
equality is known as the Fefferman–Stein inequality and it was proved in
[9]. A weighted extension of this inequality and an unweighted extension for
functions defined on a space of homogeneous type (in particular on a ho-
mogeneous space) are well known. The following theorem gives a weighted
vector-valued extension of the Fefferman–Stein inequality for functions de-
fined on a homogeneous space X.

Theorem 1.2. Let E be a Banach space with the UMD property and
with a normalized unconditional basis (ej)j≥1, let Φ be a non-decreasing
convex function on [0,∞) with Φ(0) = 0 and satisfying the 42-condition,
and let W ∈ A∞(X). Then there exists a constant C, depending only on E,
Φ, X and W , such that for all f =

∑
j fjej ∈

⋃
p>1 L

p
E ,

�

X

Φ
(∥∥∥

∞∑

j=1

Mfjej

∥∥∥
)
W dµ ≤ C

�

X

Φ
(∥∥∥

∞∑

j=1

M ]fjej

∥∥∥
)
W dµ.(1.4)

We say that a linear operator T defined on L∞c (X) and with values in
the space of all measurable functions, is a singular integral operator if the
following conditions hold:

(i) T has a bounded extension on Lr(X) for some r, 1 < r ≤ ∞;
(ii) there exists a kernel K ∈ L1

loc(X × X \ 4), 4 = {(x, x) : x ∈ X},
such that

Tf(x) =
�

X

K(x, y)f(y) dµ(y)

for all f ∈ L∞c (X) and almost all x 6∈ supp f .

Let T be a singular integral operator with a kernel K. We say that K
satisfies the condition (H∞) if

|K(x, y)−K(x, � )| ≤ C d(y, � )
d(x, � )µ(B( � , d(x, � ))

whenever d(x, � ) > 2d(y, � ), � = π(e). If K ′(x, y) = K(y, x) satisfies (H∞)
we say that K satisfies (H ′∞).

The following theorem is proved in Section 4.

Theorem 1.3. Let E be a Banach space with the UMD property and
with a normalized unconditional basis (ej)j≥1. Let 1 < p <∞, W ∈ Ap(X),
and let (Tj)j≥1 be a sequence of operators from Lp(W ) to Lp(W ) such that
for every r > 1 there exists a constant Cr such that

M ](Tjf)(x) ≤ CrMrf(x), f ∈ L∞c (X), j ≥ 1.(1.5)
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Then for all f =
∑

j fjej ∈ LpE(W ) the series
∑

j Tjfjej converges in
LpE(W ) and there exists a positive constant Cp such that

∥∥∥
∞∑

j=1

Tjfjej

∥∥∥
LpE(W )

≤ Cp
∥∥∥
∞∑

j=1

fjej

∥∥∥
LpE(W )

.(1.6)

It is easy to see that the condition (H∞) for the kernel K of a singular
integral operator implies Hörmander’s condition (H1):

�

d(x, � )>2d(y, � )

|K(x, y)−K(x, � )| dµ(x) ≤ C <∞.

Hörmander’s condition was studied by R. R. Coifman and G. Weiss [7],
A. Korányi and S. Vági [16] and B. Bordin and D. L. Fernandez [2]. It
was proved that if the kernel K satisfies (H1) and (H ′1), then the singular
integral operator is bounded on Lp(X) for 1 < p < ∞. The next result
follows immediately from Lemma 4.2 in Section 4 and Theorem 1.3.

Theorem 1.4. Let E be a Banach space with the UMD property and
with a normalized unconditional basis (ej)j≥1. Let 1 < p <∞, W ∈ Ap(X),
and let T be a singular integral operator. Assume that the kernel K of T
satisfies (H∞), (H ′∞) and K(gx, gy) = K(x, y) for all x, y ∈ X, g ∈ G. Then
for all f =

∑
j fjej ∈ L

p
E(W ) the series

∑
j Tfjej converges in LpE(W ) and

there exists a positive constant Cp such that

∥∥∥
∞∑

j=1

Tfjej

∥∥∥
LpE(W )

≤ Cp
∥∥∥
∞∑

j=1

fjej

∥∥∥
LpE(W )

.(1.7)

Theorem 1.4 for the Euclidian space Rn and W = 1 was proved by
Bourgain [3]; it was also studied in [21]. For W = 1 and E = `q, 1 < q <∞,
but for more general spacesX (of homogeneous type) it was proved in [2, 22].
Theorem 1.3 for X = Rn and W = 1 was proved in [21].

Let us consider the unit sphere Sn = {x ∈ Rn+1 : |x| = 1} provided with
the Lebesgue measure dσ and with the Euclidian distance d(x, y) = |x− y|
and let � = (1, 0, . . . , 0). Given p1, p2 ∈ Sn and 0 < γ1, γ2 < 1, the weight
W (x) = |p2 − x|nγ2(p−1)|p1 − x|−nγ1 is in the class Ap(Sn).

A kernel K ∈ L1
loc(S

n × Sn \ 4) satisfies the condition (H∞) if there
exists a constant C such that for x, y ∈ Sn with |x− � | > 2|y − � | we have

|K(x, y)−K(x, � )| ≤ C |y − � |
|x− � |n+1 .

For 0 ≤ r ≤ 1, i, j ∈ {1, . . . , n + 1} and x, y ∈ Sn (x 6= y for r = 1), we
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define the kernels sr, tr, Kr
i,j and K by

sr(x, y) =
2
ωn

y − (y · x)x
|y − rx|n+1 ,

tr(x, y) =
n− 2

2r

r�

0

s%(x, y) d%,

Kr
i,j(x, y) =

xiyj − xjyi
|y − rx|n+1 ,

K(x, y) = −
1�

0

Pr(x, y) dr,

where Pr(x, y) denotes the Poisson kernel

Pr(x, y) =
1
ωn

1− r2

|y − rx|n+1 .

Let qr = sr + tr, 0 ≤ r ≤ 1. For f ∈ L∞(Sn) we define the operators Rr,
Rri,j , 0 ≤ r ≤ 1 and i, j ∈ {1, . . . , n+ 1}, and Λ by

Rrf(x) =
�

Sn

qr(x, y)f(y) dσ(y),

Rri,jf(x) =
�

Sn

Kr
i,j(x, y)f(y) dσ(y),

Λf(x) =
�

Sn

K(x, y)f(y) dσ(y),

with x ∈ Sn if 0 ≤ r < 1 and x 6∈ supp f if r = 1.
The operator R = R1 is called the Riesz transform on Sn and it was

proved in Korányi–Vági [16, p. 636] that: limr→1Rrf = Rf exists a.e. and
in Lp(Sn), 1 < p <∞; the operators Rr are uniformly bounded on Lp(Sn),
and qr(gx, gy) = qr(x, y) for all x, y ∈ Sn, g ∈ SO(n+1). The operators Rri,j
were considered in Coifman–Weiss [7, p. 76]. They are uniformly bounded
on L2(Sn) and Kr

i,j(gx, gy) = Kr
i,j(x, y) for all x, y ∈ Sn, g ∈ SO(n + 1).

The operator Λ was studied in Levine [17, p. 508], where it was proved that:
it is bounded on Lp(Sn) for 1 ≤ p ≤ ∞; if Yk is a spherical harmonic of
degree k then ΛYk = −Yk/(k+1), and K(gx, gy) = K(x, y) for all x, y ∈ Sn,
g ∈ SO(n+ 1).

In Section 4 we prove the following result.

Corollary 1.1. Let E be a Banach space with the UMD property and
with a normalized unconditional basis (ej)j≥1. Let 1 < p <∞, W ∈ Ap(Sn)
and T ∈ {Rr, Rri,j , Λ : 0 ≤ r ≤ 1, 1 ≤ i, j ≤ n + 1}. Then there exists a
constant Cp such that

∥∥∥
∞∑

j=1

Tfjej

∥∥∥
LpE(W )

≤ Cp
∥∥∥
∞∑

j=1

fjej

∥∥∥
LpE(W )

(1.8)

for all f =
∑

j fjej ∈ Lp(Sn,Wdσ;E).
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A local field is any locally compact, non-discrete and totally disconnected
field. Let K be a fixed local field and dx be a Haar measure on the additive
group K+ of K. The measure of a measurable set A of K with respect
to dx is denoted by |A|. Let m be the modular function for K+, that is,
m(λ)|A| = |λA| for λ ∈ K and A ⊂ K measurable. We also write |x| = m(x).
The sets

D = {x ∈ K : |x| ≤ 1} and B = {x ∈ K : |x| < 1}
are the ring of integers of K and the unique maximal ideal of D, respectively.
Let q = pc (p prime) be the order of the finite field D/B and let π be a fixed
element of B of maximum absolute value. The Haar measure dx is normalized
so that |D| = 1 and thus |π| = |B| = q−1.

A local field K has a natural sequence of partitions into balls satisfying
conditions (i) and (ii) of Lemma 3.1 in Section 3, when we consider the
distance d(x, y) = |x−y|. It follows that Theorems 1.1 and 1.2 hold without
the hypothesis of Φ being a convex function. The extension of these results
to a finite product of local fields is an immediate consequence of a theorem of
M. H. Taibleson (see [24, pp. 548–549]). Given p1, p2 ∈ K and 0 < γ1, γ2 < 1,
the weight W (x) = |p2 − x|nγ2(p−1)|p1 − x|−nγ1 is in the class Ap(K).

A kernel K ∈ L1
loc(Kn × Kn \ 4) satisfies the condition (H∞) if for

x, y ∈ Kn with |x| > |y| we have

|K(x, y)−K(x, 0)| ≤ C |y|
|x|n+1 .

Let ω(x) be a function defined on Kn and satisfying:

ω(x) = ω(πjx), j integer, x ∈ Kn;
�

|x|=1

ω(x) dx = 0;

|ω(x− πjy)− ω(x)| ≤ Cq−j, j ≥ 1, |x| = |y| = 1.

Then the kernel Ψ(x, y) = Ψ(x− y), where

Ψ(x) =
ω(x)
|x|n , x ∈ Kn \ {0},

satisfies (H∞) and (H ′∞). For f ∈ L∞(Kn) and x ∈ Kn, x 6∈ supp f , we
define

Uf(x) =
�

Kn
Ψ(x− y)f(y) dy.

The operator U was studied in Phillips–Taibleson [19] and it was proved
that U is bounded on Lp(Kn) for 1 < p < ∞. Therefore the next corollary
follows from Theorem 1.4.
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Corollary 1.2. Let E be a Banach space with the UMD property and
with a normalized unconditional basis (ej)j≥1. Let 1 < p < ∞ and W ∈
Ap(Kn). Then there exists a constant Cp such that

∥∥∥
∞∑

j=1

Ufjej

∥∥∥
LpE(W )

≤ Cp
∥∥∥
∞∑

j=1

fjej

∥∥∥
LpE(W )

(1.9)

for all f =
∑

j fjej ∈ Lp(Kn,Wdy;E).

Now let E be a Banach lattice of real-valued measurable functions on
a σ-finite measure space (Y,B, ν). The absolute value of h ∈ E is given by
|h|(y) = |h(y)|, y ∈ Y . We identify a function f ∈ LpE(W ) with a function
defined on the product X × Y by setting f(x)(y) = f(x, y). We denote by
Lp(W )⊗E the set of all vector-valued functions f of the type f =

∑k
j=1 ajfj

for aj ∈ E, fj ∈ Lp(W ) and for some integer k ≥ 1. This set is a dense
subspace of LpE(W ) for 1 ≤ p < ∞ and any weight W . Given an operator
T in Lp(W ), we define its extension T to Lp(W )⊗E (see Rubio de Francia
[20]) by

Tf(x, y) = T (f(·, y))(x), (x, y) ∈ X × Y.
A characterization of UMD Banach lattices in terms of the extension M
of the Hardy–Littlewood maximal operator, when X = Rn, was given by
Bourgain [3] (see also [20]). Bourgain’s characterization says that E has the
UMD property if and only if M is bounded on LpE(Rn) and on Lp

′
E′(R

n) for
some p, 1 < p < ∞, where p′ is the conjugate exponent of p and E ′ is the
dual space of E. The maximal operator M and other maximal operators
of the same type were studied in [11, 14, 12] for X = Rn. In [11] new
characterizations of UMD Banach lattices in terms of maximal operators
are given.

In Section 2 we consider the maximal operators Nf = f ∗ and N ]f =
f ] from martingale theory and their vectorial extensions Ñ(

∑
j fjej) =∑

j f
∗
j ej, Ñ

](
∑

j fjej) =
∑

j f
]
j ej . The analogue of Theorem 2.4 for the

operator N was proved in [26]. In the same way we can prove the analogue
of Theorem 2.7 for the operators N and N ]. Proceeding as in Section 3,
we can apply the inequalities obtained for N and N ] to prove the following
theorems.

Theorem 1.5. Let E be a Banach lattice of real-valued measurable func-
tions with the UMD property , let Φ be a non-decreasing convex function on
[0,∞) with Φ(0) = 0 and satisfying the 42-condition, and let W ∈ A∞(X).
Then there exists a constant C, depending only on E, Φ, X and W , such
that for all f ∈ L1(W )⊗E,

�

X

Φ(‖Mf‖)W dµ ≤ C
�

X

Φ(M(‖f‖))W dµ.(1.10)
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Theorem 1.6. Let E be a Banach lattice of real-valued measurable func-
tions with the UMD property , let Φ be a non-decreasing convex function on
[0,∞) with Φ(0) = 0 and satisfying the 42-condition, and let W ∈ A∞(X).
Then there exists a constant C, depending only on E, Φ, X and W , such
that for all f ∈ L1(W )⊗E,

�

X

Φ(‖Mf‖)W dµ ≤ C
�

X

Φ(‖M ]f‖)W dµ.(1.11)

If Φ(t) = tp, 1 < p < ∞, then we can extend the operators M and M ]

by a limit process to all LpE(W ) and the above theorems will hold for these
extensions. Proceeding as in Section 4 we can apply Theorems 1.5 and 1.6
to prove the following analogue of Theorem 1.4 for Banach lattices.

Theorem 1.7. Let E be a Banach lattice of real-valued measurable func-
tions with the UMD property , let 1 < p < ∞, W ∈ Ap(X), and let T be a
singular integral operator. Assume that the kernel K of T satisfies (H∞),
(H ′∞) and K(gx, gy) = K(x, y) for all x, y ∈ X, g ∈ G. Then there exists a
positive constant Cp such that for all f ∈ Lp(W )⊗ E,

‖Tf‖LpE(W ) ≤ Cp‖f‖LpE(W ).(1.12)

Moreover , the operator T can be continuously extended to all LpE(W ) and
the above inequality holds for that extension and for all f ∈ LpE(W ).

Applying Theorem 1.7 we obtain the analogues of Corollaries 1.1 and
1.2 for the case of UMD Banach lattices.

2. Maximal operators in martingale theory. Let (Ω,F ,P) be a
probability space and for each k = 0, 1, 2, . . . let Ak be a partition of Ω into
elements of F satisfying: P(Q) > 0 for all Q ∈ Ak; the σ-field F is generated
by the union A =

⋃∞
k=0Ak; the partition Ak+1 is a refinement of Ak, that

is, for each Q ∈ Ak, there exists an integer nQ ≥ 1 and Q1, . . . , QnQ ∈ Ak+1
such that Q = Q1 ∪ . . . ∪ QnQ . We will denote by Fk the σ-field generated
by Ak and we will always assume that the sequence (Ak)k≥0 is regular with
respect to P, that is, there exists an absolute constant θ ≥ 1 such that

P(Q1) ≤ θP(Q2)(2.1)

for all Q1 ∈ Ak and Q2 ∈ Ak+1 with Q2 ⊂ Q1, k ≥ 0.
Given an E-valued integrable function f : Ω → E we will also denote by

f the martingale (fk)k≥0, where fk = E[f | Fk] is the conditional expectation
of the function f with respect to the σ-field Fk. A stopping time is a function
T : Ω → {0, 1, . . . ,∞} such that {T ≤ k} ∈ Fk for all k ≥ 0. For a stopping
time T we denote by FT the σ-field of all sets A∈F such that A∩{T ≤k}
∈ Fk for all k ≥ 0. The martingale transform “f stopped at T” is defined
by fT = (fTk )k≥0, fTk (ω) = fT (ω)∧k(ω), and we write fT (ω) = fT (ω)(ω). We
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can show that

E[I(A){f − fT } |Fk] = I(A)(fk − fTk )(2.2)

for all integrable functions f : Ω → E, all stopping times T , all k ≥ 0 and
all A ∈ FT , where I(A) is the indicator function of the set A.

For a real-valued integrable function f we define the maximal functions

f∗(x) = sup
k≥0
|fk(x)| = sup

x∈Q
Q∈A

1
P(Q)

∣∣∣
�

Q

f dP
∣∣∣,

f ](x) = sup
k≥0

E[|f − fk| | Fk](x) = sup
x∈Q
Q∈A

1
P(Q)

�

Q

|f − fQ| dP,

where
fQ =

1
P(Q)

�

Q

f dP.

For an integer n ≥ 0 we define f ∗n = (fn)∗, f ]n = (fn)].
It is well known (see [10]) that

‖f∗‖p ≤ Cp‖f ]‖p, 1 < p <∞, f ∈ Lp(Ω,F ,P).(2.3)

We can prove (2.3) using the method known as the Calderón–Zygmund
decomposition (see [9, Theorem 5, p. 153]), replacing the dyadic cubes of
Rn by the elements of A.

Given a positive integrable function W on Ω, we denote by Lp(Ω,F ,
WdP;E) or LpE(W ), 1 ≤ p <∞, the Bochner–Lebesgue space consisting of
all E-valued (strongly) measurable functions f defined on Ω such that

‖f‖LpE(W ) =
( �

Ω

‖f(ω)‖pW (ω) dP(ω)
)1/p

<∞.

We write LpE(W ) = Lp(W ) when E = R, and LpE(W ) = LpE(Ω) = LpE when
W = 1.

Let W be a positive integrable function on Ω and let 1 < p <∞. If there
exists a constant C such that(

1
P(Q)

�

Q

W dP
)(

1
P(Q)

�

Q

W−1/(p−1) dP
)(p−1)

≤ C(2.4)

for all Q ∈ A, we say that W is a weight in the class Ap(A). The class
A∞(A) is defined as the union of Ap(A) for 1 < p <∞.

Let U be an operator on L1
E which to each f ∈ L1

E associates a non-
negative process (Ukf)k≥0 with U0f = 0 and Ukf Fk-measurable, k ≥ 0.
For a stopping time T we denote by U ∗T the maximal operator defined by

U∗T f(ω) = sup
k≤T (ω)

Ukf(ω).

We write U∗f = U∗∞f .
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Theorem 2.1 ([25]). Let W ∈ A∞(A) and let U and V be two operators
on L1

E as above. Suppose that

U∗T∧Sf = U∗T f
S , V ∗T∧Sf = V ∗T f

S

for all stopping times T and S and all f ∈ L1
E. If there exists a constant C

such that
E[{U∗kf − U∗T∧kf}2 | FT ] ≤ CE[{V ∗k f}2 | |FT ]

for all k ≥ 1, all stopping times T and all f ∈ L1
E , then there exists a

constant C such that
�

Ω

Φ(U∗f)W dP ≤ C
�

Ω

Φ(V ∗f)W dP

for all f ∈ L1
E. The constant C depends only on W , θ, Φ and E, where θ is

the constant in (2.1).

Theorem 2.2 ([26]). Let E be a Banach space with the UMD property
and with a normalized unconditional basis (ej)j≥1. Let U and V be two
operators which to each real-valued integrable function on Ω associate non-
negative F-measurable functions. Suppose that for any Z ∈ A∞(A) there
exists a constant CZ , depending only on Z, such that

�

Ω

U(h)Z dP ≤ CZ
�

Ω

V (h)Z dP

for all h ∈ ⋃∞k=0L
1(Ω,Fk,P). Then for all 1 < p < ∞ there exists a

constant Cp such that

∥∥∥
∞∑

j=1

Ufjej

∥∥∥
LpE

≤ Cp
∥∥∥
∞∑

j=1

V fjej

∥∥∥
LpE

for all f =
∑

j fjej ∈
⋃∞
k=0 L

p(Ω,Fk,P;E).

Theorem 2.3 ([15]). Let W be a positive integrable function and let 1 <
p <∞. Then W ∈ Ap(A) if and only if the operator f 7→ f ∗ is bounded on
Lp(W ).

Theorem 2.4 ([26]). Let E be a Banach space with the UMD property
and with a normalized unconditional basis (ej)j≥1, let Φ be a non-decreasing
continuous function on [0,∞) with Φ(0) = 0 and satisfying the 42-condition,
and let W ∈ A∞(A). Then there exists a constant C, depending only on E,
Φ and W , such that for all f =

∑
j fjej ∈ L1

E ,

�

Ω

Φ
(

sup
k≥1

∥∥∥
k∑

j=1

f∗j ej
∥∥∥
)
W dP ≤ C

�

Ω

Φ(‖f‖∗)W dP.(2.5)
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Lemma 2.1. There exists an absolute constant C such that for all stop-
ping times T , all f ∈ L1(Ω,F ,P) and all integers n ≥ 0,

E[{(f − fT )∗n}2 | FT ] ≤ CE[{(f − fT )]n}2 | FT ].(2.6)

Proof. Fix T , f , n and A ∈ FT and consider the martingale g = (gk)k≥0,
gk = E[I(A){fn − fT∧n} |Fk]. From (2.2) it follows that

gk = I(A)(fnk − fT∧nk )

and hence

g∗n = I(A)(f − fT )∗n(2.7)

and
|gn − gk| = I(A)|(f − fT )n − (f − fT )k|, 1 ≤ k ≤ n.

Since A ∩ {T ≤ k} ∈ Fk we have

E[|gn − gk| |Fk] = E[I(A ∩ {T ≤ k})|(f − fT )n − (f − fT )k| | Fk]
+ E[I(A ∩ {T > k})|(f − fT )n − (f − fT )k| | Fk]

= I(A)E[|(f − fT )n − (f − fT )k| | Fk]
and hence

g]n = I(A)(f − fT )]n.(2.8)

Then from (2.7), (2.8) and (2.3) for p = 2 we obtain
�

A

{(f − fT )∗n}2dP = ‖g∗n‖2 ≤ C‖g]n‖2 = C
�

A

{(f − fT )]n}2 dP.

Since the above inequality is true for all A ∈ FT , we obtain (2.6).

Theorem 2.5. Let Φ be a non-decreasing continuous function on [0,∞)
with Φ(0) = 0 and satisfying the 42-condition. If W ∈ A∞(A) then there
exists a constant C such that�

Ω

Φ(f∗)W dP ≤ C
�

Ω

Φ(f ])W dP(2.9)

for all f ∈ L1(Ω,F ,P). The constant C depends only on W , θ and Φ, where
θ is the constant in (2.1).

Proof. Fix f ∈ L1, a stopping time T and an integer n ≥ 0. Since g 7→ g∗

and g 7→ g] are sublinear, we have

0 ≤ f∗n − f∗T∧n ≤ (f − fT )∗n,(2.10)

(f − fT )]n ≤ f ]n + f ]T∧n ≤ 2f ]n.(2.11)

Therefore by (2.6),

E[{f∗n − f∗T∧n}2 | FT ] ≤ E[{(f − fT )∗n}2 | FT ] ≤ CE[{(f − fT )]n}2 | FT ]

≤ 4CE[{f ]n}2 | FT ].
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It is easy to see that f∗T∧S = (fS)∗T and f ]T∧S = (fS)]T for all stopping times
T and S. Then applying Theorem 2.1 we obtain (2.9).

Theorem 2.6. Let E be a Banach space with the UMD property and
with a normalized unconditional basis (ej)j≥1, and let 1 < p < ∞. If f =∑

j fjej ∈ L
p
E then

∑
j f
∗
j ej and

∑
j f

]
j ej converge in LpE and

∥∥∥
∞∑

j=1

f∗j ej
∥∥∥
LpE

≤ Cp
∥∥∥
∞∑

j=1

f ]j ej

∥∥∥
LpE

,(2.12)

where Cp is a constant depending only on p, θ and E.

Proof. Let Φ(t) = t and Z ∈ A∞(A). Then by Theorem 2.5 there exists
a constant CZ such that

�

Ω

f∗ZdP ≤ CZ
�

Ω

f ]Z dP

for all f ∈ L1(Ω,F ,P). Therefore, from Theorem 2.2 there exists a constant
Cp, depending only on p, θ and E, such that (2.12) is true for all f ∈⋃∞
k=0 L

p(Ω,Fk,P;E).
Theorem 2.4 for Φ(t) = tp and W = 1 and Theorem 2.3 show that

the operator Ñ(
∑

j fjej) =
∑

j f
∗
j ej is well defined and bounded on LpE .

Since f ]j ≤ 2f∗j , the operator Ñ ](
∑

j fjej) =
∑

j f
]
j ej is also well defined

and bounded on LpE . But
⋃∞
k=0 L

p(Ω,Fk,P;E) is dense in LpE and hence we
obtain (2.12) for all f ∈ LpE.

Theorem 2.7. Let E be a Banach space with the UMD property and
with a normalized unconditional basis (ej)j≥1, let Φ be a non-decreasing con-
tinuous function on [0,∞) with Φ(0) = 0 and satisfying the 42-condition,
and let W ∈ A∞(A). Then there exists a constant C, depending only on W ,
θ, Φ and E, such that for all f =

∑
j fjej ∈

⋃
p>1 L

p
E ,

�

Ω

Φ
(∥∥∥

∞∑

j=1

f∗j ej
∥∥∥
)
W dP ≤ C

�

Ω

Φ
(∥∥∥

∞∑

j=1

f ]j ej

∥∥∥
)
W dP.(2.13)

Proof. We observe thatE is a Banach lattice with absolute value |∑jxjej |
=
∑

j |xj |ej.
Let 1 < p < ∞ and f =

∑
j fjej ∈ L

p
E . By the proof of Theorem 2.6,

Ñf =
∑

j f
∗
j ej and Ñ ]f =

∑
j f

]
jej are well defined as functions in LpE .

We define Uf = ‖Ñf‖, V f = ‖Ñ ]f‖ and Unf = U(E[f | Fn]), Vnf =
V (E[f | Fn]). Since (Unf)n≥0 is an increasing sequence and Unf → Uf in
Lp as n→∞, it follows that U∗f = supn≥0 Unf = Uf . In the same way we
show V ∗f = V f .
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If T is a stopping time, we deduce from (2.12) for p = 2, as in the proof
of Lemma 2.1, that there exists a constant C, independent of f , T and n,
such that

E[U2
n(f − fT ) | FT ] ≤ CE[V 2

n (f − fT ) | FT ].

From the inequalities (2.10) and (2.11) we obtain

|Unf − UT∧nf | ≤ Un(f − fT ), Vn(f − fT ) ≤ 2Vnf

and hence
E[{Unf − UT∧nf}2 | FT ] ≤ 4CE[V 2

n f | FT ].

Now, since (fj)∗T∧S = (fSj )∗T and (fj)
]
T∧S = (fSj )]T , it follows that UT∧Sf =

UT f
S and VT∧Sf = VT f

S for all stopping times T and S. Therefore we can
apply Theorem 2.1 to obtain (2.13).

3. Maximal operators on homogeneous spaces

Lemma 3.1 ([23, Lemma 3.21, p. 852]). Let b be a positive integer and
let λ = 8η5. Then for each integer k with −b ≤ k ≤ b, there exist an
enumerable Borel partition Abk of X and a positive constant C, depending
only on X, such that :

(i) for all Q ∈ Abk with −b ≤ k ≤ b, there exists xQ ∈ Q such that
B(xQ, λk) ⊂ Q ⊂ B(xQ, λk+1) and µ(B(xQ, λk+1)) ≤ Cµ(Q);

(ii) if −b ≤ k < b, Q1 ∈ Abk+1, Q2 ∈ Abk and Q1∩Q2 6= ∅, then Q2 ⊂ Q1

and 0 < µ(Q1) ≤ Cµ(Q2).

For a real-valued locally integrable function f on X we define

M b
df(x) = sup

x∈Q
Q∈Ab

1
µ(Q)

�

Q

|f(y)| dµ(y),

M b,]
d f(x) = sup

x∈Q
Q∈Ab

1
µ(Q)

�

Q

|f(y)− fQ| dµ(y),

M bf(x) = sup
B

1
µ(B)

�

B

|f(y)| dµ(y),

M b,]f(x) = sup
B

1
µ(B)

�

B

|f(y)− fB | dµ(y),

where the last two suprema are taken over all balls B = B(a, r) such that
x ∈ B and λ−b−1 ≤ r < λb, and Ab =

⋃
−b≤k≤bAbk.

Lemma 3.2. Let E be a Banach space with the UMD property and with a
normalized unconditional basis (ej)j≥1, let Φ be a non-decreasing continuous
function on [0,∞) with Φ(0) = 0 and satisfying the 42-condition, and let
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W ∈ A∞(Ab). Then there exists a constant C, depending only on E, Φ, X
and W , such that for all f =

∑
j fjej ∈ L1

E ,

�

X

Φ
(

sup
k≥1

∥∥∥
k∑

j=1

M b
dfjej

∥∥∥
)
W dµ ≤ C

�

X

Φ(M b
d(‖f‖))W dµ.(3.1)

Proof. Let Abb = {Qbi : i ∈ Ib}, Ib ⊂ N, and consider the probability
measure µbi on the Borel subsets of Qb

i given by µbi(A) = µ(A)/µ(Qbi). Given
f =

∑
j fjej ∈ L1

E we have M b
dfj(x) = (|fj||Qbi )

∗(x) for x ∈ Qbi , and hence
by Lemma 3.1(ii) and Theorem 2.4,

�

X

Φ
(

sup
k≥1

∥∥∥
k∑

j=1

M b
dfj(x)ej

∥∥∥
)
W (x) dµ(x)

=
∑

i∈Ib
µ(Qbi)

�

Qbi

Φ
(

sup
k≥1

∥∥∥
k∑

j=1

(|fj||Qbi )
∗(x)ej

∥∥∥
)
W|Qbi (x) dµbi(x)

≤ C
�

X

Φ(M b
d(‖f‖)(x))W (x) dµ(x).

Lemma 3.3. Let E be a Banach space with the UMD property and with a
normalized unconditional basis (ej)j≥1, let Φ be a non-decreasing continuous
function on [0,∞) with Φ(0) = 0 and satisfying the 42-condition, and let
W ∈ A∞(Ab). Then there exists a constant C, depending only on E, Φ, X
and W , such that for all f =

∑
j fjej ∈

⋃
p>1 L

p
E ,

�

X

Φ
(∥∥∥

∞∑

j=1

M b
dfjej

∥∥∥
)
W dµ ≤ C

�

X

Φ
(∥∥∥

∞∑

j=1

M b,]
d fjej

∥∥∥
)
W dµ.(3.2)

Proof. Let µbi , i ∈ Ib, be as in the proof of Theorem 3.1. Given f =∑
j fjej ∈

⋃
p>1 L

p
E we have M b

dfj(x) = (|fj ||Qbi )
∗(x) for x ∈ Qbi , and

M b,]
d (|fj|)(x) ≤ 2M b,]

d fj(x) for x ∈ X. Therefore by Lemma 3.1(ii) and
Theorem 2.7,

�

X

Φ
(∥∥∥

∞∑

j=1

M b
dfj(x)ej

∥∥∥
)
W (x) dµ(x)

=
∑

i∈Ib
µ(Qbi)

�

Qbi

Φ
(∥∥∥

∞∑

j=1

(|fj ||Qbi )
∗(x)ej

∥∥∥
)
W|Qbi (x) dµbi(x)

≤ C
∑

i∈Ib
µ(Qbi)

�

Qbi

Φ
(∥∥∥

∞∑

j=1

(|fj ||Qbi )
](x)ej

∥∥∥
)
W|Qbi (x) dµbi(x)
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= C
�

X

Φ
(∥∥∥

∞∑

j=1

M b,]
d (|fj |)(x)ej

∥∥∥
)
W (x) dµ(x)

≤ C ′
�

X

Φ
(∥∥∥

∞∑

j=1

M b,]
d fj(x)ej

∥∥∥
)
W (x) dµ(x).

Lemma 3.4. Let C be the constant in Lemma 3.1. Then, for all 1 < p
≤ ∞, all real-valued locally integrable functions f , and all x ∈ X, we have

Ap(X) ⊂ Ap(Ab),(3.3)

M b
df(x) ≤ CM bf(x),(3.4)

M b,]
d f(x) ≤ 2CM b,]f(x).(3.5)

Proof. Let 1 < p <∞, W ∈ Ap(X), Q ∈ Abk, −b ≤ k ≤ b and x ∈ Q. By
Lemma 3.1(i) there exist xQ ∈ Q and C > 0 such that Q ⊂ B = B(xQ, λk+1)
and µ(B) ≤ Cµ(Q). Therefore (1.2) implies that

(
1

µ(Q)

�

Q

W dµ

)(
1

µ(Q)

�

Q

W−1/(p−1) dµ

)p−1

≤ CpC(p,W ).

Now for a real-valued locally integrable function f we have
1

µ(Q)

�

Q

|f(y)| dµ(y) ≤ C

µ(B)

�

B

|f(y)| dµ(y)

and
1

µ(Q)

�

Q

|f(y)− fQ|dµ(y) ≤ 1
µ(Q)

�

Q

|f(y)− fB| dµ(y) + |fB − fQ|

≤ 2C
µ(B)

�

B

|f(y)− fB| dµ(y) ≤ 2CM ]f(x).

Thus we obtain (3.3)–(3.5).

Lemma 3.5. Let b be a positive integer. Then there exists a constant C,
depending only on X , such that for all real-valued locally integrable functions
f on X and all x ∈ B( � , λb), � = π(e), we have

M bf(x) ≤ C

|Gb|
�

Gb
M b,g
d f(x)dg,(3.6)

where
Gb = {g ∈ G : d(g � , � ) < λb+3}

and M b,g
d f(x) = Rg−1M b

dRgf(x), g ∈ G, x ∈ X.

Proof. First we observe that |Gb| = µ(B( � , λb+3)) > 0. Fix x ∈ B( � , λb).
From the definition of M bf(x), there exists a ball B = B(a, r) such that
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x ∈ B, λ−b−1 ≤ r < λb and

M bf(x) ≤ 2
µ(B)

�

B

|f(y)| dµ(y).(3.7)

Let −b ≤ k ≤ b be such that λk−1 ≤ r < λk. Set

Ω = {g ∈ Gb : there exists Q ∈ Abk+1 such that B ⊂ g−1Q}.
Given g ∈ Ω, let Q ∈ Abk+1 be such that B ⊂ g−1Q. By Lemma 3.1(i)
there exists xQ ∈ Q such that B(xQ, λk+1) ⊂ Q ⊂ B(xQ, λk+2) and hence
g−1Q ⊂ B(g−1xQ, λ

k+2). If s is the integer such that 2s−1 < λ3 ≤ 2s, then
by the doubling condition we have µ(B(g−1xQ, λ

k+2)) ≤ Asµ(B) and thus

1
µ(B)

�

B

|f(y)| dµ(y) ≤ As

µ(g−1Q)

�

g−1Q

|f(y)| dµ(y).

Therefore from (3.7) we get

M bf(x) ≤ 2AsM b,g
d f(x), g ∈ Ω.

Now suppose that there exists a positive constant α such that |Ω| ≥ α|Gb|
for all positive integers b. Then integrating both sides of the above inequality
with respect to the Haar measure dg and on Ω, we get (3.6) for C = 2Asα−1.

We will prove that there exists a positive constant α, depending only
on X, such that |Ω| ≥ α|Gb|. Given y ∈ X we denote by gy an element in G
such that y = gy � . Let z ∈ gxQGk−3g

−1
x . Then zx ∈ B(xQ, λk) and hence for

y ∈ B,

d(zy, xQ) ≤ η(d(zy, zx) + d(zx, xQ))

≤ η[η(d(y, a) + d(a, x)) + λk] ≤ λk+1.

Therefore y ∈ z−1Q and hence

B ⊂ z−1Q, z ∈ gxQGk−3g
−1
x .(3.8)

Set
Γ = {Q ∈ Abk+1 : Q ∩B(x, λb+2) 6= ∅}.

Fix Q ∈ Γ and let u ∈ Q ∩ B(x, λb+2), g ∈ gxQGk−3. Then g � ∈ B(xQ, λk)
and

d(g � , � ) ≤ η(d(g � , xQ) + d(xQ, � )) ≤ η[λk + η(d(xQ, u) + d(u, � ))]

≤ η{λk + η[λk+2 + η(d(u, x) + d(x, � ))]} ≤ 4η3λb+2

and hence

d(gg−1
x � , � ) ≤ η(d(gxg−1 � , gx � ) + d(x, � )) ≤ η(d(g � , � ) + λb) < λb+3.

Thus g ∈ Gbgx and hence

gxQGk−3g
−1
x ⊂ Gb, Q ∈ Γ.
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Therefore from (3.8), ⋃

Q∈Γ
gxQGk−3g

−1
x ⊂ Ω.(3.9)

If Q,Q′ ∈ Abk+1 and Q 6= Q′ then B(xQ, λk) ∩B(xQ′ , λk) = ∅ and hence

gxQGk−3g
−1
x ∩ gxQ′Gk−3g

−1
x = ∅.

Then, since G is unimodular (see [16, p. 578]), it follows from (3.9) and the
doubling condition that

|Ω| ≥
∣∣∣
⋃

Q∈Γ
gxQGk−3g

−1
x

∣∣∣ =
∑

Q∈Γ
|gxQGk−3|

≥
∑

Q∈Γ
A−sµ(B(xQ, λk+2))

≥ A−sµ
( ⋂

Q∈Γ
Q
)
≥ A−sµ(B(x, λb+2)) ≥ A−2s|Gb|.

Proof of Theorem 1.1. Denote by C the greatest of the constants C in
(3.1), (3.4) and (3.6), and let s be the integer satisfying 2s−1 < C ≤ 2s.
Let f =

∑k
j=1 fjej ∈ L1

E . Since W ∈ A∞(X), we can choose 1 < p < ∞
such that W ∈ Ap(X). Then it follows by (1.2) that RgW ∈ Ap(X) and
C(p,RgW ) = C(p,W ) for all g ∈ G. Therefore by (1.1), (3.1), (3.3), (3.4),
(3.6), by Jensen’s inequality and Fubini’s theorem we have

�

B( � ,λb)

Φ
(∥∥∥

k∑

j=1

M bfj(x)ej
∥∥∥
)
W (x) dµ(x)

≤
�

B( � ,λb)

Φ

(
C

|Gb|
�

Gb

∥∥∥
k∑

j=1

M b,g
d fj(x)ej

∥∥∥ dg
)
W (x) dµ(x)

≤ sup
g∈Gb

cs
�

X

Φ
(∥∥∥

k∑

j=1

M b
d(Rgfj)(y)ej

∥∥∥
)
RgW (y) dµ(y)

≤ sup
g∈Gb

csC
�

X

Φ(M b
d(‖Rgf‖)(y))RgW (y) dµ(y)

≤ sup
g∈Gb

c2sC
�

X

Φ(M b(‖Rgf‖)(gx))W (x) dµ(x)

≤ c2sC
�

X

Φ(M(‖f‖)(x))W (x) dµ(x),

since M(‖Rgf‖)(gx) = M(‖f‖)(x). Now, let f =
∑∞

j=1 fjej and fk =∑k
j=1 fjej, k ≥ 1. Since the above inequality is true for all f k, k ≥ 1,
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it follows by the monotone convergence theorem that

�

B( � ,λb)

Φ
(

sup
k≥1

∥∥∥
k∑

j=1

M bfjej

∥∥∥
)
W dµ ≤ c2sC

�

X

Φ(M b(‖f‖))W dµ.

Letting b→∞ we obtain (1.3).
Finally, let 1 < p < ∞, Φ(t) = tp, W ∈ Ap(X) and f =

∑∞
j=1 fjej ∈

LpE(W ) ∩ L1
E . By (1.3) and since the operator M is bounded on Lp(W )

(see [6]),

∥∥∥
l+m∑

j=l

Mfjej

∥∥∥
LpE(W )

≤ C1/p
∥∥∥M

(∥∥∥
l+m∑

j=l

fjej

∥∥∥
)∥∥∥

LpR(W )
≤ C ′

∥∥∥
l+m∑

j=l

fjej

∥∥∥
LpE(W )

.

From the above inequality we can conclude that
∑∞

j=1Mfjej converges in

LpE(W ) to a function M̃f and

‖M̃f‖LpE(W ) ≤ C ′‖f‖LpE(W ).

Now let f =
∑

j fjej ∈ L
p
E(W ) be such that fj ≥ 0 for all j ≥ 1. For each j,

let (fkj )k∈N be a sequence of simple functions such that 0 ≤ f kj ↑ fj a.e. as
k → ∞. Then Mfkj ↑ Mfj and for fk =

∑
j f

k
j ej ∈ LpE(W ) ∩ L1

E we have

M̃fk ↑ M̃f a.e. Then

‖M̃f‖LpE(W ) = lim
k→∞

‖M̃fk‖LpE(W ) ≤ lim
k→∞

C ′‖fk‖LpE(W ) = C ′‖f‖LpE(W ).

Proof of Theorem 1.2. It follows from Theorem 1.1 that the operator
M̃(
∑

j fjej) =
∑

jMfjej is well defined and bounded on LpE. Since M ]fj ≤
2Mfj , the operator M̃ ](

∑
j fjej) =

∑
jM

]fjej is also well defined and
bounded on LpE .

Denote by C the greatest of the constants C in (3.1), (3.5) and (3.6),
and let s be the integer satisfying 2s−1 < C ≤ 2s. Since W ∈ A∞(X), we
can choose 1 < p < ∞ such that W ∈ Ap(X). Then (1.2) implies that
RgW ∈ Ap(X) and C(p,RgW ) = C(p,W ) for all g ∈ G. Therefore by (1.1),
(3.2), (3.3), (3.5), (3.6), by Jensen’s inequality and Fubini’s theorem we have

�

B( � ,λb)

Φ
(∥∥∥

∞∑

j=1

M bfj(x)ej
∥∥∥
)
W (x) dµ(x)

≤
�

B( � ,λb)

Φ

(
C

|Gb|
�

Gb

∥∥∥
∞∑

j=1

M b,g
d fj(x)ej

∥∥∥ dg
)
W (x) dµ(x)

≤ sup
g∈Gb

cs
�

X

Φ
(∥∥∥

∞∑

j=1

M b
d(Rgfj)(y)ej

∥∥∥
)
RgW (y) dµ(y)
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≤ sup
g∈Gb

csC
�

X

Φ
(∥∥∥

∞∑

j=1

M b,]
d (Rgfj)(y)ej

∥∥∥
)
RgW (y) dµ(y)

≤ sup
g∈Gb

c2s+1C
�

X

Φ
(∥∥∥

∞∑

j=1

M b,](Rgfj)(gx)ej
∥∥∥
)
W (x) dµ(x)

≤ c2s+1C
�

X

Φ
(∥∥∥

∞∑

j=1

M ]fj(x)ej
∥∥∥
)
W (x) dµ(x),

since M ](Rgfj)(gx) = M ]fj(x). Letting b→∞ we obtain (1.4).

Remark 3.1. Let ν be a positive measure on the Borel σ-field on X,
finite on compact sets. We define

Mν(x) = sup
B

1
µ(B)

�

B

dν(y),

where the supremum is taken over all balls B such that x ∈ B. Exactly
as in the case of integrable functions, we obtain the following fundamental
estimate:

µ({x ∈ X : Mν(x) > t}) ≤ C

t

�

X

dν(x).(3.10)

It is proved in Maćıas–Segovia [18] that we can suppose, without loss of
generality, that there exist positive constants C and α, 0 < α < 1, such that

|d(x, z)− d(y, z)| ≤ Cr1−α(d(x, y))α

whenever d(x, z) and d(y, z) are both smaller than r. Applying the above
inequality we can show that there exists a positive integer b such that for
all positive numbers l, ε,

{
B(z′, ε) ∩ (X \B(z, 2l)) 6= ∅
B(z, l) ∩B(z′, ε) 6= ∅ ⇒ B(z, l) ⊂ B(z′, 2bε).(3.11)

Fix a real number γ with 0 < γ < 1. We can prove that the function
W (x) = (Mν(x))γ is a weight in the Muckenhoupt class A1(X), that is,

1
µ(B)

�

B

W (y) dµ(y) ≤ CW (x), x ∈ B,(3.12)

for all balls B, proceeding exactly as in the Euclidian situation, given e.g.
in [13, Theorem 3.4, Chapter II]. First we fix a ball B and write ν = ν1 +
ν2 where ν1(A) = ν(A ∩ B). Then we use (3.10) to prove that W1(x) =
(Mν1(x))γ satisfies (3.12), and use (3.11) to prove that W2(x) = (Mν2(x))γ

satisfies (3.12). The assertion follows from the inequality W (x) ≤ W1(x) +
W2(x).
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Now fix a point p ∈ X and let δp denote the Dirac measure concentrated
at p. Then

Wp,γ(x) = (Mδp(x))γ =
1

(µ(B(p, d(p, x))))γ
, x ∈ X,

is a weight in the class A1(X).
GivenW1,W2∈A1(X) and 1<p<∞, we haveW (x) = W1(x)(W2(x))1−p

∈ Ap(X) (see e.g. [13]). Therefore given p1, p2 ∈ X and 0 < γ1, γ2 < 1, the
weight

W (x) = Wp1,γ1(x)W 1−p
p2,γ2

(x) =
(µ(B(p2, d(p2, x))))γ2(p−1)

(µ(B(p1, d(p1, x))))γ1

is in the class Ap(X).

4. Singular integral operators. In the proof of the following lemma
we use the potential-type construction by Bourgain [3].

Lemma 4.1. Let E be a Banach space with the UMD property and with a
normalized unconditional basis (ej)j≥1, let 1 < p <∞, and let W ∈ Ap(X).
Then there exist positive constants Cp and r > 1, depending only on p, W ,
X and E, such that

∥∥∥
∞∑

j=1

Mrfjej

∥∥∥
LpE(W )

≤ Cp
∥∥∥
∞∑

j=1

fjej

∥∥∥
LpE(W )

(4.1)

for all f =
∑

j fjej ∈ L
p
E(W ), where Mrg = (M(|g|r))1/r.

Proof. Let Φ(t) = tp, let C be the constant in (1.3), and let g =∑
j gjej ∈ L

p
E(W ). For each j ≥ 1 we define

ψj =
∞∑

i=0

(2C1/p)−iM (i)gj,

where M (i)gj is defined inductively by M (0)gj = |gj|, M (i+1)gj =M(M (i)gj).
We have

Mψj ≤ 2C1/pψj

and hence the weights ψj , j ≥ 1, are by definition uniformly in the class
A1(X). It follows from the reverse Hölder inequality (see Calderón [6]) that
there exist positive constants C ′ and r, r > 1, depending only on p and C,
such that (

1
µ(B)

�

B

ψrj dµ

)1/r

≤ C ′

µ(B)

�

B

ψj dµ

for all balls B and all j ≥ 1. Therefore

Mrgj(x) ≤Mrψj(x) ≤ C ′Mψj(x) ≤ 2C1/pC ′ψj(x).
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But by Theorem 1.1,

∥∥∥
∞∑

j=1

ψjej

∥∥∥
LpE(W )

≤
∞∑

i=0

(2C1/p)−i
∥∥∥
∞∑

j=1

M (i)gjej

∥∥∥
LpE(W )

≤ 2‖g‖LpE(W )

and hence
∥∥∥
∞∑

j=1

Mrgjej

∥∥∥
LpE(W )

≤ 2C1/pC ′
∥∥∥
∞∑

j=1

ψjej

∥∥∥
LpE(W )

≤ 4C1/pC ′‖g‖LpE(W ).

Lemma 4.2. Let T be a singular integral operator bounded on Lr(X)
for some r, 1 < r < ∞. Assume that the kernel K of T satisfies (H ′∞)
and K(gx, gy) = K(x, y) for all x, y ∈ X and g ∈ G. Then there exists a
constant Cr such that

M ](Tf)(x) ≤ CrMrf(x), f ∈ L∞c (X).

Proof. Fix x0 ∈ X, l > 0 and let B = B(x0, l), B2 = B(x0, 2l). For
f ∈ L∞c (X) we set g = fχB2 , h = f − g. Since T is bounded on Lr(X), for
all z ∈ B we have

1
µ(B)

�

B

|Tg(x)− (Tg)B| dµ(x) ≤ 2
µ(B)

�

B

|Tg(x)| dµ(x)

≤ Cr
(

1
µ(B)

�

B2

|g(x)|r dµ(x)
)1/r

≤ CrA1/rMrg(z).

Now let x ∈ B and g ∈ G be such that gx0 = � , x = gx and

Sj(x) = {t : 2jd(x, � ) < d(t, � ) ≤ 2j+1d(x, � )}.
Then by the (H ′∞) condition, for all z ∈ B,

|Th(x)− Th(x0)| ≤
�

X\B2

|K(x, y)−K(x0, y)| |h(y)| dµ(y)

≤
�

d(t, � )>2d(x, � )

|K ′(t, x)−K ′(t, � )| |Rgh(t)| dµ(t)

≤ C
∞∑

j=1

�

Sj(x)

d(x, � )
d(t, � )µ(B( � , d(t, � )))

|Rgh(t)| dµ(t)

≤ AC
∞∑

j=1

2−j

µ(B(x0, 2j+1d(x, x0)))

�

gB(x0,2j+1d(x,x0))

|Rgh(t)| dµ(t)
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= AC

∞∑

1≤j<∞
2jd(x,x0)>l

2−j

µ(B(x0, 2j+1d(x, x0)))

�

B(x0,2j+1d(x,x0))

|h(y)| dµ(y)

≤ ACMrh(z)

and hence
1

µ(B)

�

B

|Th(x)− (Th)B| dµ(x) ≤ 2
µ(B)

�

B

|Th(x)− Th(x0)| dµ(x)

≤ 2ACMrh(z).

Thus for all z ∈ X,

M ](Tf)(z)

≤ sup
B3z

1
µ(B)

�

B

|Tg(x)− (Tg)B| dµ(x) + sup
B3z

1
µ(B)

�

B

|Th(x)− (Th)B| dµ(x)

≤ C ′rMrf(z).

Proof of Theorem 1.3. Fix 1 < p < ∞ and W ∈ Ap(X), and let r and
Cp be the constants in Lemma 4.1. Then (1.4) for Φ(t) = tp shows, by (1.5)
and (4.1), that for all f =

∑
j fjej with fj ∈ L∞c (X) for j ≥ 1, and all

positive integers l and m,

∥∥∥
l+m∑

j=l

Tjfjej

∥∥∥
LpE(W )

≤
∥∥∥
l+m∑

j=l

M(Tjfj)ej
∥∥∥
LpE(W )

≤ C1/p
∥∥∥
l+m∑

j=l

M ](Tjfj)ej
∥∥∥
LpE(W )

≤ C1/pCr

∥∥∥
l+m∑

j=l

Mrfjej

∥∥∥
LpE(W )

≤ C1/pCrCp

∥∥∥
l+m∑

j=l

fjej

∥∥∥
LpE(W )

.

The above inequality implies that the sequence of partial sums of the series∑
j Tjfjej is a Cauchy sequence in LpE(W ) and hence it converges in LpE(W ).

Putting l = 1 and letting m→∞ we obtain (1.6).

Proof of Corollary 1.1. For all 0 ≤ r ≤ 1 and all x, y ∈ Sn,

|y − (y · x)x| ≤ 2|y − x|,(4.2)

|y − � − [(y − � ) · x]x| ≤ 2|y − � |,(4.3)
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|(x · � ) � − (x · y)y| ≤ 2|y − � |,(4.4)

|y − x| ≤ 2|y − rx|,(4.5)

and for all 0 ≤ r ≤ 1 and all x, y ∈ Sn such that |x− � | > 2|y − � |,
1
2 | � − rx| < |y − rx| < 2| � − rx|,(4.6)
1
2 |x− r � | < |x− ry| < 2|x− r � |.(4.7)

Now fix 0 ≤ r ≤ 1 and x, y ∈ Sn such that |x− � | > 2|y− � |. Then by (4.6),
∣∣| � − rx|n+1 − |y − rx|n+1

∣∣
≤ (| � − rx|n + | � − rx|n−1|y − rx|+ . . .+ |y − rx|n)

≤ C|y − � | | � − rx|n

and hence by (4.2), (4.3), (4.5) and (4.6) we obtain

|sr(x, y)− sr(x, � )| ≤ 2
ωn
|y − (y · x)x|

∣∣| � − rx|n+1 − |y − rx|n+1
∣∣

|y − rx|n+1| � − rx|n+1

+
2
ωn

|y − � − [(y − � ) · x]x|
| � − rx|n+1

≤ C1
|y − � |
|x− � |n+1 ,

|tr(x, y)− tr(x, � )| ≤ n− 2
2r

r�

0

|s%(x, y)− s%(x, � )| d%

=
(n− 2)C1

2
|y − � |
|x− � |n+1 ,

|Kr
i,j(x, y)−Kr

i,j(x, � )| ≤ |xiyj − xjyi|
∣∣| � − rx|n+1 − |y − rx|n+1

∣∣
|y − rx|n+1| � − rx|n+1

+ |xi(yj − � j)− xj(yi − � i)|
1

| � − rx|n+1

≤ C2
|y − � |
|x− � |n+1 .

Since | � − rx| ≥ 1− r,

|Pr(x, y)− Pr(x, � )| ≤ 1− r2

ωn

∣∣| � − rx|n+1 − |y − rx|n+1
∣∣

|y − rx|n+1| � − rx|n+1

≤ C3
|y − � |
|x− � |n+1

and hence

|K(x, y)−K(x, � )| ≤ C3
|y − � |
|x− � |n+1 .
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Therefore the kernels sr, tr, Kr
i,j and K satisfy condition (H∞) uniformly

for all 0 ≤ r ≤ 1, i, j ∈ {1, . . . , n + 1} . In the same way we can use (4.2),
(4.4), (4.5) and (4.7) to show that sr, tr, Kr

i,j and K satisfy (H ′∞) uniformly
for all r, i, j. The conclusion of Corollary 1.1 follows from the remark given
above of the statement of this corollary and from Theorem 1.4.
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