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Weighted norm inequalities for vector-valued
singular integrals on homogeneous spaces

by

SERGIO ANTONIO T0zONI (Campinas)

Abstract. Let X be a homogeneous space and let E be a UMD Banach space with a
normalized unconditional basis (e;);>1. Given an operator T' from Lg°(X) to LY(X), we

consider the vector-valued extension T of T' given by T(ZJ fie;) =>2;T(fj)e;j. We prove
a weighted integral inequality for the vector-valued extension of the Hardy—Littlewood
maximal operator and a weighted Fefferman—Stein inequality between the vector-valued
extensions of the Hardy-Littlewood and the sharp maximal operators, in the context of
Orlicz spaces. We give sufficient conditions on the kernel of a singular integral operator to
have the boundedness of the vector-valued extension of this operator on LP(X, Wdu; E)
for 1 < p < oo and for a weight W in the Muckenhoupt class A,(X). Applications to
singular integral operators on the unit sphere S™ and on a finite product of local fields
K™ are given. The versions of all these results for vector-valued extensions of operators on
functions defined on a homogeneous space X and with values in a UMD Banach lattice
are also given.

1. Introduction. The UMD property for Banach spaces plays a central
role in the development of vector-valued Fourier analysis. Although they
have been extensively studied (see e.g. [5, 3, 4, 21, 20, 11]), we point out
that all the maximal operators and singular integral operators considered in
these studies act on functions defined on the Euclidian space R™ or on the
torus 1.

J. Bourgain [3] extended a result for vector-valued singular integral op-
erators due to Benedek, Calderén and Panzone [1] to the context of UMD
Banach spaces. The main goal of this paper is to prove a weighted extension
of the result of J. Bourgain for vector-valued singular integral operators of
functions defined on a homogeneous space (Theorem 1.4).

Let E be a Banach space with a normalized unconditional basis (e;);>1
and let S be the square function operator defined on martingales. Bour-
gain proved in [3] that the vector-valued extension S of S, S(Z fiej)
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Zj S(fj)ej, is bounded on LP([0,1],dt; E) if and only if E has the UMD
property. In our paper, the necessity of the UMD condition is stated as
Theorem 2.2 and it is a consequence of the above-mentioned result by Bour-
gain.

The main difficulty compared to the Euclidian situation is in the trans-
ference method given in Section 3, which allows us to get an integral estimate
between continuous maximal operators from harmonic analysis, using an in-
tegral estimate between dyadic maximal operators from martingale theory.
This method for the Euclidean space was introduced by C. Fefferman and
E. M. Stein in [8], when they proved the boundedness of a vector-valued ex-
tension of the Hardy-Littlewood maximal operator on LP(R", dz;¢?), using
the boundedness of a dyadic maximal operator on LP([0, 1]", dx; ¢9).

Several important singular integral operators on homogeneous spaces
were studied, e.g., in Coifman—Weiss [7], Koranyi-Végi [16], Levine [17] and
Phillips—Taibleson [19]. We show that Theorem 1.4 can be applied to study
vector-valued extensions of several singular integral operators from these
works.

In Section 2 we study weighted integral estimates for vector-valued ex-
tensions of maximal operators from martingale theory in the context of
Orlicz spaces.

In Section 3 we apply the results of Section 2 to prove a weighted integral
inequality for a vector-valued extension of the Hardy-Littlewood maximal
operator (Theorem 1.1) and a weighted Fefferman-Stein inequality between
vector-valued extensions of the Hardy—Littlewood and the sharp maximal
operators (Theorem 1.2), in the context of Orlicz spaces.

In Section 4 we study singular integral operators. The proofs of Theorems
1.3, 1.4 and Corollary 1.1 are in Section 4.

In the present section we give the statements of the main results of this
paper.

Corollaries 1.1 and 1.2 are applications to vector-valued singular integral
operators on functions defined on the unit sphere S™ and on a finite product
of local fields K™, respectively.

In Theorems 1.5-1.7 we consider vector-valued extensions of operators
for functions defined on a homogeneous space X and with values in a UMD
Banach lattice.

Let G be a locally compact Hausdorff topological group with unit element
e, H a compact subgroup of G, and 7 : G — G/H the canonical map. Let
dg denote a left Haar measure on G, which we assume to be normalized in
the case of G compact. If A is a Borel subset of G, we denote by |A| the
Haar measure of A. The homogeneous space X = G/H is the set of all left
cosets m(g) = gH,g € G, provided with the quotient topology. The Haar
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measure dg induces a measure i on the Borel o-field on X. For f € L'(X),

} /(@) dp(z) = § fom(g)dg.

X G
The measure ; on X is invariant under the action of G, that is, if f € L'(X),
g € G and R,f(z) = f(9~'z), then

| f(@) du(z) = | Ryf(x) dp(x).

X X
A quasi-distance on X is a map d : X x X — [0, 00) satisfying:

(i) d(z,y) = 0 if and only if z = y;

(ii) d(z,y) = d(y,x) for all z,y € X;

(iii) d(gz,gy) = d(z,y) for all g € G, z,y € X;

(iv) there exists a constant 7 > 1 such that for all z,y,z € X,

d(x,y) < nld(x, 2) + d(z,9)];

(v) the balls B(z,l) = {y € X : d(z,y) < I}, x € X, | > 0, are
relatively compact and measurable, and the balls B(1,1), [ > 0, form a basis
of neighborhoods of 1 = 7(e);

(vi) (doubling condition) there exists a constant A > 1 such that for all
[>0and z € X,

u(B(z,20)) < Ap(B(,1).

Given a quasi-distance d on X, there exists a distance ¢ on X and a
positive real number v such that d is equivalent to o7 (see [18]). Therefore
the family of d-balls is equivalent to the family of o7-balls, and p7-balls are
open sets. We can show that u(B(z,1)) > 0 for z € X, [ > 0, and that X is
separable.

In this paper X will denote a homogeneous space provided with a quasi-
distance d.

Given a Banach space E with norm || - || and a positive locally integrable
function W on X, we denote by LP(X, Wdy; E) or L, (W), 1 < p < oo, the
Bochner—Lebesgue space consisting of all E-valued (strongly) measurable
functions f defined on X such that

1
£l = (§ 17 @IPW @) du@)” < .
X

We write LY, (W) = LP(W) when E = R, and L%, (W) = L%.(X) = L%, when
W = 1. For the definition of the UMD property of a Banach space see e.g.
[5, 3, 4, 21].

We say that a non-decreasing real-valued continuous function ¢ on [0, co)
with @(0) = 0 satisfies the Ag-condition if there exists a constant ¢ > 0 such
that
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(1.1) D(2N) < cd(N), A>0.
We put @(00) = limy . P(N).

Let W be a positive locally integrable function on X and let 1 < p < oo.
If there exists a constant C' such that

(1.2) <ﬁ§gww)(ﬁ§gw—l/@—” du)pfl <C

for all balls B = B(z,l), 1 > 0, z € X, we say that W is a weight in
the Muckenhoupt class Ap(X). If W € Ap(X), we denote by C(p, W) the
smallest constant C' that satisfies (1.2). The class Ao (X) is defined as the
union of the classes A,(X) for 1 < p < co. In Remark 3.1 we prove that for
p1,p2 € X and 0 < 1,72 < 1 the weight

(u(B(1, d(pg, x))))2@=1)
(u(B(1,d(p1, z))))"

W(z) =

is in the class A,(X).
Let f be a real-valued locally integrable function on X. The Hardy—

Littlewood mazimal operator M and the sharp mazimal operator MF? are
defined at f by

Mf(z) = sup rps ]Sglf(y)\ duly),
M f (@) = sup M(lB) 117 ) = fol du(y),
B
where 1
IB Méf@) dp

and the suprema are taken over all balls B such that = € B.
The following theorem extends results for the Hardy-Littlewood maxi-
mal operator given in [8, 3, 26].

THEOREM 1.1. Let E be a Banach space with the UMD property and with
a normalized unconditional basis (e;)j>1, let @ be a non-decreasing convex
function on [0,00) with &(0) = 0 and satisfying the Aa-condition, and let
W € Ax(X). Then there exists a constant C, depending only on E, &, X
and W, such that

k

(1.3)  [o(su|| > Mes| )W du < ¢ § (I 1)W di
x k2lTo X

for all f = Zj fie; € LY. Moreover, if 1 < p < oo, W € Ay(X) and

fe L%(M,Q’ then 3=, M fje; converges in L,(W) to a function Mf and the

operator M is bounded on LY,(W).
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There is an intimate relation between the Hardy—Littlewood maximal
operator and the sharp maximal operator. This relation is contained in the
inequality ||Mf|l, < C|M*f|l,, f € LP(R™), 0 < py < p < co. This in-
equality is known as the Fefferman—=Stein inequality and it was proved in
[9]. A weighted extension of this inequality and an unweighted extension for
functions defined on a space of homogeneous type (in particular on a ho-
mogeneous space) are well known. The following theorem gives a weighted
vector-valued extension of the Fefferman—Stein inequality for functions de-
fined on a homogeneous space X.

THEOREM 1.2. Let E be a Banach space with the UMD property and
with a normalized unconditional basis (e;)j>1, let @ be a non-decreasing
convex function on [0,00) with $(0) = 0 and satisfying the Ng-condition,
and let W € Ax(X). Then there exists a constant C dependmg only on F,
®, X and W, such that for all f =3, fie; € U

(1.4) (H ZMf]eJ
X

We say that a linear operator 1" defined on L2°(X) and with values in
the space of all measurable functions, is a singular integral operator if the
following conditions hold:

p>1

YW dp < C (HZMﬁf]e] )W dp.

(i) T has a bounded extension on L"(X) for some r, 1 < r < 00;
(ii) there exists a kernel K € LL (X x X \ A), A = {(z,2) : z € X},
such that
Tf(x) = | K(z,9)f(y) du(y)

X
for all f € L2°(X) and almost all = & supp f.

Let T be a singular integral operator with a kernel K. We say that K
satisfies the condition (H) if

d(y,1)
K(wy) = K@) < O gr=s B d d 1))

whenever d(x,1) > 2d(y,1), 1 = w(e). If K'(z,y) = K(y, z) satisfies (Hy)
we say that K satisfies (H..).
The following theorem is proved in Section 4.

THEOREM 1.3. Let E be a Banach space with the UMD property and
with a normalized unconditional basis (ej);>1. Let 1 <p < oo, W € Ay(X),
and let (Tj);>1 be a sequence of operators from LP(W') to LP(W) such that
for every r > 1 there exists a constant C, such that

(1.5) MY(Tjf)(x) < Cp M, f(x),  feLX(X), j=>1.
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Then for all f = Zj fie; € LE(W) the series Zj Tjfjej converges in
LY. (W) and there exists a positive constant Cp, such that

Lip(W)

(1.6) H]iijjej‘ . Cp\\ifjej}

It is easy to see that the condition (H,) for the kernel K of a singular
integral operator implies Hormander’s condition (H;):

| |K (z,y) — K(z,1)| du(z) < C < co.
d(z,1)>2d(y,1)

Hormander’s condition was studied by R. R. Coifman and G. Weiss [7],
A. Koranyi and S. Vagi [16] and B. Bordin and D. L. Fernandez [2]. It
was proved that if the kernel K satisfies (H;) and (Hj), then the singular
integral operator is bounded on LP(X) for 1 < p < oo. The next result
follows immediately from Lemma 4.2 in Section 4 and Theorem 1.3.

THEOREM 1.4. Let E be a Banach space with the UMD property and
with a normalized unconditional basis (ej);>1. Let 1 <p < oo, W € Ap(X),
and let T be a singular integral operator. Assume that the kernel K of T
satisfies (Hoo), (HL,) and K(gx,gy) = K(z,y) forallz,y € X, g € G. Then
forall f =3, fie; € LY.(W) the series > Tfjej converges in LY(W) and
there exists a positive constant C, such that

Lp(W)

(1.7) | ST,
j=1

LE(W) = CpH ]Z:;fjej)

Theorem 1.4 for the Euclidian space R® and W = 1 was proved by
Bourgain [3]; it was also studied in [21]. For W =1and E = /9,1 < ¢ < oo,
but for more general spaces X (of homogeneous type) it was proved in [2, 22].
Theorem 1.3 for X = R™ and W =1 was proved in [21].

Let us consider the unit sphere S = {z € R"! : |z| = 1} provided with
the Lebesgue measure do and with the Euclidian distance d(z,y) = |z — y|
and let 1 = (1,0,...,0). Given pi,p2 € S™ and 0 < 71,72 < 1, the weight
W(z) = |pa — "2~ V|p; — x|~ is in the class A,(S™).

A kernel K € L{ (S™ x S™\ A) satisfies the condition (Hs) if there

loc

exists a constant C' such that for z,y € S™ with |z — 1| > 2|y — 1| we have

ly — 1]

_ <0< -1
K )~ K1) < 0 050

For 0 <r <1,4,5€{l,...,n+1} and xz,y € S™ (x # y for r = 1), we
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define the kernels s,., t,, K7 j and K by

2 y—(y-z)z r TiYj — TjYi
-2 J I " KT (z,y) = =2 I
sr(@,y) on [y —ratl i y) ly — rajnt]
1
n—2¢
tr(wy) = = | solwy)de,  K(z,y) == | Pr(a,y)dr,
0 0

where P,.(x,y) denotes the Poisson kernel

1 1-r?

wy |y — rz|ntt

Let ¢ = s, +t,,0 < r < 1. For f € L>®(S™) we define the operators R,
Rl .,0<r<landi,je{l,...,n+ 1}, and A by

INE
Rof(x) = | a(z,9)f(y) do(y),

Pr(z,y) =

S’n

Ry f(x) = | K7 ;(z,9)f(y)do(y),
S’n

Af(z) = | K(z,9)f(y) do(y),
S’n

with z € S"if0<r <1andz &supp f if r = 1.

The operator R = R; is called the Riesz transform on S™ and it was
proved in Kordnyi-Vagi [16, p. 636] that: lim,_,; R, f = Rf exists a.e. and
in LP(S™), 1 < p < oo; the operators R, are uniformly bounded on LP(S™),
and ¢, (gz, gy) = ¢ (z,y) for all x,y € S™, g € SO(n+1). The operators Ry
were considered in Coifman—Weiss [7, p. 76]. They are uniformly bounded
on L?(S™) and K] i(gz,g9y) = K] ;(z,y) for all z,y € S", g € SO(n + 1).
The operator A was studied in Levine [17, p. 508], where it was proved that:
it is bounded on LP(S™) for 1 < p < oo; if Y} is a spherical harmonic of
degree k then AY, = —Yi/(k+1), and K(gz, gy) = K(x,y) for all x,y € S™,
g€ SO(n+1).

In Section 4 we prove the following result.

COROLLARY 1.1. Let E be a Banach space with the UMD property and

with a normalized unconditional basis (e;)j>1. Let 1 < p < oo, W € A,(S™)

and T € {RT,R;:J.,A :0<r<1,1<i,5 <n+1}. Then there exists a

constant C, such that

(18) Hngjej} s <O gfjejt

for all f = Zj fije; € LP(S"™, Wdo; E).

Lip(W)
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A local field is any locally compact, non-discrete and totally disconnected
field. Let K be a fixed local field and dz be a Haar measure on the additive
group KT of K. The measure of a measurable set A of K with respect
to dx is denoted by |A|. Let m be the modular function for K, that is,
m(A)|A| = |AA] for A € K and A C K measurable. We also write |z| = m(x).
The sets

D={zeK:|z|<1} and B={zreK:|z| <1}

are the ring of integers of K and the unique maximal ideal of D, respectively.
Let ¢ = p© (p prime) be the order of the finite field D/B and let 7w be a fixed
element of B of maximum absolute value. The Haar measure dz is normalized
so that |D| =1 and thus |7| = [B| = ¢ 1.

A local field K has a natural sequence of partitions into balls satisfying
conditions (i) and (ii) of Lemma 3.1 in Section 3, when we consider the
distance d(z,y) = |z —y|. It follows that Theorems 1.1 and 1.2 hold without
the hypothesis of @ being a convex function. The extension of these results
to a finite product of local fields is an immediate consequence of a theorem of
M. H. Taibleson (see [24, pp. 548-549]). Given p1,p2 € Kand 0 < 71,72 < 1,
the weight W (z) = |p2 — 2|"20~D|p; — [~ is in the class A,(K).

A kernel K € LL (K" x K"\ A) satisfies the condition (Hy) if for
z,y € K" with |z| > |y| we have

]
|K($7y) - K($7O)| <C |x’n+1'

Let w(x) be a function defined on K™ and satisfying:
w(z) = w(nlz), jinteger, z € K™
S w(x)dx = 0;
lz|=1
w(x—mly) —w@)| < Cqg ™, j>1, |z|=|y|=1
Then the kernel ¥ (z,y) = ¥(z — y), where
w(x)

Ep(ﬂj) = W?

satisfies (Hy) and (H.,). For f € L>*(K") and z € K", x ¢ supp f, we
define

x € K"\ {0},

Uf(z)= | (x—y)f(y)dy.

KTL

The operator U was studied in Phillips—Taibleson [19] and it was proved
that U is bounded on LP(K") for 1 < p < oo. Therefore the next corollary
follows from Theorem 1.4.
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COROLLARY 1.2. Let E be a Banach space with the UMD property and
with a normalized unconditional basis (ej)j>1. Let 1 < p < oo and W €
Ap(K™). Then there exists a constant C, such that

(1.9) 1]§Ufjej\ . cpH]ifjej\

forall f =73, fie; € LP(K", Wdy; E).

Now let E be a Banach lattice of real-valued measurable functions on
a o-finite measure space (Y, B, ). The absolute value of h € E is given by
|h|(y) = |h(y)|, y € Y. We identify a function f € L%(W) with a function
defined on the product X x Y by setting f(z)(y) = f(x,y). We denote by
LP(W)®E the set of all vector-valued functions f of the type f = Z§:1 a;f;
for a; € E, f; € LP(W) and for some integer £k > 1. This set is a dense
subspace of LI (W) for 1 < p < oo and any weight W. Given an operator
T in LP(W), we define its extension T to LP(W) ® E (see Rubio de Francia
120]) by

Lp(W)

Tf(:c,y) :T(f(,y))(ﬂf), (:E?y) e X xY.

A characterization of UMD Banach lattices in terms of the extension M
of the Hardy—Littlewood maximal operator, when X = R", was given by
Bourgain [3] (see also [20]). Bourgain’s characterization says that E has the
UMD property if and only if M is bounded on L%,(R™) and on L%l/ (R™) for
some p, 1 < p < oo, where p’ is the conjugate exponent of p and E’ is the
dual space of E. The maximal operator M and other maximal operators
of the same type were studied in [11, 14, 12] for X = R™. In [11] new
characterizations of UMD Banach lattices in terms of maximal operators
are given.

In Section 2 we consider the maximal operators Nf = f* and N if =
ff from martingale theory and their vectorial extensions N (Z] fiej) =

> lies Nﬁ(zj fiej) = >, fjt-iej. The analogue of Theorem 2.4 for the
operator N was proved in [26]. In the same way we can prove the analogue
of Theorem 2.7 for the operators N and N¥. Proceeding as in Section 3,
we can apply the inequalities obtained for N and N* to prove the following

theorems.

THEOREM 1.5. Let E be a Banach lattice of real-valued measurable func-
tions with the UMD property, let @ be a non-decreasing convex function on
[0,00) with #(0) = 0 and satisfying the Na-condition, and let W € A (X).
Then there exists a constant C, depending only on E, ®, X and W, such
that for all f € LY(W) ® E,

(1.10) VUM FIDW dp < C § DM )W dp.
X X
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THEOREM 1.6. Let E be a Banach lattice of real-valued measurable func-
tions with the UMD property, let @ be a non-decreasing convex function on
[0, 00) with #(0) = 0 and satisfying the Na-condition, and let W € Ao (X).
Then there exists a constant C, depending only on E, &, X and W, such
that for all f € LY(W) ® E,

(1.11) [ SN FI)W du < € § S(IAT £ )W d
X X
If §(t) = tP, 1 < p < oo, then we can extend the operators M and Mt
by a limit process to all L% (W) and the above theorems will hold for these
extensions. Proceeding as in Section 4 we can apply Theorems 1.5 and 1.6
to prove the following analogue of Theorem 1.4 for Banach lattices.

THEOREM 1.7. Let E be a Banach lattice of real-valued measurable func-
tions with the UMD property, let 1 < p < oo, W € Ap(X), and let T be a
singular integral operator. Assume that the kernel K of T satisfies (Hoo),
(H.) and K(gz,gy) = K(z,y) for all z,y € X, g € G. Then there exists a
positive constant Cp, such that for all f € LP(W) ® E,

(1.12) T £l e,y < Coll Fll iz, omy-

Moreover, the operator T can be continuously extended to all L%(W) and
the above inequality holds for that extension and for all f € L%(W).

Applying Theorem 1.7 we obtain the analogues of Corollaries 1.1 and
1.2 for the case of UMD Banach lattices.

2. Maximal operators in martingale theory. Let (£2,F,P) be a
probability space and for each kK =0,1,2,... let A; be a partition of {2 into
elements of F satisfying: P(Q) > 0 for all Q € Ay; the o-field F is generated
by the union A = (J;2, Ax; the partition Ay4q is a refinement of Ay, that
is, for each @ € Ay, there exists an integer ng > 1 and Q1, ..., Qn, € Agy1
such that Q@ = Q1 U ... U Qy,. We will denote by Fj the o-field generated
by Aj and we will always assume that the sequence (Ag)r>0 is reqular with
respect to IP, that is, there exists an absolute constant # > 1 such that

(2.1) P(Q1) < 0P(Q2)

for all @1 € Ay, and Q2 € Apq with Q2 C Q1,k > 0.

Given an E-valued integrable function f : {2 — E we will also denote by
f the martingale (fx)r>0, where fi, = E[f | F] is the conditional expectation
of the function f with respect to the o-field Fi. A stopping time is a function
T:0 —{0,1,...,00} such that {T' < k} € Fj, for all k£ > 0. For a stopping
time T we denote by Fr the o-field of all sets A € F such that AN{T <k}
€ Fy, for all £ > 0. The martingale transform “f stopped at T is defined

by f1 = (fDk>0, L (W) = frewar(w), and we write fr(w) = fr(,)(w). We
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can show that

(2.2) EII(A){f = fr}| Fa] = I(A(fr — fT)
for all integrable functions f : 2 — FE, all stopping times T', all £k > 0 and
all A € Fr, where I(A) is the indicator function of the set A.

For a real-valued integrable function f we define the maximal functions

F(@) = sup felw) = sup | | 7P
k>0 xe

]:P) b
Qea Q) 2
1
fi(z) = iggEHf — fil | Fil(z) = sup Wg'f — foldP,
QA
where 1

For an integer n > 0 we define f* = (f,)*, fi = (fa)t.
It is well known (see [10]) that

(2.3) 1o < Coll fHllps 1 <p<oo, feLP(RF,P).

We can prove (2.3) using the method known as the Calderén—Zygmund
decomposition (see [9, Theorem 5, p. 153]), replacing the dyadic cubes of
R™ by the elements of A.

Given a positive integrable function W on (2, we denote by LP({2,F,
WdP; E) or LPE(W), 1 < p < o0, the Bochner-Lebesgue space consisting of
all E-valued (strongly) measurable functions f defined on {2 such that

1/p
Il = (JIF@IPW (@) dBw) ) ™ < oo,
19
We write LY, (W) = LP(W) when E =R, and L%,(W) = L1,(2) = L%, when
W =1.
Let W be a positive integrable function on {2 and let 1 < p < oo. If there
exists a constant C' such that

CO | ) (55 v ) o

for all Q € A, we say that W is a weight in the class A,(A). The class
A (A) is defined as the union of A,(A) for 1 < p < oco.

Let U be an operator on L}E which to each f € L}; associates a non-
negative process (Uyf)r>0 with Upf = 0 and Uy f Fj-measurable, k& > 0.
For a stopping time T' we denote by U7 the maximal operator defined by

Urf(w) = oS )ka(w)'

We write U*f = UL f.
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THEOREM 2.1 ([25]). Let W € A (A) and let U and V' be two operators
on L}E as above. Suppose that

Uppsf =UrfS,  Vipgf =Vif?
for all stopping times T and S and all f € L}E. If there exists a constant C
such that
E{ULf — Uraef Y | Fr] < CERVE £ || Fr]

for all k > 1, all stopping times T and all f € L}E, then there exists a
constant C' such that

Vo Hwaap < c | oV f)wdp
9] 9]

for all f € L}E. The constant C' depends only on W, 0, ® and E, where 0 is
the constant in (2.1).

THEOREM 2.2 ([26]). Let E be a Banach space with the UMD property
and with a normalized unconditional basis (ej)j>1. Let U and V be two
operators which to each real-valued integrable function on {2 associate non-
negative F-measurable functions. Suppose that for any Z € A (A) there
exists a constant Cyz, depending only on Z, such that

VU zdp < Cy \V(h)ZdP
(9] 9}

for all h € Up2y L' (2, Fy,P). Then for all 1 < p < oo there ezists a
constant Cy, such that

H > Ufje;
j=1

forall f =737, fie; € Ureo LP(92, F, P E).

THEOREM 2.3 ([15]). Let W be a positive integrable function and let 1 <
p < oo. Then W € A,(A) if and only if the operator f — f* is bounded on
LP(W).

THEOREM 2.4 ([26]). Let E be a Banach space with the UMD property
and with a normalized unconditional basis (e;)j>1, let @ be a non-decreasing
continuous function on [0, 00) with @(0) =0 and satisfying the Ny-condition,
and let W € Axo(A). Then there exists a constant C, depending only on E,
® and W, such that for all f =3, fje; € L,

L

L = CpH vajej
E =1

(2.5) qu(g) H Zk:f;ejH)WdP <o f1")W dp.
2 217 = 2
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LEMMA 2.1. There exists an absolute constant C' such that for all stop-
ping times T, all f € L*(2, F,P) and all integers n > 0,
(2.6) E{(f = fORP | Fr) < CEL(f = ST | Fl.

Proof. Fix T, f,n and A € Fr and consider the martingale g = (gx)x>0,
gk = E[I(A){fn — fran} | Fi). From (2.2) it follows that

gk = LA (fi = ™)
and hence
(2.7) gn =1 -1,
and
90 = gkl = LA = fD)n = (F = fTl, 1<k <n.
Since AN{T < k} € F) we have

Ellgn — g [Fx] = EL(ANAT < EDI(f = D) = (f = F1)el | Fi)
EI(AN{T > k)I(f = 1) = (F = Rl 1 Fi
= IAE[(f = M) = (f = IOl | ]
and hence
(2.8) gh = 1(A)(f = )k
Then from (2.7), (2.8) and (2.3) for p = 2 we obtain
W= Mn32dP = llgilla < Cllghlle = C §{(f — £T)5}* dP.
A A
Since the above inequality is true for all A € Fr, we obtain (2.6). m
THEOREM 2.5. Let @ be a non-decreasing continuous function on [0, co)
with ®(0) = 0 and satisfying the Nq-condition. If W € Ay (A) then there
exists a constant C such that
(2.9) Vo ywap < c | o(HW dP
[0 [0
for all f € LY(£2, F,P). The constant C depends only on W, 6 and @, where
0 is the constant in (2.1).

Proof. Fix f € L', a stopping time 7" and an integer n > 0. Since g — g*
and g — ¢f are sublinear, we have

(2.10) 0< fir = finn < (F = ),
(2.11) (f = O < fE+ 15, <2fk.
Therefore by (2.6),

E[{fy = frmt? | Fr) < B{(f — 1Y | Fr) < CE{(f — D)4} | Fr
<4CE[{f}? | Fr).
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It is easy to see that f}.,q = (f%)% and fg’/\s = (fS)ﬁT for all stopping times
T and S. Then applying Theorem 2.1 we obtain (2.9). =

THEOREM 2.6. Let E be a Banach space with the UMD property and
with a normalized unconditional basis (e;)j>1, and let 1 < p < oo. If f =

Zj fie; € L%, then Zj fiej and Zj f]j-iej converge in L%, and

(2.12) H gf;ej} o < CpH gf}jej} Lr

where C), is a constant depending only on p, 6 and E.

Proof. Let ¢(t) =t and Z € Ax(A). Then by Theorem 2.5 there exists
a constant C'z such that

\frzap < cy\ fzap

Q Q
for all f € L1(£2, F,P). Therefore, from Theorem 2.2 there exists a constant
Cp, depending only on p, § and E, such that (2.12) is true for all f €
Ukzo LP(£2, 7, P; E).

Theorem 2.4 for @(t) = t» and W = 1 and Theorem 2.3 show that
the operator N(}_; fje;) = Zif;‘ej is well defined and bounded on L%,
Since fjt-i < 2f7, the operator Nﬁ(zj fiei) =22, f}iej is also well defined
and bounded on L%,. But [y, LF(£2, i, P; E) is dense in L%, and hence we
obtain (2.12) for all f € L%, =

THEOREM 2.7. Let E be a Banach space with the UMD property and
with a normalized unconditional basis (e;)j>1, let @ be a non-decreasing con-
tinuous function on [0,00) with #(0) = 0 and satisfying the Ng-condition,
and let W € Ax(A). Then there exists a constant C depending only on W,

0, ¢ and E, such that for all f =3, fje; € Up>1

(2.13) (HZf]e]H>Wd]P’<C (HZfﬁe]H)WdP

Proof. We observe that E is a Banach lattice with absolute value |}, z;e;|
= Zj |z;5]e;.

Let 1 < p < ooand f =37, fije; € L. By the proof of Theorem 2.6,
Nf = > fiej and N]Vﬁf =2 f?(ij are well defined as functions in L%,
We define Uf = |[Nf|, Vf = |IN*f|| and U,f = U(E[f|Fn]),Vuf =
V(E[f|Fn]). Since (Uynf)n>0 is an increasing sequence and U, f — Uf in
LP as n — oo, it follows that U* f = sup,,>oUnf = U f. In the same way we
show V*f =V f.
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If T is a stopping time, we deduce from (2.12) for p = 2, as in the proof
of Lemma 2.1, that there exists a constant C', independent of f, T" and n,
such that

EWUA(f — f) | Fr] < CEV(f = )| Frl.
From the inequalities (2.10) and (2.11) we obtain
Unf = Urnnfl SUn(f = 17), Valf = 1) <2V0f

and hence

E[{Unf — Uranf}? | Fr] < ACE[V,2 f | Fr].

Now, since (f;)p g = (fjs)} and (fj)?p/\s = (f]S)ﬁT, it follows that Uppsf =
Urf® and Vppsf = Vi f® for all stopping times T and S. Therefore we can
apply Theorem 2.1 to obtain (2.13). m

3. Maximal operators on homogeneous spaces

LEMMA 3.1 ([23, Lemma 3.21, p. 852]). Let b be a positive integer and
let X\ = 8n°. Then for each integer k with —b < k < b, there exist an
enumerable Borel partition AZ of X and a positive constant C, depending
only on X, such that:

(i) for all Q € Az with —b < k < b, there exists xg € @Q such that
B(zq, \F) € Q C B(zg, \**1) and u(B(wQ,)\kH)) < Cu(Q);

(i) if =b<k<b, Q1€ Ak+17 Q2 € AL and Q1N Q2 # 0, then Q2 C Q1
and 0 < 1(Q1) < Cu(Q).

For a real-valued locally integrable function f on X we define

M} = L d
0f(x) sup u(Q)g’f(y” 1(y),
QeAb
MY f() = sup —— | 1£(y) — fol diu(y)
d T€EQ :U'(Q)Q ’
QEAb
M f(z) S|f )| du(y)
B
MP f(x) = = sup §|f — fBldu(y),
B

where the last two suprema are taken over all balls B = B(a, ) such that
ze€Band A0 <r < X, and A® = U—bgkgb Az.

LEMMA 3.2. Let E be a Banach space with the UMD property and with a
normalized unconditional basis (e;);>1, let @ be a non-decreasing continuous
function on [0,00) with &(0) = 0 and satisfying the Ng-condition, and let
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W € Ayo(A). Then there exists a constant C, depending only on E, &, X
and W, such that for oll f = Z-fjej €L,

k>1

CRVN (supHZMdeeJH)deox ML F1)W dp
X

Proof. Let .Ag ={Q?:i € I}, I, C N, and consider the probabihty
measure 4! on the Borel subsets of Q% given by ul(A) = u(A)/ ,u( b). Given
f=2> 1€ € LY we have MUf;(z) = (|fj\‘Q?) (z) for z € Q?, and hence
by Lemma 3.1(ii) and Theorem 2.4,

(SHPHZMde el Jwee

k>1
= S @) | (sgp\\zyf]ylczb Jes|) Wige() di ()

i€l Qb

< O\ o(My(I @)W (2) dp(z). =

X

LEMMA 3.3. Let E be a Banach space with the UMD property and with a
normalized unconditional basis (e;);>1, let @ be a non-decreasing continuous
function on [0,00) with ®(0) = 0 and satisfying the Aa-condition, and let
W € Aso(AP). Then there exists a constant C, depending only on B, &, X

and W, such that for all f =73, fje; € Up>1

(3.2) <H2Mdf]e]H>Wdu<C <H2Mb’ﬁfje]H>Wd,u
X

Proof. Let ui, i € Iy, be as in the proof of Theorem 3.1. Given f =
S fies € Upoy Ly we have Mif;(@) = (Ifjlgn)(@) for @ € @, ‘and
MS’ﬂ(|fj|)(x) < 2M§’ﬂfj(m) for x € X. Therefore by Lemma 3.1(ii) and
Theorem 2.7,

(|3 M5, o)
j=1
= S @) § @(Hi(;fﬂl@)*(x)ejH)VV|Q3(33) dp ()
@ =

)W (@) dpu()

i€l

<O @) § (| S8l ey | )Wgp(e) i
Q

i€l
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#([| 32 MU D ey ) Wiz duta)
j=1
<o fo|| 3 Mt o || Wi d
X j=1

LEMMA 3.4. Let C' be the constant in Lemma 3.1. Then, for all 1 < p
< 00, all real-valued locally integrable functions f, and all x € X, we have

(3.3) Ap(X) C Ay(A),
(3.4) Mf(x) < CMf(x),
(3.5) M2 f(x) < 20 MY f(x).

Proof. Let1<p<oo,W€Ap(X),Q€Ab, —b<k<bandz € Q. By
Lemma 3.1(i) there exist g € @ and C > 0 such that Q C B = B(zg, \Ft1)
and p(B) < Cu(Q). Therefore (1.2) implies that

Now for a real-valued locally integrable function f we have

1 C
mg |f(y)| duly) < @; £ (y)| dp(y)
and
@ 652 F) — foldu(y) < ﬁ 652 F@) — falduly) + |f5 - fal
< % [ 1700 = sl duts) < 20MF(0),

Thus we obtain (3.3)-(3.5). =

LEMMA 3.5. Let b be a positive integer. Then there exists a constant C,

depending only on X, such that for all real-valued locally integrable functions
f on X and all z € B(1, /\b) 1= 7r( ), we have

(3.6) S 29 f(x)dg,
Q

where
Gy ={g9 € G:d(gl,1) < \oT3}

and M29 f(z) = R,1MRyf(z), g€ G,z € X.

Proof. First we observe that |Gy| = u(B(1, \**3)) > 0. Fix x € B(1,\).
From the definition of M?f(z), there exists a ball B = B(a,r) such that
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r € B, A1 < < AP and
2

(3.7) Mf(z) < B JSB ()] dp(y).

Let —b < k < b be such that \¥=! < < A, Set
2 = {g € Gy : there exists Q € "42—5—1 such that B C ¢~'Q}.

Given g € (2, let Q € AZ_H be such that B C g~'Q. By Lemma 3.1(i)

there exists xg € Q such that B(zg, A1) € Q C B(zg, \**2) and hence

g71Q C B(g 'zg, \F2). If s is the integer such that 2571 < A3 < 2% then

by the doubling condition we have u(B(g~ zg, \*+2)) < A*u(B) and thus
1 A

(B ;\f(y)!du(y) < mg_ﬂ@ f ()] dp(y).

Therefore from (3.7) we get
Mbf(x) < 24°M7 f(z), g€ .

Now suppose that there exists a positive constant a such that [£2| > «|G|
for all positive integers b. Then integrating both sides of the above inequality
with respect to the Haar measure dg and on {2, we get (3.6) for C = 24%a L.

We will prove that there exists a positive constant «, depending only
on X, such that |£2| > a|Gp|. Given y € X we denote by g, an element in G
such that y = g,1. Let z € nggk,gggl. Then zx € B(zq, A¥) and hence for
y € B,

d(zy,2q) < n(d(zy, zx) + d(z2x,2q))
< nln(d(y, a) + d(a, z)) + ] < A1
Therefore y € 271Q and hence
(3.8) Bcz'Q, =zc gIng_g,g;l.
Set
I'={Q € Ay : QN B(x,\"?) # 0}.
Fix Q € I' and let u € Q N B(z,\**?), g € 92oGk—3- Then g1 € B(xQ,)\k)
and
d(g1,1) < n(d(g1, zq) + d(zq, 1)) < nA* + n(d(zq, ) + d(u,1))]
< A"+ A2 (d(u, 2) + d(2,1))]} < 4°A"

and hence

d(9g;'1,1) < 0(d(9z9'1, g21) + d(w,1)) < 7(d(91,1) + A°) < A**5.
Thus g € Gyg, and hence

92o0k—39;" CGo, Qe
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Therefore from (3.8),

(3.9) U QIQQk—:&Q;l C £
Qer

IfQ.Q €A, and Q # Q' then B(zq,\*) N B(zg, A*) = 0 and hence

9roGk-395 " 0 Gagy Gr—395 " = 0.

Then, since G is unimodular (see [16, p. 578]), it follows from (3.9) and the
doubling condition that
= Z |gIng‘—3|

92| > ’ U 920Gk-39,"
Qer Qer
> Y Au(Blag, A7)
Qer
> a7 () Q) = A7 u(B(e, X)) > A7(G,). =
Qer
Proof of Theorem 1.1. Denote by C the greatest of the constants C' in
(3.1), (3.4) and (3.6), and let s be the integer satisfying 2°7! < C' < 2.
Let f = Z?:l fiej € L. Since W € Aoo(X), we can choose 1 < p < o0
such that W € A,(X). Then it follows by (1.2) that R;W € A,(X) and
C(p, RgW) = C(p, W) for all g € G. Therefore by (1.1), (3.1), (3.3), (3.4),
(3.6), by Jensen’s inequality and Fubini’s theorem we have

o] f M fj(@)e; | )W () dp(z)
j=1

< @(w HZM 9 [y (w)es| | do) W () du)

< sup CSS (HZ Ry fi)(y H)RgW(y) du(y)
9€% ¥ 1

< sup C | S(ME(| Ry f 1) () RyW () duly)
g€Gy X

< sup *C | BOM(||Ry 1)) (92) W () dpa()
gegb X

< 0 | S(M(||f])(x))W () dp(=),

X
since M(|RyfIN(gw) = M(IfI)(@). Now, let f = 3%, fie; and f* —
Z?:l fjej, k > 1. Since the above inequality is true for all fE ok >,
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it follows by the monotone convergence theorem that

| (g;g(\ ZM fies | )W dn < HC | 2SI d
1,2\b)

)

Letting b — oo we obtain (1.3).

Finally, let 1 < p < oo, &(t) =tP, W € Ap(X) and f = Z -, [ie; €
(L%(I/[V]))ﬂ LY. By (1.3) and since the operator M is bounded on LP(W)
see |6]),

I+m l+m
I35 5y = (135 g, <15 0

From the above inequality we can conclude that > 2 =1 M fje; converges in
L2 (W) to a function M f and

IM fll 2wy < CI Iy owy-
Now let f =3 fje; € LY. (W) be such that f; > 0 for all j > 1. For each j,
let (ff)keN be a sequence of simple functions such that 0 < ff T f; a.e. as
]fv—> ooifhen ]\4]”;C T Mf; and for f* = Zj f]’-“ej € LY (W) N L}, we have
MFf* 1 Mf a.e. Then

1M £l g oy = = Hm 1M £¥ 1 vy < klirlgoC'\lfkl\Lg(W) = C'lIf e -

__ Proof of Theorem 1.2. It follows from Theorem 1.1 that the operator
M(3=; fiej) = 3°; M fjej is well defined and bounded on LY. Since Mif; <
2M f;, the operator Mﬂ(zj fies) = 32, Mt fje; is also well defined and
bounded on L%,.

Denote by C' the greatest of the constants C' in (3.1), (3.5) and (3.6),
and let s be the integer satisfying 2571 < € < 2°. Since W € A, (X), we
can choose 1 < p < oo such that W € A,(X). Then (1.2) implies that
R,W € A,(X) and C(p, RygW) = C(p, W) for all g € G. Therefore by (1.1),
(3.2), (3.3), (3.5), (3.6), by Jensen’s inequality and Fubini’s theorem we have

(] Zbeﬂ Jes [ ) ie
< é(@g{ ”?”5’”*”@

Lg(w L2 (W

Bn Ab)

dg)wm ()

IN

sup ¢* (HZMd Ry fi)(y e]H)RW y) du(y)

9€% ¥
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IN

g oS )

IN

9€Gp

sup > +1C | o | 3 MRy f;)(g2)es | )W (@) dia(a)
X 7=1

2s+1C (H ZMﬁf] z)e;

since M*(R, fj)(gx) = Mﬁ fj(). Letting b — oo we obtain (1.4). m

)W (@) du(a),

REMARK 3.1. Let v be a positive measure on the Borel o-field on X,
finite on compact sets. We define

Mv(z) = sup ﬁ ; dv(y),

where the supremum is taken over all balls B such that x € B. Exactly
as in the case of integrable functions, we obtain the following fundamental
estimate: c
(3.10) p({e € X - Mu() > t}) < — | dv(=).

X

It is proved in Macias—Segovia [18] that we can suppose, without loss of
generality, that there exist positive constants C' and «, 0 < a < 1, such that

(@, 2) = d(y, 2)] < Cr'=*(d(z,y))"

whenever d(z,z) and d(y, z) are both smaller than r. Applying the above
inequality we can show that there exists a positive integer b such that for
all positive numbers [, €,

B(2,e) N (X \ B(z,20)) £ 0
(3:11) { Bz 1) N B(,e) £ 0

Fix a real number v with 0 < v < 1. We can prove that the function
W(z) = (Mv(x))" is a weight in the Muckenhoupt class A;(X), that is,

= B(z,1) C B(¢,2%).

1

(3.12) @;W@) dpu(y) < CW(x), =€ B,

for all balls B, proceeding exactly as in the Euclidian situation, given e.g.
in [13, Theorem 3.4, Chapter II]. First we fix a ball B and write v = v; +
v where v1(A) = v(AN B). Then we use (3.10) to prove that Wi(z) =
(Muvy(z))" satisfies (3.12), and use (3.11) to prove that Wa(x) = (Mva(x))?
satisfies (3.12). The assertion follows from the inequality W (z) < Wi(z) +
Wa(z).
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Now fix a point p € X and let J,, denote the Dirac measure concentrated
at p. Then

Wy (x) = (Mp(x))" =

is a weight in the class A;(X).

Given Wy, Wa € A1(X) and 1 <p < 0o, we have W (x) = W1 (z)(Wa(z))! =P
€ Ap(X) (see e.g. [13]). Therefore given py,p2 € X and 0 < 71,72 < 1, the
weight

1
(1(B(p,d(p,x))))"’

r e X,

(1(B(pa, d(pa, 2))))2 P~
((B(p1, d(p1, )"

W () = Wy, o, (€)W, 2, (2) =

is in the class A,(X).

4. Singular integral operators. In the proof of the following lemma
we use the potential-type construction by Bourgain [3].

LEMMA 4.1. Let E be a Banach space with the UMD property and with a
normalized unconditional basis (e;)j>1, let 1 < p < oo, and let W € Ap(X).
Then there exist positive constants C, and r > 1, depending only on p, W,
X and E, such that

@) |3 Mg
j=1

LE(W) = CpH jz;fjej

forall f =37, fie; € LB (W), where M,g = (M(|g|"))"/".

Proof. Let &(t) = tP, let C' be the constant in (1.3), and let g =
>.j9i€5 € LE,(W). For each j > 1 we define

Li(W)

vy =Y (20M7) 7MWy,
i=0
where M) g; is defined inductively by M0 g; = |g;|, MFVg; = M(MDg;).
We have
My < 207y,

and hence the weights ;,j > 1, are by definition uniformly in the class
A1(X). It follows from the reverse Holder inequality (see Calderén [6]) that
there exist positive constants C’ and r, r > 1, depending only on p and C,

such that y
1 " c’
— \yrd d
(u(B)ng M) = uB) ;% :

for all balls B and all j > 1. Therefore
M,gj(z) < Mppj(z) < C'My;(z) < 2CVPCy;(x).
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But by Theorem 1.1,
(0]

| vse
j=1

and hence

(e}

/
iy S 222077

1= 7j=1

(@)

95 1 oy < 2190 300)

| Z;MrgjejHLg(vv) =20 lejejHL%(W) < 40P C gl o
Jj= J=

LEMMA 4.2. Let T be a singular integral operator bounded on L"(X)
for some r, 1 < r < oo. Assume that the kernel K of T satisfies (H.))
and K(gz,gy) = K(x,y) for all z,y € X and g € G. Then there exists a
constant C, such that

MYTf)(z) < CoM, f(z), [ € LX(X).

Proof. Fix 9 € X, 1 > 0 and let B = B(xo,1), B> = B(z0,2l). For
feLX(X)weset g= fxp2, h = f —g. Since T is bounded on L"(X), for
all z € B we have

ﬁ ; Ty(z) — (Tg)p| du(z)

| A

)| du(z)

JITg

B
1/r

i | @l auta))

| /\

B
< CTAI/TMTQ(Z).
Now let x € B and g € GG be such that gxg = 1, T = gz and
S;(T) = {t: 27d(z,1) < d(t,1) < 27Md(7, 1)}.
Then by the (H.,) condition, for all z € B,
Th(z) = Thzo)| < | |K(z,y) — K(z0,9)| |h(y)| du(y)
X\ B2
| [K'(t,7) — K'(t, 1)| [Rgh(t)] dp(t)
d(t,1)>2d(z,1)
u( (Jl d(t,1)))

IN

| /\

| Ryh(t)] dp(t)
55(2)

- S
B(xo,2 d(x 20))) gB(x0,20 T d(z,20))

| /\

| Roh(t)| dpu(t)

;
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2—J
=AC ) - | |h(y)] dpaly)
+1
152 (B (o, 271d(z, 20))) Blzo.201d(z.20))
27 d(z,z0)>1
< ACM,h(z)
and hence

5 | ITh(@) = (Tl dn(e) < 5§ (Thia) = Thizo)| dia)
B B
< 2ACM, h(z).

Thus for all z € X,

MYTf)(z )
S%ggu ]i — (T9) Bl du(z) +S§£M §; — (Th) | du(x)

< C,CM,«f(z) [

Proof of Theorem 1.3. Fix 1 < p < oo and W € A,(X), and let  and
Cp, be the constants in Lemma 4.1. Then (1.4) for @(t) = tP shows, by (1.5)
and (4.1), that for all f = . fje; with f; € Lg°(X) for j > 1, and all
positive integers [ and m,

I+m
| 2755
3=l

l+m

o =[S0

Lp(W)

I+m
conSErman,
- ;—&-m
< clre, H 3 M, fie J(
]_l—l—m
< Ol/pCGCH Z fj@j‘
j=l

BW)

Lip(W)

LE(W)

The above inequality implies that the sequence of partial sums of the series
>, T fjej is a Cauchy sequence in L,(W) and hence it converges in L, (W).
Putting [ = 1 and letting m — oo we obtain (1.6). =

Proof of Corollary 1.1. For all 0 <r <1 and all z,y € S,

(4.2) ly — (y - z)z| < 2ly —
(4.3) ly—1-[(y—1) zlz| <2Jy -1,
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(4.4) [(z- 1)1 — (2 y)yl <2y — 1],

(4.5) ly — x| < 2[y —ral,

and for all 0 <r <1 and all z,y € S™ such that |z — 1| > 2|y — 1],
(4.6) L —rz| <|y—ra| <21 -rz|,

(4.7) Sz —rl| <|z—ry| <2lz—ri].

Now fix 0 <r <1 and x,y € S" such that |z — 1| > 2|y — 1|. Then by (4.6),
H]l - r:v|”+1 — |y — rx\”“‘

<(L—rz|® + 11 —rz|" Yy —rz| +... + |y —rz|")
<Cly—1||1 —rz|”

and hence by (4.2), (4.3), (4.5) and (4.6) we obtain

“]1 — x|t — |y — rm[”“‘

ly — ra|ntl|l — rontl
2 ly—1-[(y—1) 2z

2
’8T<x7y> - ST(x7]1)’ < w_ ‘y - (y ’ x)x‘

Wn |1 — ra|nt!
<Ci m'{%?
]tr(x,y) - tT(xvll)’ < n2_,,02 § ‘SQ(xvy) - SQ(xvll)’ do
0
_ (n=2)C1 |y -1
2 |z — 1|t

“]l — x|t — |y — rm[”“‘
ly — re|nt|1 — ro|nt!
1

1) = K, D) < o — 3

+lzi(y; — 1) — 25 (yi — 1)

ly — 1
< Cy———.
= g —qntl

Since |1 —rz| > 1—r,

1 — 72 H]l —rz|"t — |y — ra;|”+1|

’PT(LL’,:L/) - PT(.T,]]_)‘ S

wWn, ly — rz[? T 1 — ra|ntl
ly — 1|
< (g —————
= 3y et
and hence
ly —1]

K (z,y) — K(z,1)| < C3 m
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Therefore the kernels s,., t,., KT

S. A. Tozoni

i

; and K satisfy condition (Hs) uniformly

forall 0 <r <1, 4,j € {1,...,ﬁ + 1} . In the same way we can use (4.2),
(4.4), (4.5) and (4.7) to show that s,, t,, K] ; and K satisfy (HY,) uniformly
for all 7,4, j. The conclusion of Corollary 1.1 follows from the remark given
above of the statement of this corollary and from Theorem 1.4. m
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