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Abstract. We construct an indecomposable reflexive Banach space Xius such that
every infinite-dimensional closed subspace contains an unconditional basic sequence. We
also show that every operator T ∈ B(Xius) is of the form λI+S with S a strictly singular
operator.

1. Introduction. The aim of this paper is to present a Banach space
which is not the sum of two infinite-dimensional closed subspaces Y , Z with
Y ∩ Z = {0} and which has the property every closed subspace of it con-
tains an unconditional basic sequence. We shall denote this space by Xius.
W. T. Gowers’ famous dichotomy, [G3], provides an alternative descrip-
tion of this space. Namely Xius is an indecomposable Banach space with no
hereditarily indecomposable (H.I.) subspace. The problem of the existence
of such spaces was posed by H. P. Rosenthal and it is stated in [G2]. The
interest for such spaces arises from the coexistence of conditional (indecom-
posable) and unconditional (unconditionally saturated) structure. This is a
free translation of W. T. Gowers’ comments preceding the statement of the
problem of the existence of such spaces in [G2] (Problem 5.11). We should
mention that indecomposable spaces which are not H.I. are already known.
For example, [AF] provides reflexive H.I. spaces X such that X∗ contains
an unconditional basic sequence. The methods used in [AF] do not seem to
be capable of providing H.I. spaces X with X∗ unconditionally saturated.

The space presented in this paper is built following ideas used for the
construction of H.I. Banach spaces. Our method is an adaptation of [AD]
constructions as extended in [AT1]. Both are variations of the fundamental
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discovery of W. T. Gowers and B. Maurey [GM]. In our case we use as
an unconditional frame a mixed Tsirelson space T [(Anj , 1/mj)j ] which has
similar properties to Th. Schlumprecht’s space S (see [S]). The norming set
K of the space Xius is a subset of the unit ball of the dual of T [(Anj , 1/mj)j ].
The only feature in which the space Xius differs from the corresponding
construction of a H.I. space concerns the definition of the special functionals.
The key observation that changing the special functionals one could obtain
interesting non-H.I. spaces is due to W. T. Gowers and it was used for the
solution of important and long standing problems in the theory of Banach
spaces [G].

For the space Xius we need the special functionals to be defined in such
a way that the following geometric property holds. For every Y = 〈en〉n∈M ,
where M ∈ [N] (i.e. M is an infinite subset of N) and (en)n∈N is the nat-
ural basis of Xius, the quotient map Q : Xius → Xius/Y is strictly singu-
lar. This is equivalent to saying that dist(SZ , SY ) = 0 for every infinite-
dimensional subspace Z of Xius. This property clearly holds in the case of
H.I. spaces. In our case we define the special functionals in such a way that
the aforementioned property holds; on the other hand we attempt to keep
the dependence inside each special functional as small as possible. Thus if
we go deeper into the structure of any subspace of Xius the action of the
special functionals becomes negligible, which permits us to find uncondi-
tional basic sequences. Another property of Xius concerns bounded linear
operators. Namely every T : Xius → Xius is of the form T = λI + S,
where S is strictly singular. Thus Xius is not isomorphic to any of its proper
subspaces.

After submitting the present paper for publication A. Tolias and the
first author provided a dual pair X, X∗ of separable reflexive Banach spaces
such that X is unconditionally saturated and X∗ is H.I. (see [AT2]). The
construction of this dual pair makes use of the results and techniques of the
present paper.

2. Definition of the space Xius. We shall use the standard notation.
Thus c00 denotes the linear space of all eventually zero sequences, and for
x ∈ c00 we write suppx = {n : x(n) 6= 0} and denote by range(x) the
minimal interval of N containing suppx. Also for x, y ∈ c00 by writing x < y
we mean that max suppx < min supp y. We shall also use the standard
results from the theory of bases of Banach spaces as described in [LT].

We choose two strictly increasing sequences (nj)j , (mj)j of positive in-
tegers such that

(i) m1 = 2 and mj+1 = m5
j ,

(ii) n1 = 4 and nj+1 = (4nj)sj , where 2sj ≥ m3
j+1.
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Let Q be the set of scalar sequences with finite nonempty support, ra-
tional coordinates and maximum at most 1 in modulus. We also set

Qs = {(x1, f1, . . . , xn, fn) : xi, fi ∈ Q, i = 1, . . . , n,

range(xi) ∪ range(fi) < range(xi+1) ∪ range(fi+1) ∀i < n}.
We consider a coding function σ (i.e. an injection) from Qs to the set {2j :
j ∈ N} such that for every φ = (x1, f1, . . . , xn, fn) ∈ Qs,

σ(x1, f1, . . . , xn−1, fn−1) < σ(x1, f1, . . . , xn, fn),(2.1)

max{range(xn) ∪ range(fn)} ≤ m1/2
σ(φ).(2.2)

Although xi, fi are elements of c00 their role in the space Xius we shall
define is quite different. Namely xi will be elements of the space itself and fi
elements of its dual X∗ius. For similar reasons we shall denote the standard
basis of c00 either by (en)n or (e∗n)n.

Definition 2.1. A sequence φ = (x1, f1, . . . , x2k, f2k) ∈ Qs is said to be
a special sequence of length 2k provided that

(2.3) x1 =
1
n2j

n2j∑

l=1

e1,l, f1 =
1
m2j

n2j∑

l=1

e∗1,l

for some j ∈ N such that m1/2
2j > 2k,

where (e1,l)
n2j
l=1 is a subset of the standard basis of c00 of cardinality n2j , and

for every 1 ≤ i ≤ k, setting φi = (x1, f1, . . . , xi, fi), we have

‖f2i‖∞ ≤
1

mσ(φ2i−1)
, |f2i(x2i)| ≤

1
mσ(φ2i−1)

,(2.4)

and if i < k then

x2i+1 =
1

nσ(φ2i)

nσ(φ2i)∑

l=1

e2i+1,l, f2i+1 =
1

mσ(φ2i)

nσ(φ2i)∑

l=1

e∗2i+1,l,(2.5)

where for every i ≥ 1, (e2i+1,l)
nσ(φ2i)

l=1 is a subset of the standard basis of c00
of cardinality nσ(φ2i).

The norming set of the space Xius. The norming set K will be the union⋃∞
n=0Kn, where the sequence (Kn)n is increasing and inductively defined as

follows. We set

K0 = {±e∗n : n ∈ N}, Kj
0 = ∅ for j = 1, 2, . . .

Assume that Kn−1 =
⋃
jK

j
n−1 has been defined. Then for j ∈ N we set

K2j
n = K2j

n−1 ∪
{

1
m2j

d∑

i=1

fi : d ≤ n2j , f1 < . . . < fd, fi ∈ Kn−1

}
.
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Moreover, for j ∈ N and every special sequence φ = (x1, f1, . . . , xn2j+1,

fn2j+1) of length n2j+1 (see Definition 2.1) such that f2i ∈ K
σ(φ2i−1)
n−1 for

i = 1, . . . , n2j+1/2 (where φ2i−1 = (x1, f1, . . . , x2i−1, f2i−1)) we define

(2.6) K2j+1
n,φ =

{ ±1
m2j+1

E(λf ′2f1 + f ′2 + . . .+ λf ′n2j+1
fn2j+1−1 + f ′n2j+1

) :

E an interval of N, supp f ′2i = supp f2i,

f ′2i ∈ K
σ(φ2i−1)
n−1 , |f ′2i(x2i)| ≤ 1/mσ(φ2i−1),

λf ′2i = f ′2i(mσ(φ2i−1)x2i) if f ′2i(x2i) 6= 0, and ±1/n2
2j+1 otherwise

}
.

Here, for x =
∑∞

i=1 aiei and E ⊂ N, we denote by Ex the vector
∑

i∈E aiei.
We define

K2j+1
n =

⋃
{K2j+1

n,φ : φ is a special sequence of length n2j+1} ∪K2j+1
n−1 ,

and finally we set
Kn =

⋃

j

Kj
n.

This completes the inductive definition of Kn and we set K =
⋃
nKn.

Observe that K has the following properties:

(i) It is symmetric and ‖f‖∞ ≤ 1 for each f ∈ K.
(ii) It is closed under interval projections (i.e. closed under restriction

of its elements to intervals).
(iii) It is closed under the (An2j , 1/m2j) operations (i.e. for f1 < . . . < fd

in K with d ≤ n2j we have m−1
2j
∑d

l=1 fl ∈ K).

(iv) If f ∈ K then either f = ±e∗n or f ∈ Kj
n for some n ≥ 1, j ∈ N. In

the latter case we define the weight of f as w(f) = mj . Note that w(f) is
not necessarily unique.

The space Xius is the completion of the space (c00, ‖ · ‖K), where

‖x‖K = sup{〈f, x〉 : f ∈ K}.
From the definition of K it follows easily that (en)n is a bimonotone basis
of Xius. Also it is easy to see, by (iii), that the basis (en)n is boundedly
complete. Indeed, for x ∈ c00 and intervals E1 < . . . < En2j of N it follows
from (iii) that

‖x‖ ≥ 1
m2j

n2j∑

i=1

‖Eix‖.

Also from the choice of the sequences (ni)i, (mi)i it follows that n2j/m2j
increases to infinity. These observations easily imply that the basis is bound-
edly complete.
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To prove that the space Xius is reflexive we need to show that the basis is
shrinking. This requires some further work and we will present the argument
later.

Lemma 2.2. Let φ = (x1, f1, . . . , xn2j+1 , fn2j+1) be a special sequence of
length n2j+1 such that :

(a) {fi : i = 1, . . . , n2j+1} ⊂ K and w(fi) = mσ(φi−1) for i ≥ 2.
(b) ‖w(f2i)x2i‖ ≤ 1 for 1 ≤ i ≤ n2j+1/2

Then there exists n ∈ N such that K2j+1
n,φ is nonempty.

Notation. For every special sequence φ of length n2j+1 such that K2j+1
n,φ

6= ∅ for some n we define Kφ =
⋃
nK

2j+1
n,φ .

Remark 2.3. Let us point out that in the definition of the special se-
quences we have attempted to connect averages of the basis with block vec-
tors that are quite freely chosen. This will be used to show that the quotient
map from Xius to Xius/〈en〉n∈M is a strictly singular operator. Moreover we
keep the dependence only between f2i−1 and the family {g ∈ K : w(g) =
w(f2i), supp(g) = supp(f2i)} to ensure that the space Xius is uncondition-
ally saturated.

Definition 2.4 (The tree Tf of a functional f ∈ K). Let f ∈ K. We
define a tree of f (or tree corresponding to the analysis of f) to be every
finite family Tf = (fα)α∈A indexed by a finite tree A with a unique root
0 ∈ A such that the following conditions are satisfied:

(1) f0 = f and fα ∈ K for each α ∈ A.
(2) If α ∈ A is a terminal node then fα ∈ K0.
(3) For every α ∈ A which is not terminal, if we denote by Sα the set of

immediate successors of α, then exactly one of the following two conditions
holds:

(a) Sα = {β1, . . . , βd} with fβ1 < . . . < fβd and there exists j ∈ N
such that d ≤ n2j and fα = m−1

2j
∑d

i=1 fβi .
(b) There exists a special sequence φ = (x1, f1, . . . , xn2j+1 , fn2j+1) of

length n2j+1, an interval E and ε ∈ {−1, 1} such that

fα =
ε

m2j+1

n2j+1/2∑

i=1

E(λf ′2if2i−1 + f ′2i) ∈ Kφ

and {fβ : β ∈ Sα} = {Ef2i−1 : Ef2i−1 6= 0} ∪ {Ef ′2i : Ef ′2i 6= 0}.
It follows from the inductive definition of K that every f ∈ K admits a

tree, not necessarily unique.
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3. The space Xius is unconditionally saturated. We start by setting

K̃ =
{
± en,

1
m2j

∑

i∈F
±ei : #F ≤ n2j, j ∈ N

}
∪ {0}.

Clearly K̃ is a subset of the norming set K and it is easily checked that
K̃ is a countable and compact (in the pointwise topology). It is well known
that the space C(K̃) is c0-saturated. Observe also that ‖ · ‖

K̃
≤ ‖ · ‖Xius and

hence the identity operator

I : (c00, ‖ · ‖Xius)→ (c00, ‖ · ‖K̃)

is bounded. Since the basis (en)n of Xius is boundedly complete, the space
Xius does not contain c0, and therefore the operator I is also strictly singular.
These observations imply that every block subspace Y of Xius contains a
further block sequence (yn) such that ‖yn‖Xius = 1 and ‖yn‖K̃

n→ 0. Our
intention is to show the following:

Proposition 3.1. Let (xl)l be a normalized block sequence in Xius such
that ‖xl‖K̃ → 0. Then there exists a subsequence (xl)l∈M of (xl) which is an
unconditional basic sequence.

The proof of this proposition requires several steps and we sketch the
main ideas. First we assume, upon passing to a subsequence, that ‖xl‖K̃ < σl
with

∑
σl < 1/8, and we claim that (xl)l∈N is an unconditional basic se-

quence. Indeed, consider a norm one combination
∑d

l=1 blxl and let (εl)dl=1 ∈
{−1, 1}d. We shall show that ‖∑d

l=1 εlblxl‖ > 1/4. Choose any f ∈ K with
f(
∑d

l=1 blxl) > 3/4; we are seeking a g ∈ K such that g(
∑d

l=1 εlblxl) ≥ 1/4.
To find such a g a normal procedure is to consider a tree (fα)α∈A of the func-
tional f and then to produce inductively a functional g with a tree (gα)α∈A
such that

|f(xl)− g(εlxl)| < 2σl,(3.1)

which easily yields the desired result.
In most cases, producing gα from fα is straightforward. Essentially there

exists only one case where we need to be careful: when fα ∈ Kφ for some
special sequence φ (i.e. fα = ±m−1

2j+1E(λf ′2f1 +f ′2 + . . .+λf ′n2j+1−1
fn2j+1−1 +

fn2j+1)) and for some i ≤ n2j+1/2 and l < d we have

max suppxl−1 < min supp f2i−1 ≤ max suppxl,

max supp f ′2i ≥ min suppxl+1.

In this case we produce gα from fα such that gα ∈ Kφ. The form of fα and
hence gα permits us to show that |fα(xl)− gα(εlxl)| < 2σl.

We now pass to the proof, starting with some notation and definitions.
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Notation. Let f ∈ K and (fα)α∈A a tree of f . Then for every non-
terminal node α ∈ A we order the set Sα following the natural order of
{supp fβ}β∈Sα . For β ∈ Sα we denote by β+ the immediate successor of β
in the above order if such an object exists.

Definition 3.2. Let f ∈ K and (fα)α∈A a tree of f . A couple of func-
tionals fα, fα+ is said to be a dependent couple with respect to f if there
exists β ∈ A such that α, α+ ∈ Sβ,

fβ =
ε

m2j+1
E
( n2j+1/2∑

i=1

λ
fβ2i
fβ2i−1 + fβ2i

)
,

and fα = Efβ2i−1 and fα+ = Efβ2i for some i ≤ n2j+1/2.

Definition 3.3. Let (xk)k be a normalized block sequence, f ∈ K and
Tf = (fα)α∈A a tree of f . For k ∈ N, a couple of functionals fα, fα+ is said
to be a dependent couple with respect to f and xk if fα, fα+ is a dependent
couple w.r.t. f and moreover

max suppxk−1 < min supp fα ≤ max suppxk,

max supp fα+ ≥ min suppxk+1.

We also set

(3.2) Ff,xk = {α ∈ A : fα, fα+ is a dependent couple w.r.t. f and xk},
(3.3) Ff =

⋃

k

Ff,xk .

Remark 3.4. Let (xk) be a block sequence in Xius, f ∈ K and (fα)α∈A
a tree of f .

(1) It is easy to see that for every k ∈ N and every nonterminal node
α ∈ A the set Sα ∩ Ff,xk has at most one element.

(2) As a consequence, for every k, any two elements α1, α2 ∈ Ff,xk with
α1 6= α2 are incomparable and |α1| 6= |α2|, where we denote by |α| the order
of α as a member of the finite tree A.

(3) It is also easy to see that any α1, α2 ∈ Ff with α1 6= α2 are incom-
parable and hence range(fα1) ∩ range(fα2) = ∅.

Lemma 3.5. Let (xk)k be a block sequence in Xius such that ‖xk‖K̃ ≤ σk,
let f ∈ K and (fα)α∈A a tree of f . Set yk = xk|⋃α∈Ff supp fα . Then

|f(yk)| ≤ 2σk.(3.4)

Proof. First observe that for each q ∈ N the sets range(fα) with |α| = q
are pairwise disjoint. Therefore from the preceding remark we deduce that
for each k and each q the set

{α ∈ Ff : |α| = q, range(fα) ∩ range(xk) 6= ∅}
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contains at most two elements (one of them belongs to Ff,xk and the other
to Ff,xl for some l ≤ k − 1). Therefore

|f(yk)| ≤
∑

α∈Ff

( ∏

0�γ≺α

1
w(fγ)

)
|fα(xk)|

=
∑

i

∑

α∈Ff , |α|=i

( ∏

0�γ≺α

1
w(fγ)

)
|fα(xk)| ≤ 2σk

∑

i

1
mi

1
≤ 2σk.

The following lemma is the crucial step for the proof of the main result
of this section.

Lemma 3.6. Let (xk)k be a block sequence in Xius, f ∈ K and (fα)α∈A
a tree of f . For every k ∈ N set yk = xk|⋃α∈Ff supp fα . Then for every choice

of signs (εk)k there exists a functional g ∈ K with a tree (gα)α∈A such that :

(1) f(xk − yk) = g(εk(xk − yk)),
(2) supp fα = supp gα for every α ∈ A,
(3) Ff,xk = Fg,xk ,

for every k = 1, 2, . . .

Proof. For the given tree (fα)α∈A of f , we define

D = {β ∈ A : range(fβ) ∩ range(xk) 6= ∅ for at most one k

and if β ∈ Sα then range(fα) ∩ range(xi) 6= ∅ for at least two xi}.
Observe that for every branch b of A, b∩D is a singleton. Furthermore, for
β ∈ D and γ ∈ A with β ≺ γ we have γ 6∈ Ff .

The definition of (gα)α∈A requires the following three steps.

Step 1. First we define the set {gβ : β ∈ D} as follows.

(a) If β ∈ D and there exists α ∈ A with α � β and fα, fα+ is a
dependent couple w.r.t. f then we set gβ = fβ .

(b) If β ∈ D does not fall under the previous case and there exists a
(unique) k such that range(fβ) ∩ range(xk) 6= ∅ then we set gβ = εkfβ.

(c) If β ∈ D does not fall under case (a) and range(fβ) ∩ range(xk) = ∅
for all k then we set gβ = εkfβ, where

k = max{l : range(xl) < range(fβ)}.
(We have assumed that min range(x1) ≤ min range(f).)

Let us comment on case (a) in the above definition. First we observe
that the unique α ∈ A witnessing that β falls under case (a) satisfies the
following: either α = β or |α| = |β| − 1. Moreover if this α does not belong
to Ff then α = β and α+ ∈ D. In this case, if we assume that there exists a
(unique) k such that range(fα)∩ range(xk) 6= ∅ then gα+ is defined by cases



Indecomposable unconditionally saturated Banach space 9

(b) or (c) and gα+ = εkfα+ for the specific k. All these are straightforward
consequences of the corresponding definitions.

Step 2. We set

D+ = {γ ∈ A : there exists β ∈ D with β ≺ γ}.
For γ ∈ D+ we set gγ = εβfγ , where β is the unique element of D with
β ≺ γ, and εβ ∈ {−1, 1} is such that gβ = εβfβ.

Clearly for every β ∈ D ∪ D+, (gγ)β�γ is a tree of the functional gβ.
Furthermore for α ∈ D ∪D+ the following properties hold:

(1) supp fα = supp gα.
(2) w(fα) = w(gα).

Step 3. We set

D− = {α ∈ A : there exists β ∈ D with α ≺ β}.
Observe that A = D ∪D+ ∪D−. Using backward induction, for all α ∈ D−
we shall define gα such that the above (1) and (2) hold, together with the
following two properties:

(3) For α ∈ D− we have fα(xk − yk) = gα(εk(xk − yk)) for all k.
(4) For α ∈ D− and each k we have Ffα,xk = Fgα,xk .

Observe that fα 6∈ K0 for every α ∈ D− and furthermore Ffβ = ∅ for
every β ∈ D.

We now pass to the inductive construction of gα, α ∈ D−, and to estab-
lishing properties (1)–(4). Assume that α ∈ D− and for every β ∈ Sα either
β ∈ D or gβ has been defined and properties (1)–(4) have been established.
We consider the following three cases.

Case 1. w(fα) = m2j and α ∈ Ff .

That means that fα = m−1
2j
∑

β∈Sα fβ and each fβ is e∗l for some l ∈ N.
Then Sα ⊂ D and from Step 1(a) we conclude that gβ = fβ for all β ∈ Sα.
We set

gα =
1
m2j

∑

β∈Sα
gβ = fα.

Furthermore for each k we have supp gα ∩ suppxk ⊂ supp yk. Hence

gα(εk(xk − yk)) = fα(xk − yk) = 0

and also Fgα = Ffα = ∅. Thus properties (3) and (4) hold while (1) and (2)
are obvious.

Before passing to the next case notice that there is no α ∈ D− such that
fα, fα+ is a dependent couple w.r.t. f and α 6∈ Ff . (See the comments after
Step 1.)

Case 2. w(fα) = m2j and α 6∈ Ff .
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From the previous observation we see that α 6= β for each β ∈ A with
fβ, fβ+ a dependent couple w.r.t. f , and we set

gα =
1
m2j

∑

β∈Sα
gβ.

Our inductive assumptions yield properties (1) and (2). To establish (3)
let k ∈ N and β ∈ D ∩ Sα be such that range(xk) ∩ range(fβ) 6= ∅. Then
gβ = εkfβ and hence

gβ(εk(xk − yk)) = εkgβ(xk − yk) = fβ(xk − yk).

If β ∈ D− ∩ Sα, by the inductive assumption for each k we have

gβ(εk(xk − yk)) = fβ(xk − yk).
Therefore

gα(εk(xk − yk)) = fα(xk − yk).
Finally, for each k,

Ffα,xk =
⋃

β∈Sα
Ffβ ,xk =

⋃

β∈Sα∩D−
Ffβ ,xk =

⋃

β∈Sα∩D−
Fgβ ,xk = Fgα,xk ,

which establishes property (4).

Case 3. fα = ε
m2j+1

E(λfα2 f
α
1 +fα2 + . . .+λfαn2j+1

fαn2j+1−1 +fαn2j+1
) ∈ Kφ

where {fβ : β ∈ Sα} = {Efαi : Efαi 6= 0, 1 ≤ i ≤ n2j+1}, ε ∈ {−1, 1}, E is
an interval and φ is a special sequence of length n2j+1.

Let φ = (z1, f1, . . . , zn2j+1 , fn2j+1). We can assume that E = N and ε = 1.
Observe that the definition of {gβ : β ∈ D} and the inductive assumptions
imply that for i ≤ n2j+1/2:

(i) f2i−1 = fα2i−1 = gα2i−1.
(ii) w(f2i) = w(fα2i) = w(gα2i).

(iii) supp f2i = supp fα2i = supp gα2i.

We define

gα =
1

m2j+1
(λgα2 f1 + gα2 + λgα4 f3 + gα4 + . . .+ λgαn2j+1

fn2j+1−1 + gαn2j+1
),

where {gβ : β ∈ Sα} = {gαi : 1 ≤ i ≤ n2j+1}, while λgα2i are defined as
follows:

(5) If gα2i(z2i) 6= 0 then λgα2i = gα2i(mσ(φ2i−1)z2i).
(6) If gα2i(z2i) = 0 and fα2i−1 = fβ , there are two cases:

(a) If β ∈ Ff , or β 6∈ Ff and range(fβ)∩ range(xk) = ∅ for all k, we
set λgα2i = 1/n2

2j+1.
(b) If β 6∈ Ff and there exists a (unique) k such that range(fβ) ∩

range(xk) 6= ∅ then we set λgα2i = εkλfα2i .
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Observe that in the case (6)(b), as follows from the comments after Step 1,
gβ+ = εkfβ+ , hence fβ+(z2i) = 0 if and only if gβ+(z2i) = 0.

From the above definition of λgα2i , 1 ≤ i ≤ n2j+1/2, and (i)–(iii), we find
that the functional gα belongs to Kφ ⊂ K.

Properties (1) and (2) are obvious for gα; we now check the rest. First
we establish property (4).

Let k be given. From Remark 3.4(1) it follows that there exists at most
one dependent couple fα2i−1, f

α
2i w.r.t. f and xk. Moreover, if such a couple

exists then Ffα2i′ ,xk = ∅ for every i′ 6= i. Therefore in this case

Ffα,xk = Ffα2i,xk ∪ {β},(3.5)

where fα2i−1 = fβ. If no such dependent couple exists, it follows that Ffα2i,xk
6= ∅ for at most one i. This is a consequence of the definitions and the fact
that the functionals (fαi )i are successive. If such an i exists then

Ffα,xk = Ffα2i,xk .(3.6)

The last alternative is that Ffα,xk = ∅. This description of Ffα,xk and the
inductive assumptions easily yield property (4). Namely, either

Fgα,xk = Fgα2i,xk ∪ {β}
if (3.5) holds, or Fgα,xk = Fgα2i,xk if (3.6) holds, or Fgα,xk = ∅.

Finally, we check property (3). Fix k and i ≤ n2j+1/2. If gα2i = gβ and
β ∈ D− the inductive assumption provides

gα2i(εk(xk − yk)) = fα2i(xk − yk).(3.7)

If β ∈ D and range(fα2i)∩ range(xk) 6= ∅ then gα2i = εkf
α
2i, which yields (3.7).

Also if range(fα2i) ∩ range(xk) = ∅ equality (3.7) trivially holds.
In the case gα2i−1 = gβ, β ∈ Sα, we distinguish two subcases. First assume

that β ∈ Ff . Then supp gα2i−1 = supp fα2i−1 and supp fα2i−1 ∩ supp(xk − yk)
= ∅, therefore

gα2i−1(εk(xk − yk)) = 0 = fα2i−1(xk − yk).
The second subcase is β 6∈ Ff . As explained in the comments after Step 1,
that means that either range(fβ)∩ range(xk) = ∅, hence everything trivially
holds, or β, β+ ∈ D, gβ+ = εkfβ+ and λgα2i = εkλfα2i . From these observations
we conclude that

λgα2ig
α
2i−1(εk(xk − yk)) = λfα2if

α
2i−1(xk − yk).

All these yield the desired equality, namely

gα(εk(xk − yk)) = fα(xk − yk).
The inductive construction and the entire proof of the lemma are complete.

Proof of Proposition 3.1. Let (σl)l be a decreasing sequence of positive
numbers such that

∑
l σl ≤ 1/8. For each l ∈ N we select kl such that
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‖xkl‖K̃ < σl. For simplicity we assume that the entire sequence (xl) satisfies
the above condition. Let

∑d
l=1 blxl be a finite linear combination which max-

imizes the norm of all vectors of the form
∑d

l=1 clxl with |cl| = |bl|. Assume
furthermore that ‖∑d

l=1 blxl‖ = 1 and let f ∈ K with f(
∑d

l=1 blxl) ≥ 3/4.
Choose {εl}dl=1 ∈ {−1, 1}d and consider the vector

∑d
l=1 εlblxl. Lemma 3.6

shows that there exists g ∈ K and, for each l = 1, . . . , d, a vector yl such
that

g
( d∑

l=1

εlbl(xl − yl)
)

= f
( d∑

l=1

bl(xl − yl)
)
.(3.8)

Also Lemmas 3.5 and 3.6(2), (3) yield

|g(yl)| ≤ 2σl, |f(yl)| ≤ 2σl for all l = 1, . . . , d.

Hence

∥∥∥
d∑

l=1

εlblxl

∥∥∥ ≥
∣∣∣g
( d∑

l=1

εlblxl

)∣∣∣ ≥
∣∣∣g
( d∑

l=1

εlbl(xl − yl)
)∣∣∣−

d∑

`=1

|g(yl)|

≥
∣∣∣f
( d∑

l=1

blxl

)∣∣∣−
d∑

l=1

|g(yl)| −
d∑

l=1

|f(yl)|

≥ 3/4− 2/4 = 1/4.

This completes the proof of the proposition.

4. The space Xius is indecomposable. In the last section we shall
show that the space Xius is indecomposable. This will be a consequence of
a stronger result concerning the structure of the space B(Xius) of bounded
linear operators acting on Xius. The proof adapts techniques related to H.I.
spaces as presented in [AT1]. Thus we will first consider the auxiliary space
Xu and we will estimate the norm of certain averages of its basis. Next we will
use the basic inequality to reduce upper estimation of certain averages to the
previous results. Finally, we shall compute the norms of linear combinations
related to special sequences.

The auxiliary spaces Xu, Xu,k. We begin with the definition of the space
Xu which will be used to provide us with upper estimates for certain averages
in the space Xius.

The space Xu is the mixed Tsirelson space T [(A4nj , 1/mj)∞j=1]. The
norming set W of Xu is defined in a similar manner to the set K.

We set W j
0 = {±e∗n : n ∈ N} ∪ {0} for j ∈ N, and W0 =

⋃
jW

j
0 . In the

general inductive step we define
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W j
n = W j

n−1 ∪
{

1
mj

d∑

i=1

fi : d ≤ 4nj , f1 < . . . < fd ∈Wn−1

}

and Wn =
⋃
jW

j
n. Finally, let W =

⋃
nWn. The space Xu is the completion

of (c00, ‖ · ‖W ), where

‖x‖W = sup{〈f, x〉 : f ∈W}.
It is clear that the norming set K of the space Xius is a subset of the convex
hull of W . Hence ‖x‖K ≤ ‖x‖W for every x ∈ c00.

We also need the spaces Xu,k = T [(A4nj , 1/mj)kj=1]. The norm of such
a space is denoted by ‖·‖u,k and it is defined in a similar manner to the
norm of Xu. Namely we define W j

n, n ∈ N, 1 ≤ j ≤ k, as above and
W

(k)
n =

⋃k
j=1W

j
n. The norming set is W (k) =

⋃∞
n=0W

(k)
n . Spaces of this

form have been studied in [BD] and it has been shown that such a space is
isomorphic either to some `p, 1 < p <∞, or to c0.

Before stating the next lemma we introduce some notations. For each
k ∈ N we set

qk =
1

log4nk mk
, pk =

1
1− log4nk mk

.

Lemma 4.1. For the sequences (mj)j , (nj)j used in the definition of Xius
and Xu, Xu,k the following hold :

(1) The sequence (qj)j strictly increases to infinity.
(2) For x =

∑
alel ∈ c00, ‖x‖u,k ≤ ‖x‖pk .

(3)
∥∥∥∥

1
nk+1

nk+1∑

i=1

ei

∥∥∥∥
pk

≤ 1
m3
k+1

.

Proof. (1) Using the facts that mj+1 = m5
j , nj+1 = (4nj)sj and sj

increases to infinity, we find that

qj+1 =
1

log4nj+1
mj+1

=
1

log4(4nj)
sj m5

j

>
1

5
sj

log4nj mj
=
sj
5
qj ,

hence (qj)j strictly increases to infinity.

(2) We inductively show that for f ∈W (k)
n ,

∣∣∣f
(∑

alel

)∣∣∣ ≤
∥∥∥
∑

alel

∥∥∥
pk
.

For n = 0 this is trivial. The general inductive step goes as follows: for
f ∈W (k)

n+1,

f
(∑

alel

)
=

1
mj

d∑

i=1

fi

(∑
alel

)
,
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where f1 < . . . < fd and d ≤ 4nj for some j ≤ k. We set Ei = range(fi) and
from our inductive assumption and the Hölder inequality we obtain
∣∣∣f
(∑

alel

)∣∣∣ ≤ 1
mj

d∑

i=1

∥∥∥
∑

`∈Ei
alel

∥∥∥
pk
≤ d1/qj

mj

( d∑

i=1

∥∥∥
∑

l∈Ei
alel

∥∥∥
pj

pk

)1/pj
.

Making use of pk ≤ pj and mj = (4nj)1/qj we obtain inequality (2).
(3) We have

∥∥∥∥
1

nk+1

nk+1∑

i=1

ei

∥∥∥∥
pk

≤ 1

n
1/qk
k+1

=
1

(4nk)sk/qk
=

1
msk
k

≤ 1
m3
k+1

.

(Recall that 2sk ≥ m3
k+1.)

The tree Tf of f ∈W is defined in a similar manner to that for f ∈ K.

Lemma 4.2. Let f ∈W and j ∈ N. Then

∣∣∣∣f
(

1
nj

nj∑

i=1

eki

)∣∣∣∣ ≤





2
w(f) ·mj

if w(f) < mj,

1
w(f)

if w(f) ≥ mj.
(4.1)

If moreover there exists a tree (fα)α∈A of f such that w(fα) 6= mj for every
α ∈ A, then ∣∣∣∣f

(
1
nj

nj∑

i=1

eki

)∣∣∣∣ ≤
2
m3
j

.(4.2)

In particular the above upper estimates hold for every f ∈ K.

Proof. If w(f) ≥ mj the estimate is an immediate consequence of the
fact that ‖f‖∞ ≤ 1/w(f). Assume w(f) < mj and let (fα)α∈A be a tree
of f . We set

B = {i : there exists α ∈ A with ki ∈ supp fα and w(fα) ≥ mj}.
Then ∣∣∣∣f

(
1
nj

∑

i∈B
eki

)∣∣∣∣ ≤
1

w(f)mj
.(4.3)

To estimate |f(n−1
j

∑
i∈Bc eki)|, we observe that f |{ki : i∈Bc} ∈ W (j−1) (the

norming set of Xu,j−1) and hence Lemma 4.1 yields
∣∣∣∣f
(

1
nj

∑

i∈Bc

eki

)∣∣∣∣ ≤
1
m3
j

.(4.4)

Combining (4.3) and (4.4) we obtain (4.1).
To prove (4.2) we define

B = {i : there exists α ∈ A with ki ∈ supp fα and w(fα) ≥ mj+1}
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and we conclude that∣∣∣∣f
(

1
nj

∑

i∈B
eki

)∣∣∣∣ ≤
1

mj+1
<

1
m3
j

.(4.5)

Furthermore from our assumption w(fα) 6= mj for every α ∈ A we con-
clude that f |{ki : i∈Bc} ∈ W (j−1). This yields that (4.4) remains valid, and
combining (4.4) and (4.5) we obtain (4.2).

The basic inequality and its consequences. Next we state and prove a ba-
sic inequality which is an adaptation of the corresponding result from [AT1].
Actually the proof of the present statement is easier than the original one,
due mainly to the low complexity of the family An ([AT1] studies spaces
defined with the use of the Schreier families (Sξ)ξ<ω1) and also since the
definition of the norming set K does not involve convex combinations. This
result is important since it includes most of the necessary computations
(unconditional or conditional).

Recall that K and W denote the norming sets of Xius and Xu respec-
tively.

Proposition 4.3 (Basic inequality). Let (xk) be a block sequence in Xius,
(jk) a strictly increasing sequence of positive integers, (bk) ∈ c00, C ≥ 1 and
ε > 0 such that :

(a) ‖xk‖ ≤ C for every k.
(b) #(suppxk)/mjk+1 ≤ ε for every k.
(c) |f(xk)| ≤ C/w(f) for every k and all f ∈ K with w(f) < mjk .

Then for every f ∈ K there exist g1 such that g1 = h1 or g1 = e∗t +h1, where
t 6∈ supph1, h1 ∈W , w(h1) = w(f), and g2 ∈ c00 with ‖g2‖∞ ≤ ε such that

∣∣∣f
(∑

bkxk

)∣∣∣ ≤ C(g1 + g2)
(∑

|bk|ek
)
,(4.6)

and supp g1, supp g2 are contained in {k : supp f ∩ range(xk) 6= ∅}.
(d) If additionally , for some j0 ∈ N, we have

∣∣∣f
(∑

k∈E
bkxk

)∣∣∣ ≤ C
(

max
k∈E
|bk|+ ε

∑

k∈E
|bk|
)

(4.7)

for every interval E of positive integers and every f ∈ K with w(f) = mj0 ,
then h1 may be selected to have a tree (hα)α∈A1 such that w(hα) 6= mj0 for
every α ∈ A1.

Our intention is to apply the above inequality in order to obtain upper
estimates for `1 averages of rapidly increasing sequences. Observe that the
above proposition reduces this problem to estimating the functionals g1, g2

on a corresponding average of the basis in Xu.
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The proof in the general case, assuming only (a)–(c), and in the special
case, where additionally (d) is assumed, is the same. We will give the proof
only in the special case. The proof in the general case is obtained by omitting
any reference to the question whether a functional has weight mj0 or not. For
the rest of the proof we assume that there exists j0 ∈ N such that condition
(d) in the statement of the proposition is satisfied.

Proof of Proposition 4.3. Let f ∈ K and let Tf = (fα)α∈A be a tree of f .
For every k such that supp f ∩ range(xk) 6= ∅ we define

Ak={α∈A : (i) supp fα ∩ range(xk) = supp f ∩ range(xk),

(ii) w(fγ) 6= mj0 for all γ ≺ α,
(iii) there is no β ∈ Sα such that

supp fα ∩ range(xk)=supp fβ ∩ range(xk) if w(fα) 6=mj0}.
From the definition, it follows easily that for every k such that supp f ∩
range(xk) 6= ∅, Ak is a singleton.

We recursively define sets (Dα)α∈A as follows.
For every terminal node α of the tree we set Dα = {k : α ∈ Ak}. For

every nonterminal node α we define

Dα = {k : α ∈ Ak} ∪
⋃

β∈Sα
Dβ.

The following are easy consequences of the definition:

(i) If β ≺ α, Dα ⊂ Dβ.
(ii) If w(fα) = mj0 , then Dβ = ∅ for all β � α.

(iii) If w(fα) 6= mj0 , then {{k} : k ∈ Dα \
⋃
β∈Sα Dβ} ∪ {Dβ : β ∈ Sα} is

a family of successive subsets of N.
(iv) If w(fα) 6= mj0 , then for every k ∈ Dα \

⋃
β∈Sα Dβ there exists

β ∈ Sα such that min suppxk < min supp fβ ≤ max suppxk and for k′ ∈
Dα \

⋃
β∈Sα Dβ different from k the corresponding β ′ is different from β.

Inductively for every α ∈ A we define g1
α and g2

α such that:

(1) For every α ∈ A, supp g1
α, supp g2

α ⊂ Dα.
(2) If w(fα) = mj0 , then g1

α = e∗kα , where |bkα | = maxk∈Dα |bk|, and
g2
α = ε

∑
k∈Dα e

∗
k.

(3) If w(fα) 6= mj0 , then g1
α = hα or g1

α = e∗kα + hα, where kα 6∈ supphα,
hα ∈W and w(hα) = w(fα).

(4) For every α ∈ A,
∣∣∣fα
( ∑

k∈Dα
bkxk

)∣∣∣ ≤ C(g1
α + g2

α)
( ∑

k∈Dα
|bk|ek

)
.
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For every terminal node we set g1
α = g2

α = 0 if Dα = ∅, otherwise g1
α = e∗k

if Dα = {k} and g2
α = 0. Assume that we have defined the functionals g1

β

and g2
β satisfying (1)–(4) for every β ∈ A with |β| = k, and let α ∈ A with

|α| = k − 1. If Dα = ∅ we set g1
α = g2

α = 0. Let Dα 6= ∅. We distinguish two
cases.

Case 1. w(fα) = mj 6= mj0 .

Let Tα = Dα \
⋃
β∈Sα Dβ = {k : α ∈ Ak}. We set T 2

α = {k ∈ Tα : mjk+1

≤ mj} and T 1
α = Tα \T 2

α. In the pointwise estimations we shall make below,
we shall discard the coefficient λf2i , which appears in the definition of the
special functionals, since |λf2i | ≤ 1.

From condition (b) in the statement, it follows that for each k ∈ T 2
α,

|fα(xk)| ≤ #(suppxk)‖fα‖∞ ≤ #(suppxk)
1
mj
≤ ε ≤ Cε.(4.8)

We define
g2
α = ε

∑

k∈T 2
α

e∗k +
∑

β∈Sα
g2
β.

We observe that ‖g2
α‖∞ ≤ ε, and that |fα(xk)| ≤ Cε = Cg2

α(ek) for every
k ∈ T 2

α.
Let T 1

α = {k1 < . . . < kl}. By the definition of T 1
α we have mj < mjk2

<
mjk3

< . . . < mjkl
. Thus condition (c) in the statement implies that

|fα(xki)| ≤
C

mj
=

1
mj

e∗ki(Ceki) for every 2 ≤ i ≤ l.(4.9)

We set

g1
α = e∗k1

+
1
mj

( l∑

i=2

e∗ki +
∑

β∈Sα
g1
β

)
.

(The term e∗k1
does not appear if w(fα) < mjk for every k ∈ Tα.) We have

to show that

hα =
1
mj

( l∑

i=2

e∗ki +
∑

β∈Sα
g1
β

)
∈W.

From the inductive hypothesis, we have g1
β = hβ or g1

β = e∗kβ + hβ , hβ ∈W ,

for every β ∈ Sα. For β ∈ Sα such that g1
β = e∗kβ + hβ, let E1

β = {n ∈ N :

n < kβ} and E2
β = {n ∈ N : n > kβ}. We set h1

β = E1
βhβ, h2

β = E2
βhβ. For

every β such that g1
β = e∗kβ + hβ, the functionals h1

β, e∗kβ , h2
β are successive

belonging to W , and for β 6= β ′ ∈ Sα the corresponding functionals have
disjoint ranges, since supp g1

β is an interval (remark (iii) after the definition
of Dα). From remark (iv) after the definition of Dα we have #T 1

α ≤ nj . It
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follows that

#({e∗ki : 2 ≤ i ≤ l} ∪ {e∗kβ , h
1
β, h

2
β : β ∈ Sα, gβ = e∗kβ + hβ}

∪ {hβ : β ∈ Sα, gβ = hβ}) ≤ 4nj .

Therefore hα = m−1
j (
∑l

i=2 e
∗
kl

+
∑

β∈Sα g
1
β) ∈W .

It remains to show property (4). By (4.9) we have |fα(xki)| ≤ Cg1
α(eki)

for every 2 ≤ i ≤ l, while

|fα(xk1)| ≤ ‖xk1‖ ≤ Ce∗k1
(ek1) = g1

α(Cek1).

We also have∣∣∣fα
( ∑

k∈⋃β∈Sα Dβ
bkxk

)∣∣∣ ≤
∑

β∈Sα

∣∣∣fα
( ∑

k∈Dβ
bkxk

)∣∣∣

≤ 1
mj

∑

β∈Sα

∣∣∣fβ
( ∑

k∈Dβ
bkxk

)∣∣∣

≤ 1
mj

∑

β∈Sα
(g1
β + g2

β)
(
C
∑

k∈Dβ
|bk|ek

)

≤ (g1
α + g2

α)
(
C
∑

k∈Dα
|bk|ek

)
.

Case 2. w(fα) = mj0 .

In this case Dα is an interval of positive integers and Dγ = ∅ for every
γ � α. Let kα be such that bkα = maxk∈Dα |bk|. We set

g1
α = e∗kα , g2

α = ε
∑

k∈Dα
e∗k.

Then ∣∣∣fα
( ∑

k∈Dα
bkxk

)∣∣∣ ≤ C
(

max
k∈Dα

|bk|+ ε
∑

k∈Dα
|bk|
)

= (g1
α + g2

α)
(
C
∑

k∈Dα
|bk|ek

)
.

Definition 4.4. Let k ∈ N. A vector x ∈ c00 is said to be a C-`k1
average if there exist x1 < . . . < xk with ‖xi‖ ≤ C‖x‖ and x = k−1∑k

i=1 xi.
Moreover, if ‖x‖ = 1 then x is called a normalized C-`k1 average.

Lemma 4.5. Let j ≥ 1 and x a C-`nj1 average. Then for every n ≤ nj−1
and every E1 < . . . < En, we have

n∑

i=1

‖Eix‖ ≤ C
(

1 +
2n
nj

)
<

3
2
C.

We refer to [S] or [GM, Lemma 4] for a proof.



Indecomposable unconditionally saturated Banach space 19

Proposition 4.6. For every normalized block sequence (yl)l and every
k ≥ m2 there exists a linear combination of (yl)l which is a normalized 2-`k1
average.

Proof. Given k ≥ m2 there exists j ∈ N such that m2j−1 < k ≤ m2j+1.
Recall that n2j+2 = (4n2j+1)s2j+1 and m3

2j+2 < 2s2j+1 . Hence setting s =
s2j+1 we have ks ≤ n2j+2 and 2−s < 1/m2j+2. Observe that

∥∥∥
ks∑

i=1

yi

∥∥∥ ≥ ks

m2j+2
.(4.10)

Assuming that there is no normalized 2-`k1 average in 〈yi : i ≤ ks〉 and
following the proof of Lemma 3 in [GM] we obtain

∥∥∥
ks∑

i=1

yi

∥∥∥ < ks · 2−s.(4.11)

Since 2−s < 1/m2j+2, (4.10) and (4.11) yield a contradiction.

Definition 4.7. A block sequence (xk) in Xius is said to be a (C, ε)
rapidly increasing sequence (R.I.S.) if there exists a strictly increasing se-
quence (jk) of positive integers such that:

(a) ‖xk‖ ≤ C.
(b) #(range(xk))/mjk+1 < ε.
(c) |f(xk)| ≤ C/w(f) for all k = 1, 2, . . . and f ∈ K with w(f) < mjk .

Remark 4.8. Let (xk)k be a block sequence in Xius such that each xk
is a normalized 2C/3-`

njk
1 average and let ε > 0 be such that for each k,

#(range(xk))(1/mjk+1) < ε. Then Lemma 4.5 implies that condition (c) in
the above definition is also satisfied and hence (xk)k is a (C, ε) R.I.S. In
this case we shall call (xk)k a (C, ε) R.I.S. of `1 averages. Observe also that
Proposition 4.6 ensures that for every block sequence (yl)l and every ε > 0
there exists (xk)k which is a (3, ε) R.I.S. of `1 averages.

Proposition 4.9. Let (xk)
nj
i=1 be a (C, ε) R.I.S. such that ε ≤ 1/nj.

Then:

(1) For every f ∈ K,

∣∣∣∣f
(

1
nj

nj∑

k=1

xk

)∣∣∣∣ ≤





3C
mjw(f)

if w(f) < mj,

C

w(f)
+

2C
nj

if w(f) ≥ mj.

In particular ‖n−1
j

∑nj
k=1 xk‖ ≤ 2C/mj.
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(2) If for j0 = j assumption (d) of the basic inequality is satisfied (Propo-
sition 4.3) for a linear combination n−1

j

∑nj
i=1 bixi, where |bi| ≤ 1, then

∥∥∥∥
1
nj

nj∑

i=1

bixi

∥∥∥∥ ≤
4C
m3
j

.

(3) If (xi)
n2j
i=1 is a (3, ε) rapidly increasing sequence of `1 averages then

1
m2j

≤
∥∥∥∥

1
n2j

n2j∑

i=1

xi

∥∥∥∥ ≤
6
m2j

.(4.12)

Proof. The proof of (1) is an application of the basic inequality and
Lemma 4.2. Indeed, for f ∈ K, the basic inequality implies that there exist
h1 ∈ W with w(f) = w(h1), t ∈ N with t 6∈ supph1, and h2 ∈ c00 with
‖h2‖∞ ≤ ε, such that

∣∣∣∣f
(

1
nj

nj∑

k=1

xk

)∣∣∣∣ ≤ (e∗t + h1 + h2)C
(

1
nj

nj∑

k=1

ek

)
.(4.13)

Using Lemma 4.2 and the fact that ε ≤ 1/nj we obtain

(4.14)

∣∣∣∣f
(

1
nj

nj∑

k=1

xk

)∣∣∣∣

≤





C

nj
+

2C
w(f)mj

+ Cε ≤ 3C
w(f)mj

if w(f) < mj ,

C

nj
+

C

w(f)
+ Cε ≤ C

w(f)
+

2C
nj

if w(f) ≥ mj .

To prove (2) we observe that the basic inequality yields the existence of h1,
h2 such that h1 has a tree (hα)α∈A such that w(hα) 6= mj for every α ∈ A
and ‖h2‖∞ ≤ ε. This and Lemma 4.2 yield

∣∣∣∣f
(

1
nj

nj∑

k=1

bkxk

)∣∣∣∣ ≤ (e∗t + h1 + h2)C
(

1
nj

nj∑

k=1

ek

)
(4.15)

≤ C

nj
+

2C
m3
j

+ Cε ≤ 4C
m3
j

.

The upper estimate in (3) follows from (1) for C = 3. For the lower estimate
in (3), for every i ≤ n2j we choose a functional fi belonging to the pointwise
closure of K such that fi(xi) = 1 and range(fi) ⊂ range(xi). Then it is easy
to see that the functional f = m−1

2j
∑n2j

i=1 fi belongs to the same set and
provides the required result.

Proposition 4.10. The space Xius is reflexive.
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Proof. As explained after the definition of the norming set K, the basis
is boundedly complete. Therefore to show that Xius is reflexive we need to
prove that the basis is shrinking.

Assume the contrary, i.e. there exists x∗ = w∗-
∑∞

n=1 bne
∗
n and x∗ 6∈ 〈e∗n〉.

Then there exists ε > 0 and successive intervals (Ek)k such that ‖Ekx∗‖ > ε.
Choose (xk)k in Xius such that suppxk ⊂ Ek, ‖xk‖ = 1 and x∗(xk) > ε. It
follows that every convex combination

∑
akxk satisfies

∥∥∥
∑

akxk

∥∥∥ > ε.(4.16)

Next for j sufficiently large such that 4/εm2j < ε we define y1, . . . , yn2j to
be a (2/ε, 1/n2j) R.I.S. of `1 averages such that each yi is some average of
(xk)k. Proposition 4.9(1) yields

∥∥∥∥
1
n2j

(y1 + . . .+ yn2j )

∥∥∥∥ ≤
4

m2jε
< ε.(4.17)

Clearly (4.17) contradicts (4.16) and the basis is shrinking.

The structure of B(Xius)

Definition 4.11. A sequence χ = (x1, f1, . . . , xn2j+1 , fn2j+1) is said to
be a dependent sequence of length n2j+1 if the following conditions are sat-
isfied:

(i) There exists a special sequence

φ = (x1, f1, y2, f2, . . . , x2i−1, f2i−1, y2i, f2i, . . . , yn2j+1, fn2j+1)

of length n2j+1 such that supp y2i = suppx2i and ‖y2i − x2i‖ ≤ 1/n2
j2i

, where
ji+1 = σ(φi) for 1 ≤ i < n2j+1.

(ii) For i ≤ n2j+1/2 we have

x2i =
c2i

nj2i

nj2i∑

l=1

x2i
l ,

where (x2i
l )l is a (3, 1/nj2i) R.I.S. of `1 averages and c2i ∈ (0, 1).

(iii) f2i(x2i) ≥ 1/12mj2i .

The following is a consequence of the previous results, and we sketch the
proof of it.

Lemma 4.12. Let (yk)k be a normalized block sequence in Xius and
(en)n∈M be a subsequence of its basis. Then for all j ∈ N there exists a
dependent sequence

χ = (x1, f1, . . . , xn2j+1 , fn2j+1)

of length n2j+1 such that for each i ≤ n2j+1/2, x2i−1 ∈ 〈en〉M and x2i

∈ 〈yk〉k.
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Proof. Let j1 ∈ N be even such that m1/2
j1

> n2j+1. We set

x1 =
1
nj1

nj1∑

i=1

e1,i, f1 =
1
mj1

nj1∑

i=1

e∗1,i,

such that x1 ∈ 〈en〉M . Let j2 = σ(x1, f1). Using Proposition 4.6 we choose a
(3, 1/nj2) R.I.S. (x2

l )
nj2
l=1 ⊂ 〈yk〉k such that x1 < x2

l for every l ≤ nj2 . Next for
every l ≤ nj2 we choose a functional f 2

l ∈ K such that f2
l (x2

l ) ≥ 2
3‖x2

l ‖ ≥ 2
3

and range(f2
l ) ⊂ range(x2

l ). We set

f2 =
1
mj2

nj2∑

l=1

f2
l , x2 =

c2

nj2

nj2∑

l=1

x2
l , where c2 =

1
6

(
1− mj2

n2
j2

)
.

From Proposition 4.9, it follows that ‖x2‖ ≤ 1/mj2 − 1/n2
j2

. We also have

f2(x2) ≥ 1
mj2

c2

nj2

nj2∑

l=1

f2
l (x2

l ) ≥
2
3
c2

mj2

≥ 1
12mj2

.(4.18)

We choose y2 ∈ Q (that is, y2 is a finite sequence with rational coordinates)
such that ‖y2 − x2‖ ≤ 1/n2

j2
and supp y2 = suppx2. It follows that ‖y2‖ ≤

1/mj2 and therefore (x1, f1, y2, f2) is a special sequence of length 2.
We set j3 = σ(x1, f1, y2, f2) and we choose

x3 =
1
nj3

nj3∑

l=1

e3,l, f3 =
1
mj3

nj3∑

l=1

e∗3,l

such that range(y2)∪range(f2) < range(x3) and x3 ∈ 〈en〉M . Next we choose
x4, f4 and y4 as in the second step; it is clear that the procedure goes through
up to the choice of xn2j+1, fn2j+1 and yn2j+1 .

Remark 4.13. (a) Observe that the proof of Lemma 4.12 shows that
if χ = (x1, f1, . . . , xn2j+1 , fn2j+1) is a dependent sequence, then for every
i ≤ n2j+1/2 we have

x2i =
c2i

nj2i

nj2i∑

l=1

x2i
l ,

where (x2i
l )l is a (3, nj2i) R.I.S., j2i = σ(φ2i−1) and c2i ≤ 1/6. It follows from

Proposition 4.9 that ‖mj2ix2i‖ ≤ 1, and also if f ∈ K and w(f) < mj2i then
f(mj2ix2i) ≤ 2/w(f).

(b) Definition 4.11 essentially implies that a dependent sequence is a
small perturbation of a special sequence. Its necessity occurs from the restric-
tion in the definition of the special sequence φ = (x1, f1, . . . , xn2j+1, fn2j+1)
that each xi ∈ Q (i.e. xi(n) is a rational number), not permitting to find
such elements xi in every block subspace.
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Next we state the basic estimates of averages related to dependent se-
quences.

Lemma 4.14. Let χ = (x1, f1, . . . , xn2j+1 , fn2j+1) be a dependent sequence
of length n2j+1. Then

∥∥∥∥
1

n2j+1

n2j+1∑

i=1

(−1)i+1mjixi

∥∥∥∥ ≤
8

m3
2j+1

,

where mji = w(fi).

Lemma 4.15. Let φ = (x1, f1, . . . , xn2j+1, fn2j+1) be a special sequence.
For every i ≤ n2j+1/2, let σ(x1, f1, . . . , x2i−1, f2i−1) = j2i and let

y2i =
mj2i

nj2i

nj2i∑

l=1

ekl

be such that

supp f2i ∩ supp y2i = ∅, supp f2i−1 < supp y2i < supp f2i+1.

Then ∥∥∥∥
1

n2j+1

n2j+1/2∑

i=1

y2i

∥∥∥∥ ≤
8

m3
2j+1

.

These two lemmas are the key ingredients for proving the main results
on the structure of Xius and B(Xius). We proceed with the proof of the main
results; the proof of the two lemmas will be given at the end.

Proposition 4.16. Let M ∈ [N] and let (yk)k be a normalized block
sequence. Then

dist(S〈en〉M , S〈yk〉k) = 0.

Proof. For a given ε > 0 we choose j ∈ N such that 8/m2
2j+1 < ε. From

Lemma 4.12 there exists a dependent sequence χ=(x1, f1, . . . , xn2j+1, fn2j+1)
such that x2i−1 ∈ 〈en〉M , x2i ∈ 〈yk〉k for every i ≤ n2j+1/2. Set

e =
m2j+1

n2j+1

n2j+1/2∑

i=1

mj2i−1x2i−1, y =
m2j+1

n2j+1

n2j+1/2∑

i=1

mj2ix2i.

Then e ∈ 〈en : n ∈ M〉 and y ∈ 〈yi : i ∈ M〉. From Lemma 4.14 we have
‖e− y‖ ≤ 8/m2

2j+1. To obtain a lower estimate of the norm of e and y we
consider the functional

f =
1

m2j+1

n2j+1/2∑

i=1

λf2if2i−1 + f2i,

where λf2i = f2i(mj2iy2i) and φ = (x1, f1, y2, f2, . . . , yn2j+1 , fn2j+1) is the
special sequence associated to the dependent sequence χ. From the definition
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of the dependent sequence, f2i(mj2ix2i) ≥ 1/12, and ‖x2i − y2i‖ ≤ 1/n2
j2i

for
every i ≤ n2j+1/2. It follows that

λf2i = f(mj2iy2i) ≥ f(mj2ix2i)−mj2i‖x2i − y2i‖ >
1
12
− 1
m2
j2i

>
1
24
.

Therefore

‖e‖ ≥ f(e) =
m2j+1

m2j+1

n2j+1/2∑

i=1

λf2if2i−1(mj2i−1x2i−1)
n2j+1

≥ 1
48
,(4.19)

‖y‖ ≥ f(y) =
m2j+1

m2j+1

n2j+1/2∑

i=1

f2i(mj2ix2i)
n2j+1

≥ 1
24
.(4.20)

These lower estimates and the fact that ‖e− y‖ ≤ 8/m2
2j+1 easily yield the

desired result.

Lemma 4.17. Let T : Xius → Xius be a bounded operator. Then

lim
n

dist(Ten,Ren) = 0.

Proof. Without loss of generality we may assume that ‖T‖ = 1. Since
(en) is weakly null, by a small perturbation of T we may assume that Ten
is a finite block, Ten ∈ Q and min suppTen → ∞ as n → ∞. Let I(en)
be the smallest interval containing suppTen ∪ supp en. Passing to a subse-
quence (en)n∈M , we may assume that I(en) < I(em) for all n,m ∈ M with
n < m.

If the result is not true, we may assume, on passing to a further subse-
quence, that there exists δ > 0 such that

dist(Ten,Ren) > 2δ for every n ∈M.

It follows that ‖Pn−1Ten‖ > δ or ‖(I − Pn)Ten‖ > δ. Therefore for every
n ∈M we can choose x∗n ∈ K such that

x∗n(Ten) ≥ δ, range(x∗n) ∩ range(en) = ∅, range(x∗n) ⊂ I(en).(4.21)

Since T is bounded, for every j ∈ N we have
∥∥∥∥T
(

1
n2j

n2j∑

i=1

eki

)∥∥∥∥ ≤ ‖T‖
∥∥∥∥

1
n2j

n2j∑

i=1

eki

∥∥∥∥ =
1
m2j

.

Also for every j ∈ N and k1 < . . . < kn2j in M , the functional h2j =
m−1

2j
∑n2j

i=1 x
∗
ki

is in K and
∥∥∥∥T
(

1
n2j

n2j∑

i=1

eki

)∥∥∥∥ =

∥∥∥∥
1
n2j

n2j∑

i=1

Teki

∥∥∥∥ ≥ h2j

(
1
n2j

n2j∑

i=1

Teki

)
≥ δ

m2j
.
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We now consider a special sequence φ = (x1, f1, . . . , xn2j+1 , fn2j+1) which is
defined as follows: for every i ≥ 0,

x2i+1 =
1

nσ(φ2i)

nσ(φ2i)∑

j=1

e2i+1,j , f2i+1 =
1

mσ(φ2i)

nσ(φ2i)∑

j=1

e∗2i+1,j ,

x2i =
1

nσ(φ2i−1)

nσ(φ2i−1)∑

j=1

Te2i,j , f2i =
1

mσ(φ2i−1)

nσ(φ2i−1)∑

j=1

x∗2i,j ,

where ei,l ∈ {en : n ∈ M}, x∗2i,j, Te2i,j satisfies (4.21), and I(ei,l) < I(es,j)
if either i < s, or i = s and l < j. This is possible by our assumption
I(en) < I(em) for n,m ∈M with n < m. Observe that f2i(mσ(φ2i−1)x2i) ≥ δ
and also that range(fl) ∩ range(x2i) = ∅ for every l 6= 2i. Consider now the
following vector:

x =
1

n2j+1

n2j+1/2∑

i=1

mσ(φ2i−1)

nσ(φ2i−1)

nσ(φ2i−1)∑

j=1

e2i,j.

Then

Tx =
1

n2j+1

n2j+1/2∑

i=1

mσ(φ2i−1)x2i,

and

‖Tx‖ ≥ 1
m2j+1

n2j+1/2∑

i=1

(λf2if2i−1 + f2i)Tx ≥
δ

2m2j+1
.

On the other hand, if

y2i =
mσ(φ2i−1)

nσ(φ2i−1)

nσ(φ2i−1)∑

j=1

e2i,j,

then supp y2i ∩ supp f2i = ∅ and x2i−1 < y2i < x2i+1 for every i ≤ n2j+1/2,
and therefore by Lemma 4.15,

‖x‖ =

∥∥∥∥
1

n2j+1

n2j+1/2∑

i=1

y2i

∥∥∥∥ ≤
8

m3
2j+1

.

Hence ‖T‖ ≥ δ
16m

2
2j+1, a contradiction for j sufficiently large.

Proposition 4.18. Let T : Xius → Xius be a bounded operator. Then
there exists λ ∈ R such that T − λI is strictly singular.

Proof. By Lemma 4.17 there exist λ ∈ R and M ∈ [N] such that
limn∈M ‖Ten − λen‖ = 0. Let ε > 0. Passing to a further subsequence
(enk)k, we may assume that ‖Tenk − λenk‖ ≤ ε2−k for every k ∈ N. It
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follows that the restriction of T − λI to [enk , k ∈ N] is of norm less than ε.
By Proposition 4.16 it follows that T − λI is strictly singular.

The following two corollaries are consequences of Proposition 4.18 (see
[GM]).

Corollary 4.19. There is no nontrivial projection P : Xius → Xius.

Corollary 4.20. The space Xius is not isomorphic to any proper sub-
space of it.

It remains to prove Lemmas 4.14 and 4.15. We start with the following.

Lemma 4.21. Let j ∈ N and n2j+1 < mj1 < mj2 < . . . < mj2r be such

that 2r ≤ n2j+1 < m
1/2
j1
. Let also j0 ∈ N be such that mj0 6= mji for every

i = 1, . . . , 2r and m
1/2
j0

> n2j+1. Then if h1 < . . . < h2r ∈ K are such that
w(hi) = mji for every i = 1, . . . , 2r, then:

(a) ∣∣∣∣
( r∑

k=1

λ2k−1h2k−1 + h2k

)(mj0

nj0

nj0∑

l=1

ekl

)∣∣∣∣ <
1

n2j+1
(4.22)

for any real numbers (λ2k−1)rk=1 with |λ2k−1| ≤ 1 for every k ≤ r.
(b) If (xl)

nj0
l=1 is a (3, 1/nj0) R.I.S. of `1 averages, then
∣∣∣∣
( r∑

k=1

λ2k−1h2k−1 + h2k

)(mj0

nj0

nj0∑

l=1

xl

)∣∣∣∣ ≤
1

n2j+1
(4.23)

for any real numbers (λ2k−1)rk=1 with |λ2k−1| ≤ 1 for every k ≤ r.
Proof. We shall give the proof of (b) and we shall indicate the minor

changes for the proof of (a).
From the estimates on the R.I.S. (Proposition 4.9), for every k ≤ 2r we

have
∣∣∣∣hk
(
mj0

nj0

nj0∑

l=1

xl

)∣∣∣∣ ≤
{

9/w(hk) if w(hk) < mj0 ,

3/mr + 6/nj0 if w(hk) = mr > mj0 .
(4.24)

Since mj+1 = m5
j for every j and |λ2k−1| ≤ 1 for every k ≤ r, from (4.24)

we get
∣∣∣∣
( r∑

k=1

λ2k−1h2k−1 + h2k

)(mj0

nj0

nj0∑

l=1

xl

)∣∣∣∣

≤
∑

k :w(hk)<mj0

9
w(hk)

+
∑

r>j0

3
mr

+
12r
nj0
≤ 10
w(h1)

+
4
m2
j0

+
12r
nj0

<
1

n2j+1
.

For the proof of (a), using Lemma 4.2 we get an inequality corresponding
to (4.24), from which (4.22) follows.
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Proof of Lemma 4.14. Let χ = (x1, f1, . . . , xn2j+1 , fn2j+1) be a depen-
dent sequence and φ = (y1, f1, y2, f2, . . . , yn2j+1 , fn2j+1) the special sequence
associated to χ. In the rest of the proof we shall assume that χ = φ. The
general proof follows by slight and obvious modifications. Hence we assume
that φ = (x1, f1, . . . , xn2j+1 , fn2j+1).

From Lemma 4.2 and Remark 4.13(a) it follows that the sequence
(mjixi)

n2j+1
i=1 satisfies assumptions (a), (c) of the basic inequality for C = 2.

Furthermore the properties of the function σ imply that assumption (b) is
also satisfied for ε = 1/n2j+1.

The rest of the proof is devoted to establishing that the sequence (mjixi)i
satisfies the crucial condition (d) formj0 =m2j+1 and (bi)i=((−1)i+1/n2j+1)i.

First we consider f ∈ Kφ. Then f is of the form

f = E

(
ε

m2j+1
(λf ′2f1 + f ′2 + . . .+ λf ′n2j+1

fn2j+1−1 + f ′n2j+1
)
)
,

where ε ∈ {−1, 1} and E is an interval of N. Recall that w(f ′2i) = w(f2i)
and supp f ′2i = supp f2i and therefore range(f ′2i) ∩ range(xk) = ∅ for every
k 6= 2i. Let

i0 = min{i ≤ n2j+1/2 : supp f ∩ (range(x2i−1) ∪ range(x2i)) 6= ∅}.

Then

∣∣∣f
( n2j+1∑

i=1

(−1)i+1mjixi

)∣∣∣

=
∣∣∣∣E

1
m2j+1

n2j+1/2∑

k=1

(λf ′2kf2k−1 + f ′2k)
( n2j+1∑

i=1

(−1)i+1mjixi

)∣∣∣∣

(4.25) ≤ 1
m2j+1

|λf ′2i0Ef2i0−1(mj2i0−1x2i0−1)− Ef ′2i0(mj2i0
x2i0)|

(4.26) +
1

m2j+1

∣∣∣
n2j+1/2∑

i=i0+1

(λf ′2if2i−1(mj2i−1x2i−1)− f ′2i(mj2ix2i))
∣∣∣.

To estimate the expressions in (4.25) and (4.26), we partition the set
{i0, . . . , n2j+1/2} into A = {i : f ′2i(x2i) 6= 0} and B. For every i ∈ A,
i > i0, since λf ′2i = f ′2i(mj2ix2i), we have

(4.27) λf ′2if2i−1(mj2i−1x2i−1)− f ′2i(mj2ix2i)

= f ′2i(mj2ix2i)− f ′2i(mj2ix2i) = 0.
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For every i ∈ B we have f ′2i(x2i) = 0, and therefore |λf ′2i | = 1/n2
2j+1 (see

(2.6)). It follows that for every i ∈ B with i > i0,

|λf ′2if2i−1(mj2i−1x2i−1)− f ′2i(mj2ix2i)| = |λf ′2i | =
1

n2
2j+1

.(4.28)

For the term in (4.25), distinguishing whether or not Ef2i0−1 = 0 and
whether i0 ∈ A or i0 ∈ B, it follows easily using the previous arguments
that

|λf ′2i0Ef2i0−1(mj2i0−1x2i0−1)− Ef ′2i0(mj2i0
x2i0)| ≤ 1.(4.29)

Summing up (4.27)–(4.29) we have

(4.30)
∣∣∣∣f
(

1
n2j+1

n2j+1∑

i=1

(−1)i+1mjixi

)∣∣∣∣

≤ 1
m2j+1

(
1

n2j+1
+

1
n2

2j+1

)
<

1
n2j+1

.

Consider now a special sequence ψ = (y1, g1, . . . , yn2j+1 , gn2j+1). Let i1 =
min{i ∈ {1, . . . , n2j+1} : yi 6= xi or gi 6= fi}, and let k0 ∈ N be such that
i1 = 2k0 − 1 or 2k0.

Consider a functional g ∈ Kψ which is defined from this special sequence.
Then

g = E

(
1

m2j+1
(λg′2g1 + g′2 + . . .+ λg′n2j+1

gn2j+1−1 + g′n2j+1
)
)
,

where E is an interval of N and w(g′2i) = w(g2i) for every i ≤ n2j+1/2.
Observe that range(xi) ∩ range(gk) = ∅ for every i ≥ i1 and every k < i1.
Let

i0 = min{i ≤ n2j+1/2 : supp g ∩ (range(x2i−1) ∪ range(x2i)) 6= ∅}.
Let i0 < k0. Then
∣∣∣g
( n2j+1∑

i=1

(−1)i+1mjixi

)∣∣∣

≤ 1
m2j+1

(
|Eλg′2i0g2i0−1(mj2i0−1x2i0−1)− Eg′2i0(mj2i0

x2i0)|(4.31)

+
∣∣∣
k0−1∑

i=i0+1

(λg′2ig2i−1(mj2i−1x2i−1)− g′2i(mj2ix2i)
∣∣∣
)

(4.32)

+
1

m2j+1

∣∣∣
∑

k≥k0

(λg′2kg2k−1 + g′2k)
(∑

i≥k0

mj2i−1x2i−1 −mj2ix2i

)∣∣∣,(4.33)

where the sum in (4.32) makes sense when i0 < k0 − 1. If i0 ≥ k0 we get
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∣∣∣g
( n2j+1∑

i=1

(−1)i+1mjixi

)∣∣∣

≤ 1
m2j+1

∣∣∣E
∑

k≥k0

(λg′2kg2k−1 + g′2k)
(∑

i≥i0
mj2i−1x2i−1 −mj2ix2i

)∣∣∣.

The proof of the upper estimate for the two cases is almost identical, so we
shall give the proof in the case i0 < k0.

As in the previous case, for the term in (4.31), (4.32) we have

(4.34) |Eλg′2i0g2i0−1(mj2i0−1x2i0−1)−Eg′2i0(mj2i0
x2i0)|

+
∣∣∣
k0−1∑

i=i0+1

(λg′2ig2i−1(mj2i−1x2i−1)− g′2i(mj2ix2i)
∣∣∣ ≤ 2.

To estimate the sum in (4.33), first we observe that from the injectivity
of σ it follows that there exists at most one k ≥ i1 such that

w(gk) ∈ {mji : i1 ≤ i ≤ n2j+1}.
Let 2i − 1 ≥ i1 be such that mj2i−1 6= w(gk) for every k ≥ i1. Then the
functionals g2k−1, g

′
2k, k ≥ k0, satisfy the assumptions of Lemma 4.21, and

therefore ∣∣∣
∑

k≥k0

(λg′2kg2k−1 + g′2k)(mj2i−1x2i−1)
∣∣∣ ≤ 1

n2j+1
.(4.35)

Also for every 2i ≥ i1 such that mj2i 6= w(gk) for every k ≥ i1, the function-
als g2k−1, g

′
2k, k ≥ k0, satisfy the assumptions of Lemma 4.21, and so

∣∣∣
∑

k≥k0

(λg′2kg2k−1 + g′2k)(mj2ix2i)
∣∣∣ ≤ 1

n2j+1
.(4.36)

For the unique i ≥ i1 such that there exists k ≥ i1 with w(gk) = mji (if such
an i exists), we have, using Lemma 4.21,

∣∣∣
∑

k≥k0

(λg′2kg2k−1 + g′2k)(mjixi)
∣∣∣ ≤ 1 +

1
n2j+1

.(4.37)

Now we distinguish the cases of i1 = 2k0−1 and i1 = 2k0. If i1 = 2k0−1, we
have range(gk)∩ range(xi) = ∅ for every k < 2k0 − 1 and every i ≥ 2k0 − 1,
and from (4.35)–(4.37) we get

(4.38)

∣∣∣∣
∑

k≥k0

(λg′2kg2k−1 + g′2k)
(

1
n2j+1

n2j+1∑

i=2k0−1

(−1)i+1mjixi

)∣∣∣∣

≤ 1
n2j+1

(
1 +

1
n2j+1

+
n2j+1

n2j+1

)
<

3
n2j+1

.
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If i1 = 2k0 then range(x2k0−1) ∩ range(gk) = ∅ for every k ≥ 2k0 and
k < 2k0 − 1, and from (4.35)–(4.37) we get

(4.39)

∣∣∣∣
∑

k≥k0

(λg′2kg2k−1 + g′2k)
(

1
n2j+1

n2j+1∑

i=2k0−1

(−1)i+1mjixi

)∣∣∣∣

≤ 1
n2j+1

(
|λg′2k0−1

g2k0−1(mj2k0−1x2k0−1)|

+
∣∣∣
∑

k≥k0

(λg′2kg2k−1 + g′2k)
( n2j+1∑

i=2k0

(−1)i+1mjixi

)∣∣∣
)

≤ 1
n2j+1

+
1

n2j+1

(
1 +

1
n2j+1

+
n2j+1

n2j+1

)
<

4
n2j+1

.

From (4.34), (4.38) and (4.39) we get
∣∣∣∣g
(

1
n2j+1

n2j+1∑

i=1

(−1)i+1mjixi

)∣∣∣∣≤
1

m2j+1

(
2

n2j+1
+

4
n2j+1

)
<

1
n2j+1

.(4.40)

The inequalities (4.30) and (4.40) show that indeed condition (d) is satisfied
for ε = 1/n2j+1. Proposition 4.9(2) now yields the desired result.

Proof of Lemma 4.15. We shall follow similar arguments to those in
the proof of Lemma 4.14. We shall establish conditions (a)–(d) of the basic
inequality for C = 2, ε = 1/n2j+1 and mj0 = m2j+1. Lemma 4.2 shows
that the sequence (y2i)i satisfies (a) and (c) for C = 2. Furthermore the
properties of the function σ imply that (b) is also satisfied for ε = 1/n2j+1.

To establish condition (d) we shall show that for every f ∈ K with
w(f) = m2j+1,

∣∣∣∣f
(

1
n2j+1

n2j+1/2∑

i=1

y2i

)∣∣∣∣ ≤
1

m2j+1

(
1

n2j+1
+

1
n2j+1

)
<

1
n2j+1

.

First observe that for every f ∈ Kφ of the form

f = E
1

m2j+1

n2j+1/2∑

k=1

(λf ′2kf2k−1 + f ′2k)

we have

f

(
1

n2j+1

n2j+1/2∑

i=1

y2i

)
= 0.

This is due to supp f ′2i = supp f2i and supp f2i−1 < y2i < supp f2i+1 for
every i ≤ n2j+1/2.
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Let φ = (z1, g1, z2, g2, . . . , zn2j+1, gn2j+1) be a special sequence of length
n2j+1 and let

f = E
1

m2j+1

n2j+1/2∑

k=1

(λg′2kg2k−1 + g′2k) ∈ Kφ.

We may assume that E=N. Let i1 =min{i ≤ n2j+1 : zi 6=xi or fi 6=gi}, and
let k0 ∈ N be such that i1 = 2k0 − 1 or i1 = 2k0. Observe that range(gk) ∩
range(y2i) = ∅ for every k < i1 and every 2i ≥ i1.

From the injectivity of σ, it follows that there exists at most one k ≥ i1
such that

w(gk) ∈ {mji : i1 ≤ i ≤ n2j+1}.
Let 2i ≥ i1 be such that w(gk) 6= mj2i for all k ≥ i1. Then the functionals
g2k−1, g

′
2k, k ≥ k0, satisfy the assumptions of Lemma 4.21(a), and therefore

∣∣∣
( ∑

k≥k0

λg′2kg2k−1 + g′2k
)

(y2i)
∣∣∣ < 1

n2j+1
.(4.41)

For the unique 2i ≥ i1 such that there exists k ≥ i1 with w(gk) = mj2i (if
such a 2i exists), we have

∣∣∣
( ∑

k≥k0

λg′2kg2k−1 + g′2k
)

(y2i)
∣∣∣ < 1 +

1
n2j+1

.(4.42)

Summing up (4.41)–(4.42) we get
∣∣∣∣f
(

1
n2j+1

n2j+1/2∑

i=1

y2i

)∣∣∣∣ ≤
1

m2j+1

(
1

n2j+1
+

1
n2j+1

)
<

1
n2j+1

.(4.43)

Inequality (4.43) implies that condition (d) of the basic inequality is satisfied,
and Proposition 4.9 yields the desired result.

Remark 4.22. As pointed out by A. Pełczyński, there is no obstacle
to the existence of an indecomposable closed subspace of a Banach space
with an unconditional basis. However our space is not such an example. In
particular the space Xius does not embed into a Banach space with an un-
conditional f.d.d. This follows from the property that no subsequence of the
basis (en)n is an unconditional basic sequence. For the same reason the space
Xius is not a quotient of a space with a shrinking unconditional f.d.d. [O].
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