STUDIA MATHEMATICA 159 (1) (2003)

An indecomposable and
unconditionally saturated Banach space

by

SPIROS A. ARGYROS (Athens) and ANTONIS MANOUSSAKIS (Chania)

Dedicated to Aleksander Petczynski
on the occasion of his 70th birthday

Abstract. We construct an indecomposable reflexive Banach space Xj,s such that
every infinite-dimensional closed subspace contains an unconditional basic sequence. We
also show that every operator T € B(Xjys) is of the form AI + S with S a strictly singular
operator.

1. Introduction. The aim of this paper is to present a Banach space
which is not the sum of two infinite-dimensional closed subspaces Y, Z with
Y N Z = {0} and which has the property every closed subspace of it con-
tains an unconditional basic sequence. We shall denote this space by Xiys.
W. T. Gowers’ famous dichotomy, [G3], provides an alternative descrip-
tion of this space. Namely Xjus is an indecomposable Banach space with no
hereditarily indecomposable (H.I.) subspace. The problem of the existence
of such spaces was posed by H. P. Rosenthal and it is stated in [G2]. The
interest for such spaces arises from the coexistence of conditional (indecom-
posable) and unconditional (unconditionally saturated) structure. This is a
free translation of W. T. Gowers’ comments preceding the statement of the
problem of the existence of such spaces in [G2] (Problem 5.11). We should
mention that indecomposable spaces which are not H.I. are already known.
For example, [AF] provides reflexive H.I. spaces X such that X* contains
an unconditional basic sequence. The methods used in [AF] do not seem to
be capable of providing H.I. spaces X with X* unconditionally saturated.

The space presented in this paper is built following ideas used for the
construction of H.I. Banach spaces. Our method is an adaptation of [AD]
constructions as extended in [AT1]. Both are variations of the fundamental
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discovery of W. T. Gowers and B. Maurey [GM]. In our case we use as
an unconditional frame a mixed Tsirelson space T[(Ap,,1/m;);] which has
similar properties to Th. Schlumprecht’s space S (see [S]). The norming set
K of the space Xjys is a subset of the unit ball of the dual of T'[(Ay;, 1/m;);].
The only feature in which the space Xi,s differs from the corresponding
construction of a H.I. space concerns the definition of the special functionals.
The key observation that changing the special functionals one could obtain
interesting non-H.I. spaces is due to W. T. Gowers and it was used for the
solution of important and long standing problems in the theory of Banach
spaces [G].

For the space Xj,s we need the special functionals to be defined in such
a way that the following geometric property holds. For every Y = (ey)nenm,
where M € [N] (i.e. M is an infinite subset of N) and (ep)nen is the nat-
ural basis of Xj,s, the quotient map @ : Xjus — Xius/Y is strictly singu-
lar. This is equivalent to saying that dist(Sz,Sy) = 0 for every infinite-
dimensional subspace Z of Xjus. This property clearly holds in the case of
H.I. spaces. In our case we define the special functionals in such a way that
the aforementioned property holds; on the other hand we attempt to keep
the dependence inside each special functional as small as possible. Thus if
we go deeper into the structure of any subspace of Xj,s the action of the
special functionals becomes negligible, which permits us to find uncondi-
tional basic sequences. Another property of Xj.s concerns bounded linear
operators. Namely every T : X — Xjus is of the form T = A + 5,
where S is strictly singular. Thus Xjs is not isomorphic to any of its proper
subspaces.

After submitting the present paper for publication A. Tolias and the
first author provided a dual pair X, X* of separable reflexive Banach spaces
such that X is unconditionally saturated and X* is H.I. (see [AT2]). The
construction of this dual pair makes use of the results and techniques of the
present paper.

2. Definition of the space Xj,s. We shall use the standard notation.
Thus cgp denotes the linear space of all eventually zero sequences, and for
x € coo we write suppz = {n : z(n) # 0} and denote by range(x) the
minimal interval of N containing supp x. Also for x,y € cgg by writing z < y
we mean that maxsuppz < minsuppy. We shall also use the standard
results from the theory of bases of Banach spaces as described in [LT].

We choose two strictly increasing sequences (n;);, (m;); of positive in-
tegers such that

(i) mi1 =2 and mjq1 = m?,

(ii) n1 =4 and njy1 = (4n;)%, where 2% > m?H.
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Let Q be the set of scalar sequences with finite nonempty support, ra-
tional coordinates and maximum at most 1 in modulus. We also set

QS = {(':Ul)fla'-wxn?fn) : xiafi € Q7 t=1,...,n,
range(x;) Urange(f;) < range(z;+1) Urange(fiy1) Vi < n}.

We consider a coding function o (i.e. an injection) from Qg to the set {2 :
j € N} such that for every ¢ = (21, f1,...,%n, fn) € Qs,

(2.1) J(.%'l, fl, ey Tp—1, fn—l) < J(.%'l, fl, ey Ty fn);
(2.2) max{range(x,) Urange(f,)} < m(lj/(j))

Although x;, f; are elements of cgy their role in the space Xj,s we shall
define is quite different. Namely z; will be elements of the space itself and f;
elements of its dual X . For similar reasons we shall denote the standard
basis of ¢y either by (ey), or (€} )n.

DEFINITION 2.1. A sequence ¢ = (x1, f1,...,Tax, for) € Qs is said to be
a special sequence of length 2k provided that
1 n2;j n2;j
(2.3) T = — €1,l, Z €1,
"2 M2

for some j € N such that ml/2 > 2k,

where (e, l) 1—1 is a subset of the standard basis of cgg of cardinality ns;, and
for every 1 <i <k, setting ¢; = (x1, f1,..., 2, fi), we have

1 1
(2.4) | f2illoo € ———,  [foi(22)| £ —,
Mo (¢oi_1 Mo (¢2i—1)
and if 7 < k then
U(¢21 °<¢22
(25)  @oiq1 = > esinin faipr =
((;521) =1 i

. N (o
where for every i > 1, (62i+1,l)l:§¢2”

of cardinality ny(4,,)-

is a subset of the standard basis of cgg

The norming set of the space Xiys. The norming set K will be the union
Un2 Kn, where the sequence (K,)y, is increasing and inductively defined as
follows. We set

Ky ={xe) :n € N}, Kg:(Z) for j=1,2,...
Assume that K1 = |J; K _; has been defined. Then for j € N we set

. : 1
K¥ =KX U —Zfiidﬁmg‘,f1<---<fd,fi€Kn—1 .
m2j i3
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Moreover, for j € N and every special sequence ¢ = (71, f1,.. ., Tny, s,

fna;41) of length nojiq (see Definition 2.1) such that fy; € KZ(_d)I%’I) for
1= 1, ey n2j+1/2 (Where ¢2i—1 = (331, fl, vy, X251, fgi_l)) we define

2141 +1
(26) K¥F —{ EOvpfit 4+ Ar Funyart 4 fons 1)

m2j+1 "2+

E an interval of N, supp f3; = supp fai,
foi € Kyl | falen)| < 1/mogon, ),

Aps. = foi(Mg(gg,_)ai) if fo;(22:) # 0, and :l:l/n%jﬂ otherwise}.

Here, for = Y2, a;e; and E C N, we denote by Ex the vector Y, aie;.
We define

K¥+l = LJ{KQJJrl : ¢ is a special sequence of length ng;i1} U sz_tl,
and finally we set .
K, =|JK}.

J
This completes the inductive definition of K,, and we set K = |J,, K.
Observe that K has the following properties:

(i) It is symmetric and ||f|lcc < 1 for each f € K.

(ii) It is closed under interval projections (i.e. closed under restriction
of its elements to intervals).

(iii) It is closed under the (A, 1/ma;) operations (i.e. for f1 < ... < fg
in K with d < ng; we have mQ_j1 Zle fi e K). |

(iv) If f € K then either f = +e¥ or f € Kj, for some n > 1, j € N. In
the latter case we define the weight of f as w(f) = m;. Note that w(f) is
not necessarily unique.

The space Xjys is the completion of the space (coo, || - || x), where

|zl x = sup{(f,z) : f € K}.
From the definition of K it follows easily that (ey), is a bimonotone basis
of Xijus. Also it is easy to see, by (iii), that the basis (ey), is boundedly
complete. Indeed, for € cgp and intervals Fh < ... < En,,; of N it follows
from (iii) that

naj

lzll = —— Z [ Eix]].

Also from the choice of the sequences (nl)z, (m;); it follows that ngj/me;
increases to infinity. These observations easily imply that the basis is bound-
edly complete.
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To prove that the space Xjys is reflexive we need to show that the basis is
shrinking. This requires some further work and we will present the argument
later.

LEMMA 2.2. Let ¢ = (o1, f1,. -+ Tny;y1s fro;41) be a special sequence of
length najy1 such that:

(a) {f, = 17 . ,n2j+1} C K and w(fz) = m0(¢¢71) fO?"i > 2.
(b) [[w(foi)z2ill <1 for 1 <i < mgjy1/2

Then there exists n € N such that bejgl s monemply.

NOTATION. For every special sequence ¢ of length 19,41 such that K 3;‘;1

# () for some n we define K4 =, Kfl];l

REMARK 2.3. Let us point out that in the definition of the special se-
quences we have attempted to connect averages of the basis with block vec-
tors that are quite freely chosen. This will be used to show that the quotient
map from Xjus to Xius/(€n)nenr is a strictly singular operator. Moreover we
keep the dependence only between f2;_1 and the family {g € K : w(g) =
w( f2;), supp(g) = supp(f2;)} to ensure that the space Xj,s is uncondition-
ally saturated.

DEFINITION 2.4 (The tree 7y of a functional f € K). Let f € K. We
define a tree of f (or tree corresponding to the analysis of f) to be every
finite family 7r = (fa)aca indexed by a finite tree A with a unique root
0 € A such that the following conditions are satisfied:

(1) fo= f and f, € K for each a € A.
(2) If @ € A is a terminal node then f, € K.
(3) For every a € A which is not terminal, if we denote by S, the set of

immediate successors of «, then exactly one of the following two conditions
holds:

(a) Sa = {B1,..., 04} with fg < ... < fg, and there exists j € N
such that d < ngj and f, = mz_j1 Zle fs:-

(b) There exists a special sequence ¢ = (21, f1,. .-, Tny, ;15 fra; 1) Of
length ngj11, an interval E and € € {—1,1} such that

- n2j4+1/2
= E(Xr foi ) €K,
fa — ; (Agy. f2im1 + f21) € Ky

and {fg: B € Sa} = {Efoi—1: Efoi1 # 0} U{Efy, : Efy; # 0}.

It follows from the inductive definition of K that every f € K admits a
tree, not necessarily unique.
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3. The space Xj,s is unconditionally saturated. We start by setting

~ 1 .

2 ier

Clearly K is a subset of the norming set K and it is easily checked that
K is a countable and compact (in the pointwise topology). It is well known
that the space C'(K) is co-saturated. Observe also that || - 7 <l llx;, and
hence the identity operator

I (o0, || Ixie) = (co0, I - [177)

is bounded. Since the basis (e,), of Xjus is boundedly complete, the space
Xius does not contain cg, and therefore the operator I is also strictly singular.
These observations imply that every block subspace Y of Xj,s contains a
further block sequence (y,,) such that ||y.||x... = 1 and ||yn|% — 0. Our
intention is to show the following;:

ius ||;{J

PROPOSITION 3.1. Let (7); be a normalized block sequence in Xius such
that ||z]|7 — 0. Then there exists a subsequence (x1)ien of (x1) which is an
unconditional basic sequence.

The proof of this proposition requires several steps and we sketch the
main ideas. First we assume, upon passing to a subsequence, that ||z z < o;
with > o7 < 1/8, and we claim that (z;);cy is an unconditional basic se-
quence. Indeed, consider a norm one combination Zle byz; and let (5;)?21 €
{—1,1}%. We shall show that ||Z:?l:1 eibyxy|| > 1/4. Choose any f € K with
f(Z;i:l bix;) > 3/4; we are seeking a g € K such that g(Z:;i:1 eibxy) > 1/4.
To find such a g a normal procedure is to consider a tree (fq)ac4 of the func-
tional f and then to produce inductively a functional g with a tree (ga)aca
such that

(3.1) |f(21) — g(eim)| < 201,

which easily yields the desired result.

In most cases, producing g, from f, is straightforward. Essentially there
exists only one case where we need to be careful: when f, € K4 for some
special sequence ¢ (i.e. f, = im2_j1+1E<)‘f§f1 +fi+.. '+/\f7'12j+171f”2j+1—1 +

fnaja)) and for some i < ngjy1/2 and [ < d we have
max supp z;—1 < minsupp fo;—1 < maxsupp zj,
max supp f4; > min supp x4 1.

In this case we produce g, from f, such that g, € Ky. The form of f, and
hence g, permits us to show that |fq(x;) — ga(e1xy)| < 207.
We now pass to the proof, starting with some notation and definitions.
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NOTATION. Let f € K and (f4)aca a tree of f. Then for every non-
terminal node @ € A we order the set S, following the natural order of
{supp f3}ges, - For B € S, we denote by 3 the immediate successor of 3
in the above order if such an object exists.

DEFINITION 3.2. Let f € K and (fq)aca a tree of f. A couple of func-
tionals f,, f,+ is said to be a dependent couple with respect to f if there
exists § € A such that o, ot € Sg,

- n2j4+1/2
— E( Ao fS 4 @>,
fs Maj1 ; B lai1 + fa

and f, = EfQﬁF1 and f,+ = Efg for some ¢ < ngjy1/2.

DEFINITION 3.3. Let (x)r be a normalized block sequence, f € K and
Tt = (fa)aca a tree of f. For k € N, a couple of functionals f,, f,+ is said
to be a dependent couple with respect to f and xy if f,, f,+ is a dependent
couple w.r.t. f and moreover

max supp ri_1 < minsupp fo < maxsupp Tk,
max supp fo+ > minsupp Tr41.
We also set

(3.2)  Fra, ={a € A: fo, fo+ is a dependent couple w.r.t. f and x;},
(3.3) Fr=JFra
k

REMARK 3.4. Let (x) be a block sequence in Xius, f € K and (fa)aca
a tree of f.

(1) Tt is easy to see that for every k € N and every nonterminal node
a € A the set S, N Fy,, has at most one element.

(2) As a consequence, for every k, any two elements oy, ap € Fy,, with
a1 # a9 are incomparable and || # |ae|, where we denote by || the order
of a as a member of the finite tree A.

(3) It is also easy to see that any oy, s € Fy with ay # g are incom-
parable and hence range(fo,) N range(fo,) = 0.

LEMMA 3.5. Let (x1)r be a block sequence in Xius such that |zl < oy,
let f € K and (fo)aca a tree of f. Set yy, = xk‘Uae]:f supp fo - Lhen

(3-4) |f (ye)| < 207

Proof. First observe that for each g € N the sets range(f,) with |a] = ¢
are pairwise disjoint. Therefore from the preceding remark we deduce that
for each k and each ¢ the set

{ac € Fy: |a| = q, range(fo) Nrange(zy) # 0}
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contains at most two elements (one of them belongs to F ,, and the other
to F¢, for some | < k — 1). Therefore

OIED DA | s [

acF; 0Xy=<a

1 1
= Z Z < H m)’fa(.%'k)’ < QUk;m—Zl < 20’k. u

% CME]'-f,‘a|:i 0=2y=<a

The following lemma, is the crucial step for the proof of the main result
of this section.

LEMMA 3.6. Let (zx)g be a block sequence in Xiys, f € K and (fo)aca

a tree of f. For every k € N set y, = xk‘Uae]:f supp fo - Lhen for every choice

of signs (ex)x there exists a functional g € K with a tree (go)aca such that:

(1) flor —yx) = g(er(@r — k),
(2) supp fo = sSupp gao for every a € A,
(3) Fran = Fgaps
for every k=1,2,...
Proof. For the given tree (fo)aca of f, we define

D = {8 € A :range(fg) Nrange(xy) # 0 for at most one k
and if 3 € S, then range(f,) Nrange(x;) # () for at least two z;}.

Observe that for every branch b of A, b D is a singleton. Furthermore, for
B €D and v € A with 8 < v we have v & F;.
The definition of (gq4)aca requires the following three steps.

STEP 1. First we define the set {gg : § € D} as follows.

(a) If B € D and there exists a € A with a < 8 and f,, fo+ is a
dependent couple w.r.t. f then we set gg = f3.

(b) If 8 € D does not fall under the previous case and there exists a
(unique) k such that range(f3) Nrange(zy) # 0 then we set gg = &1 f3.

(c) If B € D does not fall under case (a) and range(fg) N range(zy) = 0
for all k£ then we set gg = €}, f3, where

k = max{l : range(x;) < range(f3)}.

(We have assumed that minrange(z;) < minrange(f).)
Let us comment on case (a) in the above definition. First we observe
that the unique o € A witnessing that 3 falls under case (a) satisfies the
following: either o = (3 or |a| = |3] — 1. Moreover if this a does not belong

to F; then o = 3 and at € D. In this case, if we assume that there exists a
(unique) k such that range(f,) Nrange(zy) # 0 then g,+ is defined by cases



Indecomposable unconditionally saturated Banach space 9

(b) or (¢) and g+ = e f,+ for the specific k. All these are straightforward
consequences of the corresponding definitions.

STEP 2. We set
DT = {y € A: there exists 3 € D with 3 < ~}.
For v € D" we set g, = e3f,, where 8 is the unique element of D with
B <7, and eg € {—1,1} is such that gz = e3f3.
Clearly for every § € DU D%, (gy)g=y is a tree of the functional gg.
Furthermore for « € D U DT the following properties hold:
(1) supp fa = supp ga-
(2) w(fa) = w(ga)-
STEP 3. We set
D™ = {a € A: there exists § € D with a < }.

Observe that A = DU D™ U D~. Using backward induction, for all « € D~
we shall define g, such that the above (1) and (2) hold, together with the
following two properties:

(3) For « € D~ we have fq(xr — yr) = ga(er(xr — yi)) for all k.

(4) For a € D™ and each k we have Fy, ,, = Fy. z;-

Observe that f, ¢ Ko for every a € D™ and furthermore Fy, = () for
every 5 € D.

We now pass to the inductive construction of g,, @ € D™, and to estab-
lishing properties (1)-(4). Assume that « € D~ and for every g € S, either
f € D or gz has been defined and properties (1)-(4) have been established.
We consider the following three cases.

CasE 1. w(fa) =mg; and a € Fy.

That means that f, = m;jl Zﬁe s, Jp and each fg is ej for some [ € N.
Then S, C D and from Step 1(a) we conclude that gg = fg for all 5 € S,.

We set .
Jo = — Z gﬁ:fa'

o
% Bes,

Furthermore for each k& we have supp g, N supp xx C supp yi. Hence

9o (er(Tr — yk)) = falzr —yr) =0
and also Fy, = Fy, = (). Thus properties (3) and (4) hold while (1) and (2)
are obvious.
Before passing to the next case notice that there is no @ € D~ such that
fas fo+ is a dependent couple w.r.t. f and o ¢ Fy. (See the comments after
Step 1.)

CASE 2. w(fa) =mg; and a & Fy.
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From the previous observation we see that o # 3 for each § € A with
I8, fa+ a dependent couple w.r.t. f, and we set

Our inductive assumptions yield properties (1) and (2). To establish (3)
let kK € Nand f € DN S, be such that range(zy) N range(fg) # 0. Then
93 = €ifp and hence

9p(en(@r — yr)) = exgs(@e — yi) = fo(ze — yu)-
If 6 € D™ NSy, by the inductive assumption for each k we have

98(e(@e — yi)) = fo(xr — yr)-
Therefore

ga(ek(zr — yk)) = fa(@r — Yi)-
Finally, for each k,

Ffoaar = U }—fﬁﬂ?k = U ffﬁ,mk = U Fgﬁﬂ?k = Fga,ars
BESa BESaND~ BESLND—

which establishes property (4).
CASE 3. fa = € E()\féxfla—l—féx‘l——}-)\fa 7?2j+1—1+f7?2j+1) €K¢

m2j+1 n2j+1
where {fg: B€ Sy} ={Eff :Eff #0,1<i<mgji1},e€{-1,1}, Eis
an interval and ¢ is a special sequence of length ng;1.

Let ¢ = (21, f1, -+ s Znaj41» frajsq)- We can assume that ' = Nand e = 1.
Observe that the definition of {gs : § € D} and the inductive assumptions
imply that for i < ngjiq/2:

(i) foic1 = f5i_1 =95 _1-

(i) w(f2i) = w(f5) = w(g3)-

(ili) supp fa; = supp fg; = supp ga;.
We define

1
m2j+1

where {gs : B € Sa} = {9 : 1 < i < ngjq1}, while A\go are defined as
follows:

(5) If ggi(ZQi) # 0 then /\91211_ = gg‘i(mo(¢2i71)zgi).

(6) If g5;(22:) = 0 and f§;_; = fg, there are two cases:

(a) If B € Fy, or § & Fy and range(fg) Nrange(xy) = 0 for all k, we
set Ago. = 1/n§j+1.

(b) If B ¢ F; and there exists a (unique) k such that range(fg) N
range(xy,) # () then we set A\go. = epAfo.

o = ()‘ggfl +g§ + )‘gfff?) +g$ +.o.t /\9%2j+1fn2j+1—1 +g32j+1)7
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Observe that in the case (6)(b), as follows from the comments after Step 1,
g+ = €k fa+, hence fgi(22;) = 0 if and only if gg+ (22:) = 0.

From the above definition of Age., 1 <4 < ngj11/2, and (i)-(iii), we find
that the functional g, belongs to Ky C K.

Properties (1) and (2) are obvious for g,; we now check the rest. First
we establish property (4).

Let k be given. From Remark 3.4(1) it follows that there exists at most
one dependent couple f5;_;, f5; w.r.t. f and xy. Moreover, if such a couple
exists then F fonan = () for every i’ # i. Therefore in this case

(3'5) ffa’rk = ffé)‘i,l“k U {5}7

where f3; | = fs. If no such dependent couple exists, it follows that Fge
# () for at most one 4. This is a consequence of the definitions and the fact
that the functionals (f{); are successive. If such an i exists then

(3'6) ffa’rk = ffé)‘i,fﬂk‘

The last alternative is that Fy, ,, = (. This description of Fy_,, and the
inductive assumptions easily yield property (4). Namely, either

fga Tk fgzaiﬂ?k U {ﬂ}
if (3.5) holds, or Fy, o+, = Fyg x, if (3.6) holds, or Fy, o, = 0.

Finally, we check property (3). Fix k and i < ngjy1/2. If g5 = gg and
B € D~ the inductive assumption provides
(3.7) 92i(er(zk — yk)) = foi(xk — yr)-

If 3 € D and range(f$) Nrange(z) # 0 then g9 = ey f5, which yields (3.7).
Also if range(f$}) Nrange(xy) = 0 equality (3.7) trivially holds.

In the case g5;_; = g3, B € Sa, we distinguish two subcases. First assume
that 3 € F¢. Then supp g9;_; = supp f5;_, and supp fg;_; Nsupp(zx — k)
= (), therefore

92i1(Ex(ze —yr)) = 0= foi 1 (zx — k).
The second subcase is 3 € Fr. As explained in the comments after Step 1,
that means that either range( fg) Nrange(zy) = 0, hence everything trivially

holds, or 3, 8T € D, g+ = €k S+ and Agge. = €pAfe. From these observations
we conclude that

Ags:92i1(Er(Tr — Yk)) = Agg foi 1 (T — yk)-
All these yield the desired equality, namely
ga(er(zr — yk)) = fa(®r — Yi)-
The inductive construction and the entire proof of the lemma are complete. =

Proof of Proposition 3.1. Let (0;); be a decreasing sequence of positive
numbers such that ) ,0; < 1/8. For each | € N we select k; such that
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|z, [l < o1. For simplicity we assume that the entire sequence (z;) satisfies
the above condition. Let Zle byx; be a finite linear combination which max-
imizes the norm of all vectors of the form Zflzl cixp with |¢| = |by|. Assume
furthermore that ||z:§l:1 bizy|| = 1 and let f € K with f(Z;i:l bixy) > 3/4.

Choose {g;}¢_, € {—1,1}¢ and consider the vector Zle gibjx;. Lemma 3.6
shows that there exists ¢ € K and, for each [ = 1,...,d, a vector y; such
that

(3.8) 9<§:€lbl(l‘l - yz)) = f(zd: bi(x; — yl))-
=1 1=1

Also Lemmas 3.5 and 3.6(2), (3) yield
lg(w)| <20y, |f(y)| <20, foralll=1,...,d.

Hence

H iﬂbll‘lH > ’g<zd:65bl$l>‘ > }9(i5lbl($l —?ﬂ))‘ - Xd: l9(y1)]
=1 =1 =1 /=1
> \f(ibm)y =S bl = 3 )
=1 =1 =1

>3/4—-2/4=1/4.
This completes the proof of the proposition. =

4. The space Xj,s is indecomposable. In the last section we shall
show that the space Xjus is indecomposable. This will be a consequence of
a stronger result concerning the structure of the space B(Xiys) of bounded
linear operators acting on Xij,s. The proof adapts techniques related to H.I.
spaces as presented in [AT1]. Thus we will first consider the auxiliary space
X, and we will estimate the norm of certain averages of its basis. Next we will
use the basic inequality to reduce upper estimation of certain averages to the
previous results. Finally, we shall compute the norms of linear combinations
related to special sequences.

The auziliary spaces Xy, X, . We begin with the definition of the space
X which will be used to provide us with upper estimates for certain averages
in the space Xjus.

The space Xy is the mixed Tsirelson space T[(A4p;,1/m;)52,]. The
norming set W of X, is defined in a similar manner to the set K.

We set Wl = {£e* : n e N}U{0} for j € N, and Wy = U; Wg. In the
general inductive step we define
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d
, , 1
W,%:Wé_lU _Zfi3d§4nj7f1<---<fd6Wn71
i3

and W, = J; W. Finally, let W = U,, Wn. The space X, is the completion
of (coo, || - I, where

[zllw = sup{(f,z) : f € W}.

It is clear that the norming set K of the space Xjus is a subset of the convex
hull of W. Hence ||z||x < ||z||w for every z € cgp.

We also need the spaces X, = T[(A4n,, 1/mj)§:1]. The norm of such
a space is denoted by |-, % and it is defined in a similar manner to the

norm of X,. Namely we define W7, n € N, 1 < j < k, as above and
WT(Lk) = Ule Wi. The norming set is W*) = Uy Wék). Spaces of this
form have been studied in [BD] and it has been shown that such a space is
isomorphic either to some £, 1 < p < 00, or to cp.

Before stating the next lemma we introduce some notations. For each

k € N we set
1 1

Gk =17———— DPr=
logyy,, Mk

1-— 10g4nk mi '
LEMMA 4.1. For the sequences (m;);, (n;); used in the definition of Xius
and Xy, Xy, the following hold:

(1) The sequence (qj); strictly increases to infinity.

(2) For z =Y wey € coo, [|z|lup < ||z,
1 1

> e
Nk+1

i=1

3) <

o Mkl

Proof. (1) Using the facts that m;y = m?, nj+1 = (4n;)% and s;
increases to infinity, we find that
1 1 - 1 55
= = —Q"
10g4nj+1 mj+1 10%4(4nj)51‘ m? % 10g4nj mj 57

qj+1 =

hence (g;); strictly increases to infinity.
(2) We inductively show that for f € W,(lk),

() = | S

For n = 0 this is trivial. The general inductive step goes as follows: for
(k)

Pk

f(zalel) = ﬂ%g;ﬁ(xal@l)a
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where fi < ... < fqgand d < 4n; for some j < k. We set E; = range(f;) and
from our inductive assumption and the Holder inequality we obtain

(S| < S 3 e, < S (3] )™

Making use of p;, < p; and m; = (4nj)1/ % we obtain inequality (2).
(3) We have

d 1/q;

Pk

Nk+4+1
1 i _ 1 1 1 1
€; = = .
- 1 Sk — 3
el 327 g nkff (4ng)se/dmyt = mig,

(Recall that 2% > m%+1.) .
The tree 7y of f € W is defined in a similar manner to that for f € K.
LEMMA 4.2. Let f € W and j € N. Then
2
1 &
4.1 — .
an ()

3 W if w(f) < my,
J =1 - 1

w(f) ifw(f) >m

If moreover there exists a tree (fa)aca of f such that w(fo) # m;j for every
a € A, then

(4.2) ’f( )’ <mi§

In particular the above upper estimates hold for every f € K.

Proof. If w(f) > m; the estimate is an immediate consequence of the
fact that || fllcc < 1/w(f). Assume w(f) < m; and let (fo)aca be a tree
of f. We set

B = {i : there exists a € A with k; € supp f, and w(fs) > m;}.
Then

3 (e w2 n)| < agy

To estimate \f(nj_l > icpe €k;)|, we observe that fli..icpe) € WU=D (the
norming set of X, j_1) and hence Lemma 4.1 yields

o )

_3.
Combining (4.3) and (4.4) we obtain (4.1).
To prove (4.2) we define

m;

B = {i : there exists a € A with k; € supp f and w(fo) > mj1}
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and we conclude that

(4.5) \f(,%Z%)\s 1 <%.
J

. M
J i€cB j+1

Furthermore from our assumption w(fo) # mj for every a € A we con-
clude that f[(,.icpey € WU=1, This yields that (4.4) remains valid, and
combining (4.4) and (4.5) we obtain (4.2). m

The basic inequality and its consequences. Next we state and prove a ba-
sic inequality which is an adaptation of the corresponding result from [AT1].
Actually the proof of the present statement is easier than the original one,
due mainly to the low complexity of the family A,, ([AT1] studies spaces
defined with the use of the Schreier families (S¢)¢<.,) and also since the
definition of the norming set K does not involve convex combinations. This
result is important since it includes most of the necessary computations
(unconditional or conditional).

Recall that K and W denote the norming sets of Xjus and X, respec-
tively.

PROPOSITION 4.3 (Basic inequality). Let (xy) be a block sequence in Xiys,
(Jk) a strictly increasing sequence of positive integers, (bx) € cop, C > 1 and
e > 0 such that:

(a) ||zk|| < C for every k.
(b) #(suppxx)/my,., <€ for every k.
(c) |f(zk)| < C/w(f) for every k and all f € K with w(f) < mj,.

Then for every f € K there exist g1 such that g1 = h1 or g1 = ef +hy, where
t € supp hi, h1 € W, w(h1) = w(f), and g2 € cop with ||g2]|cc < € such that

(4.6) ‘f(Zbkxk)} <C(g + 92)(2 |bk|€k)7

and supp g1, supp ge are contained in {k : supp f Nrange(xy) # 0}.
(d) If additionally, for some jy € N, we have

(4.7) ‘f(kngbkka SC(glggj{]bM%—E%\bk])

for every interval E of positive integers and every f € K with w(f) = mj,,
then hi may be selected to have a tree (ha)aca, such that w(hy) # mj, for
every a € Ajp.

Our intention is to apply the above inequality in order to obtain upper
estimates for ¢; averages of rapidly increasing sequences. Observe that the
above proposition reduces this problem to estimating the functionals g1, g2
on a corresponding average of the basis in Xj,.
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The proof in the general case, assuming only (a)—(c), and in the special
case, where additionally (d) is assumed, is the same. We will give the proof
only in the special case. The proof in the general case is obtained by omitting
any reference to the question whether a functional has weight m , or not. For
the rest of the proof we assume that there exists jo € N such that condition
(d) in the statement of the proposition is satisfied.

Proof of Proposition 4.3. Let f € K and let Ty = (fa)aca be a tree of f.
For every k such that supp f Nrange(xy) # ) we define

Ap={a€A: (i) supp fo Nrange(zy) = supp f Nrange(zy),
(ii) w(fy) # my, for all v < a,
(iii) there is no § € S, such that

supp fo Nrange(zy) =supp fz Nrange(zy) if w(fo)#mj, }.
From the definition, it follows easily that for every k such that supp f N
range(xy) # (0, Ay is a singleton.
We recursively define sets (Dgq)aca as follows.
For every terminal node « of the tree we set D, = {k : a € Ay}. For
every nonterminal node o we define

Dy={k:a€ Ay} U U Dg.
BESa
The following are easy consequences of the definition:
(i) If 8 <, Dy C Dg.
(ii) If w(fo) = mj,, then Dg =0 for all 5 > a.
(iil) If w(fa) # myj,, then {{k} : k € Do \ Uges, DptU{Dpg: B € Sa}is
a family of successive subsets of N.
iv) If w(fa m;,, then for every k € D, Dg there exists
jo BESa B
f € S, such that minsuppz; < minsupp fg < maxsuppzy and for k' €
Do\ Upes, Dp different from k the corresponding 8 is different from S.

Inductively for every a € A we define g} and g2 such that:
(1) For every a € A, supp gL, supp g2 C Dag.
(2) If w(fa) = mj,, then gl = €. Where |by | = maxep, |bx|, and

ggc =¢£ ZkeDa €

(3) If w(fa) # mj,, then gé = hg oOr gcly = e;;a + hq, where ko & supp ha,
he € W and w(hg) = w(fa)-

(4) For every a € A,

< Z bkxk>’ <C( ga—i—ga < Z ’bk|€k>

k€Dq k€Dq
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For every terminal node we set g} = g2 = 0 if D, = 0, otherwise g} = e
if D, = {k} and g2 = 0. Assume that we have defined the functionals g};
and gg satisfying (1)—(4) for every § € A with || = k, and let a € A with
la] =k — 1. If D, = 0 we set g} = g2 = 0. Let D,, # (). We distinguish two
cases.

CAsE 1. w(fa) =m; 7& mj,.

Let To = Do \ Upegs, Dp = {k : @ € Ay}. We set T2 ={k € To, : m;,,,
<m;}and T} = T, \ T2. In the pointwise estimations we shall make below,
we shall discard the coefficient Aj,,, which appears in the definition of the

special functionals, since [Ay,,| < 1.
From condition (b) in the statement, it follows that for each k € T2,

(48 1falon)] < #uppa)|falle < #(suppa) —— <= < Ce.

J
B S o
keT?2 BESa
We observe that ||g2||c < €, and that |fu(21)| < Ce = Cg?(ex) for every
keT?
Let T} = {k1 < ... < k;}. By the definition of T.! we have m; < mj,, <
mj,, < ... <my, . Thus condition (c) in the statement implies that

C 1
4.9 olzr,)| < — = — €. (Cey, f 2<e <.
(@9)  Ualow) € = -l (Cer) forevery 25 <

We define

We set
o= €y + — (Zek + ) gg)
BESa
(The term e does not appear if w(fa) < my, for every k € T,.) We have

to show that

i=2 BESq

From the inductive hypothesis, we have gﬁ = hg or gﬂ ek +hg, hg € W,
for every 3 € S,. For 8 € S, such that gﬁ = ekﬁ + hg, let Eﬁ ={neN:

n < kg} and Eg ={n e N:n > kg}. We set hé = Eéhg, h% = E%hg. For
every ( such that gé = e,’zﬁ + hg, the functionals hé, 6257 h% are successive

belonging to W, and for 3 # 3’ € S, the corresponding functionals have
disjoint ranges, since supp gé is an interval (remark (iii) after the definition

of D,). From remark (iv) after the definition of D, we have #T1 < n;. It
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follows that
#({er, 12 <i <1} U{et, hp b3 : B € Sa, g5 = €}, + s}
U{hg: B € Sa, gs = hg}) < 4n;.
Therefore h, = m; 1(22:2 ezl + Z,Besa gé) cWw.

It remains to show property (4). By (4.9) we have |fa(xr,)| < Cgl(e,)
for every 2 <14 <[, while

[fal@r)] < law || < Ceg, (ex,) = ga(Cer)-

(3 )

We also have

WY ey

keUses, Dp keDg
e
) BESa keDg
S — Z gﬂ+gﬁ (C Z |bk|€k>
) BeSa keDg
<(ga+92(C Y Iouler).
kEDq

CASE 2. w(fa) = my,.

In this case D, is an interval of positive integers and D, = ) for every
v = a. Let ko be such that by, = maxgep,, |bi|. We set

1 % 2 E: *
ga—eka, 9o =€ €.

k€D,
Then
fa(( Y )| < c(max\kaa > lol)
k€Dq k€D,
= (s +92(C Y Ioeler).
k€D,

DEFINITION 4.4. Let k € N. A vector ¢ € ¢y is said to be a C—E’f
average if there exist 71 < ... < a3, with |lz;]| < C||z| and z = k1 Zle x;.
Moreover, if ||z|| = 1 then = is called a normalized C-¢§ average.

LEMMA 4.5. Let j > 1 and x a C—ﬁrfj average. Then for every n < n;_1
and every E1 < ... < E,, we have

Z|E:c||<0<1+ ><gc.

1=1
We refer to [S] or [GM, Lemma 4] for a proof.
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PROPOSITION 4.6. For every normalized block sequence (y;); and every
k > mq there exists a linear combination of (y;); which is a normalized 2-£%
average.

Proof. Given k > mg there exists j € N such that moj_1 < k < mgjq1.
Recall that ngjio = (4ngjy1)*%+ and m§j+2 < 2%2j+1, Hence setting s =
s2j41 we have k* < ngj o and 27° < 1/mg; 0. Observe that

(4.10) H Zy H >

Assuming that there is no normalized 2-¢% average in (y; : i < k°) and
following the proof of Lemma 3 in [GM] we obtain

kS
(4.11) H Sy
=1

Since 27% < 1/mgj42, (4.10) and (4.11) yield a contradiction. =

m2]+2

< k%-275.

DEFINITION 4.7. A block sequence (zj) in Xijus is said to be a (C,¢)
rapidly increasing sequence (R.1.S.) if there exists a strictly increasing se-
quence (ji) of positive integers such that:

(a) [lzx]l < C.

(b) #(range(zg))/myy ., <e.
(c) [f(z)| < Clw(f) for all k =1,2,... and f € K with w(f) < m;,.

REMARK 4.8. Let (z1)r be a block sequence in Xjus such that each xy
is a normalized 2C'/ 3—6?’“ average and let ¢ > 0 be such that for each k,
#(range(xy))(1/mj, ;) < e. Then Lemma 4.5 implies that condition (c) in
the above definition is also satisfied and hence (zj)x is a (C,e) R.I.S. In
this case we shall call (z)r a (C,e) R.I.S. of {1 averages. Observe also that
Proposition 4.6 ensures that for every block sequence (y;); and every £ > 0
there exists (zy ), which is a (3,¢) R.I.S. of ¢; averages.

PROPOSITION 4.9. Let (z3);”, be a (C,e) R.LS. such that ¢ < 1/n;.
Then:

(1) For every f € K,
3C

’f< >< m if w(f) < my,
niim T 20 ) s m.
w(f) = ny -

In particular Hn;l Sl x| <2C /my.
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(2) If for jo = j assumption (d) of the basic inequality is satisfied (Propo-
sition 4.3) for a linear combination n;l S, bixi, where |b;| < 1, then

i=1
(3) If (l‘l):i]l is a (3,¢) rapidly increasing sequence of {1 averages then
nj

Ly

.
27 =

1
(4.12) — <
maj

6
< —.
mQj

Proof. The proof of (1) is an application of the basic inequality and
Lemma 4.2. Indeed, for f € K, the basic inequality implies that there exist
hi € W with w(f) = w(hy), t € N with ¢ ¢ supphy, and hy € cop with
lh2]leo < €, such that

nj

(4.13) ‘f(n%émk> < (e’;+h1+h2)c<%;ek>.

Using Lemma 4.2 and the fact that € < 1/n; we obtain

j

(4.14) ’f(ni]Za:O
k=1
C 2C .
< n_j+w(f)mj+06§w(f)mj if w(f) < m;,
-] C C C 20,
n—j‘i‘W—FC&SW—Fn—j lf'w(f)ij.

To prove (2) we observe that the basic inequality yields the existence of hq,
ho such that hy has a tree (hq)aea such that w(hy) # m; for every a € A
and ||hz2|lcc < e. This and Lemma 4.2 yield

(4.15) ‘f(niankka < (el + I +h2)c<ni§:ek>

) J k=1
C 2C 4C
< —+ —3 + Ce < —3.
nj - m m’

The upper estimate in (3) follows from (1) for C' = 3. For the lower estimate
in (3), for every i < na; we choose a functional f; belonging to the pointwise
closure of K such that f;(x;) = 1 and range(f;) C range(z;). Then it is easy
to see that the functional f = mg_jl Z?jjl ; belongs to the same set and

provides the required result. m

PROPOSITION 4.10. The space Xius 1S reflexive.
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Proof. As explained after the definition of the norming set K, the basis
is boundedly complete. Therefore to show that Xj,s is reflexive we need to
prove that the basis is shrinking.

Assume the contrary, i.e. there exists ©* = w*-3.°° | byel, and z* & (e},).
Then there exists £ > 0 and successive intervals (Fy )i such that || Exx*|| > e.
Choose (zy)r in Xjus such that suppzx C Fk, ||zk]| = 1 and x*(zx) > . It
follows that every convex combination ) apzy satisfies

(4.16) H Z akka > .

Next for j sufficiently large such that 4/emg; < ¢ we define y1,...,yn,; to
be a (2/¢,1/n25) R.LS. of ¢ averages such that each y; is some average of
(k). Proposition 4.9(1) yields

(4.17) H_ y1+...+ ynzj) <€

<

‘ maj &

Clearly (4.17) contradicts (4.16) and the basis is shrinking. =
The structure of B(Xius)

DEFINITION 4.11. A sequence X = (o1, f1,. -+, Tny; 41, fro;4) 18 said to
be a dependent sequence of length nyjy1 if the following conditions are sat-
isfied:

(i) There exists a special sequence

¢ = (xla fl?yQ) f2) cee sy L24—1, f2i—17y2ia f2ia e 7yn2j+17fn2j+1)
Qf length ngj41 such that supp yo; = supp 2; and ||y2; — za;|| < 1/n]2-%7 where
Ji+1 = U(¢Z) forl1 <i< MN2j+1-
(ii) For i < ngjy1/2 we have
c Mg,
2i ;
Toj = —— Zﬂﬁzzla
M2 =4

where (27%); is a (3,1/n;,;) R.LS. of £1 averages and cy; € (0, 1).

(iil) f2z($2i) Z 1/12mj21,.
The following is a consequence of the previous results, and we sketch the
proof of it.

LEMMA 4.12. Let (yx)r be a normalized block sequence in Xiys and
(en)nem be a subsequence of its basis. Then for all j € N there exists a
dependent sequence

X = (xlyflv cee 7xn2j+17fn2j+1)
of length noji1 such that for each i < ngji1/2, x2im1 € (en)m and xo;
€ (Yr)k-
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/

2
> n2jg. We set

Proof. Let j1 € N be even such that m]1

nj nj
I I .
Ty =— E e, J1=— E €1is
(i M i3

such that 1 € (ey)ar. Let jo = o(z1, f1). Using Proposition 4.6 we choose a
(3,1/n4,) R.LS. (m%)?fl C (yx)x such that z; < z? for every | < nj,. Next for
every | < nj, we choose a functional f? € K such that f2(z7) > Z||z?|| > 2
and range(f#) C range(x?). We set

n]2 ’Vlj2

1 1 j
fo= fo, To = 2 x}, where ¢y =~ (1 - m2]2>
Mj2 7= Ny 7 6 n,
From Proposition 4.9, it follows that ||z2|| < 1/m;, — l/n?Q. We also have
1 e & 2 o 1
(4.18) fa(z2) > = i) >3 =
My Ty ; 3 My, 12my,

We choose y2 € Q (that is, y2 is a finite sequence with rational coordinates)
such that ||y — x| < 1/11?2 and supp ya = supp z2. It follows that ||y <
1/m;, and therefore (x1, f1, y2, f2) is a special sequence of length 2.
We set js = o(x1, f1,y2, f2) and we choose
’I’L]’S 'rLj3
3 = L esl, f3= !
Njs 9 Mjs 7

such that range(ys)Urange(f2) < range(zs) and x3 € (ey,) - Next we choose
x4, f4 and y4 as in the second step; it is clear that the procedure goes through
up to the choice of wp,, ,, fny;; and Yn,, . =

REMARK 4.13. (a) Observe that the proof of Lemma 4.12 shows that
if x = (@1, f1,.++Tng;41» froye) is @ dependent sequence, then for every
i < ngjr1/2 we have

Mg

C2i Z 2
€r2i = z,
n

J2i |4

where (:U?l)l is a (3,n,,) R.IS., jo; = 0(¢2i—1) and cz; < 1/6. It follows from
Proposition 4.9 that ||mj,, x2;|| < 1, and also if f € K and w(f) < mj,, then
f(myjy, i) < 2/w(f).

(b) Definition 4.11 essentially implies that a dependent sequence is a
small perturbation of a special sequence. Its necessity occurs from the restric-
tion in the definition of the special sequence ¢ = (1, f1, ..., Ty 15 fro; i)
that each z; € Q (i.e. z;(n) is a rational number), not permitting to find
such elements x; in every block subspace.
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Next we state the basic estimates of averages related to dependent se-
quences.

LEMMA 4.14. Let x = (21, f1, -+, Tnyj 15 fno;1) be a dependent sequence
of length najy1. Then
n2j+1
1 ; 8
> () m| <
n2j+1 Moj4+1
where mj, = w(f;).
LEMMA 4.15. Let ¢ = (w1, f1,- -+ Tng,y1» froyn) be a special sequence.
For every i <mnagjy1/2, let o(x1, f1,...,22i-1, foi—1) = joi and let
Ms Mo
Yo = —22 €k,
[P —

be such that
supp fo; Nsuppyz; = 0,  supp fai—1 < suppyo; < supp fait1-

Then
1 n2j4+1/2 N
— > | <
M+ 4 M2j4+1

These two lemmas are the key ingredients for proving the main results
on the structure of Xjus and B(Xij,s). We proceed with the proof of the main
results; the proof of the two lemmas will be given at the end.

PROPOSITION 4.16. Let M € [N] and let (yx)r be a normalized block

sequence. Then
dist(5'<en>M7 S<yk>k) =0.

Proof. For a given € > 0 we choose j € N such that 8/m%j+1 < €. From
Lemma 4.12 there exists a dependent sequence x = (21, f1, - - -, Ty 15 fra; i)
such that zo;_1 € (en)nm, T2i € (yi)k for every i < nojyq1/2. Set

n2j+1/2 n2;j41/2
B m2]+1 _ Mmaj+1
Mo 1L2i—1; - Mo L2
n2j+1 n2j+1

Then e € (e, : n € M) and y € (y; : ¢ € M). From Lemma 4.14 we have
lle —yl| < 8/m%j+1. To obtain a lower estimate of the norm of e and y we
consider the functional

1 n2j41/2
= Ar. for_ + i
= ; fafai1 + foi

where Ap,, = fgi(mj%ygi) and ¢ = (x1, f1,¥y2, f2,. .. s Ynajin fn2j+1) is the
special sequence associated to the dependent sequence . From the definition
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of the dependent sequence, fo;(m,,x2;) > 1/12, and [|x2; — you| < 1/n?22, for
every ¢ < ngj41/2. It follows that

1 1
>\f2i = f(ijiy2i) > f(mjzix%) - mjziH$2i - yQZH > 12 - @ > bYR
Therefore
n2j4+1/2
; ANt foi—1(m,,  Toi— 1
(119) el > fle) = "2t S0 AmPua i) 1
maj+1 n2j+1
m n2j+1/2f Mjy: T2;) 1
2541 21 J2i\Mlg9;42¢)
4.20 yl| > f(y > .
a20) a2 g = A 30 B o

These lower estimates and the fact that ||e — y|| < 8/ m%j 41 easily yield the
desired result. m

LEMMA 4.17. Let T : Xijus — Xius be a bounded operator. Then
lim dist(Te,,, Rey,) = 0.
n

Proof. Without loss of generality we may assume that ||T'|| = 1. Since
(en) is weakly null, by a small perturbation of 7' we may assume that Te,
is a finite block, Te,, € Q and minsuppTe, — oo as n — oo. Let I(ey)
be the smallest interval containing supp T'e,, U supp e,,. Passing to a subse-
quence (en)nen, we may assume that I(e,) < I(ey,) for all n,m € M with
n < m.

If the result is not true, we may assume, on passing to a further subse-
quence, that there exists § > 0 such that

dist(T'en,Re,) > 26  for every n € M.

It follows that ||P,—1Tey,| > ¢ or ||(I — P,)Tey|| > 9. Therefore for every
n € M we can choose z, € K such that

(4.21) =z} (Te,) >0, range(z))Nrange(e,) =10, range(z)) C I(en).
Since T' is bounded, for every j € N we have

1 naj n2]
T e < ||| ||— €L
()| < imi X

=1

1

mgj

Also for every j € N and k1 < ... < k:n2j in M, the functional hg; =
m2_j1 2?2231 le isin K and

1 ng; naj n2; §
L [ N S
J =1 2= i=1 2



Indecomposable unconditionally saturated Banach space 25

We now consider a special sequence ¢ = (1, f1,... ,xn2j+1,fn2j+1) which is
defined as follows: for every ¢ > 0,
Mo (¢9;) Mo (d9;)
1 A 1 ¥ .
T2i41 = > eairny, Jaiv1 = > i
No(¢2i) 5 Mo($2) 5
Mo (¢2i—1) 1 Mo (d2;—1)
*
To; = § TeQz,ja f2i = E L2i 5>
(¢zz 1) R Mo ($oi—1) j=1

where e;; € {e, : n € M}, a3, ;, Teq; ; satisties (4.21), and I(e;;) < I(es ;)
if either ¢ < s, or i« = s and [ < j. This is possible by our assumption
I(en) < I(em) for n,m € M with n < m. Observe that fo;(my(g,,_,)T2i) > §
and also that range( f1) Nrange(x9;) = 0 for every [ # 2i. Con51der now the
following vector:

1 n2j+1/2m Mo ($i—1)
e DL
n2j+1 i=1 Mo (B2i-1) j=1
Then
1 n2j+1/2
Txr = m RV Y
ngji1 lz:; o(pai—1)L2is
and
ngj4+1/2
Tx| > Aoifoic1 + foi)Tx > .
ol > o Y Ohfaims + )T > 5
On the other hand, if
m Mo (doi—1)
y2i:70(¢2%1) Z €25
na(¢2i—1) j=1

then supp y2; Nsupp fo; = 0 and 9,1 < y2i < @241 for every ¢ < ngji1/2,
and therefore by Lemma 4.15,

1 n2j+1/2 N
Joll = [—— 3 i < ——.
M2+l o 2j+1

Hence ||T|| > f—ﬁm%j 41, & contradiction for j sufficiently large.

PROPOSITION 4.18. Let T : Xijus — Xjus be a bounded operator. Then
there exists A € R such that T — A\ is strictly singular.

Proof. By Lemma 4.17 there exist A € R and M € [N] such that
limpenr || Ten, — Aep|| = 0. Let € > 0. Passing to a further subsequence
(€n, )k, we may assume that ||Te,, — Aen, || < e27% for every k € N. It
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follows that the restriction of ' — AI to [en,, k € N] is of norm less than e.
By Proposition 4.16 it follows that T' — AI is strictly singular. =

The following two corollaries are consequences of Proposition 4.18 (see
[GM]).

COROLLARY 4.19. There is no nontrivial projection P : Xiys — Xius-

COROLLARY 4.20. The space Xiys is not isomorphic to any proper sub-
space of it.

It remains to prove Lemmas 4.14 and 4.15. We start with the following.

LEMMA 4.21. Let j € N and ngjr1 < mj, < mj, < ... < mj, be such
/

1

that 2r < ngjy1 < m]1 % Let also Jo € N be such that mj, # m;, for every

1=1,...,2r and mjl-({z > ngjp1. Then if by < ... < hg, € K are such that
w(h;) = mj, for everyi=1,...,2r, then:

(a)
(4.22)

r L
<Z Agk—1hok—1 + h2k> (ZZM Z%) ' <
k=1

for any real numbers (Aog—1)j_q with [Aar—1| <1 for every k <.
(b) If (xl)?iol is a (3,1/nj)) R.I.S. of {1 averages, then

(2’": Agk—1hor—1 + h2k> <ng0 io: 161) ‘ < !
k=1

it n2j+1

(4.23)

for any real numbers (Aog—1)j_q with [Aar—1| <1 for every k <.

Proof. We shall give the proof of (b) and we shall indicate the minor
changes for the proof of (a).

From the estimates on the R.I.S. (Proposition 4.9), for every k < 2r we
have

(4.24) ‘hk<mjo le)‘ - {Q/w(hk) if w(he) < myjo,
' njo = = 3/my+6/nj, if w(hg) =my > mj,.

Since mji1 = mg’ for every j and |Agx—1| < 1 for every k < r, from (4.24)
we get

r s Tjo
Aop1hop_1+ h ) do
‘<k2:1 2k—1M2k—1 + N2k <n chl)

Jo =1
9 3 127 10 4 127 1
S it 2 St g S
kw(hg)<mj, k r>jo Jo 1 o J0 2j+1

For the proof of (a), using Lemma 4.2 we get an inequality corresponding
to (4.24), from which (4.22) follows. m
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Proof of Lemma 4.14. Let x = (1, f1,- -+, Znyj41s frays,) be a depen-
dent sequence and ¢ = (y1, f1, Y2, f2, - -+, Ynaj415 fna,; 1) the special sequence
associated to x. In the rest of the proof we shall assume that y = ¢. The
general proof follows by slight and obvious modifications. Hence we assume
that ¢ = (21, f1,- - Tnoj 15 friogin)-

From Lemma 4.2 and Remark 4.13(a) it follows that the sequence
(my,m;); 2" satisfies assumptions (a), (c) of the basic inequality for C' = 2.
Furthermore the properties of the function ¢ imply that assumption (b) is
also satisfied for ¢ = 1/ngj41.

The rest of the proof is devoted to establishing that the sequence (m,z;);
satisfies the crucial condition (d) for mj, =ma;j+1 and (b;); = ((—=1)"Y/ng;41);.

First we consider f € K. Then f is of the form

"2 +1

€
f=E<M()\f§fl+fé+---+ fn2;+1 1+f”23+1)>

where ¢ € {—1,1} and E is an interval of N. Recall that w(f3;,) = w(f2)
and supp f5; = supp f2; and therefore range(f3;) N range(xy) = 0 for every
k # 2i. Let

ip = min{i < ngj;1/2 : supp f N (range(x2;—1) Urange(zy;)) # 0}.

Then
n2j+1
‘f< Z l+lmji$z’>
n2;j41/2 n2j+1
_ O forr + 4 ( 1 Hlm‘im')
2 Ot A
1 /
(4.25) < -~ Aty Bfoio—1 (i, 1 %2i0-1) = Ef2iq (Mo 22|
1 n2;j+1/2
(4.26) +— > (/\féif%—l(mj%lxzifl)—féi(mjgixzz'))‘-
maj+1 imigt1

To estimate the expressions in (4.25) and (4.26), we partition the set
{i0,...,n2j4+1/2} into A = {i : f),(x2) # 0} and B. For every i € A,
i > g, since Agy = f3,(my,,w9;), we have

(4.27)  Apg faim1 (Mg, ®2i-1) — foi(my,,22:)

= féi(ijiin) - féi(m]éix%) =0.
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For every i € B we have fy(2;) = 0, and therefore |Af; | = 1/7’L%jJrl (see

(2.6)). It follows that for every i € B with ¢ > i,

(428) Ay faim1 (Mg w2im1) = foi(myp,a2:)| = Ay | = —
USTES]

For the term in (4.25), distinguishing whether or not Efs;,—1 = 0 and

whether ig € A or iy € B, it follows easily using the previous arguments
that

(4.29) A g B f2io—1 (Mg 1 %200-1) = B foy (mjo;, %2i0)| < 1.
Summing up (4.27)—(4.29) we have

n2;j+1 im1
1 1 1 1
< + — < .
moj+1 \M2j+1 USYTER n2;5+1
Consider now a special sequence ¥ = (Y1, 91, - Ynoj 1> Gnajyq)- Let i1 =
min{i € {1,...,n9541} : yi # x; or g; # fi}, and let kg € N be such that
il = 2]{70 —1lor 2]€0.
Consider a functional g € Ky, which is defined from this special sequence.
Then

1

1 / /
g = E<m2j+1 ()\gégl + g? + ce + )‘g;2j+l gn2j+1*1 + gn2j+1))7

where E is an interval of N and w(g);) = w(ge) for every i < ngji1/2.
Observe that range(z;) Nrange(gx) = 0 for every i« > i; and every k < ij.
Let

io = min{i < ng;41/2 : supp g N (range(x2i—1) Urange(xq;)) # 0}.
Let ip < kg. Then

n2j+1

(Y (-1 )
i=1
(@31) < o (1A 92001 (Mg 1 Pai01) = By (M, 20|
J
ko—1
(4.32) +’ Y gy g2i-1 (s, @2i-1) = ghi(myy,020) )
i=t9+1
(4.33) + o +1‘ Z (Agy, 92k— 1+ 9ok) (me 122i-1 — mmx%)
J

k>ko i>ko

where the sum in (4.32) makes sense when ig < kg — 1. If ig > ko we get
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n2j+1
(> (=1 )
=1

1

majy1

<

‘E > (g, 9261+ ghy) ( D My w1 — mjmm)

k>ko i>ig

The proof of the upper estimate for the two cases is almost identical, so we
shall give the proof in the case ig < ko.
As in the previous case, for the term in (4.31), (4.32) we have

(4.34)  |EAgy, 92io—1 (M1 T2i0-1) — Egiq (Mo, 2|
ko—1
+ ‘ Z (AgéiQQi—l(iji—lxzi_l) - géi(ijimZi) <2
i=ig+1

To estimate the sum in (4.33), first we observe that from the injectivity
of o it follows that there exists at most one k > 41 such that

w(gr) € {my, +i1 < i < ngjyr}.

Let 2i — 1 > 4y be such that mj,, , # w(gx) for every k > i;. Then the
functionals gox_1, g5y, k > ko, satisfy the assumptions of Lemma 4.21, and
therefore

(4.35) ’ > (g g2m-1+ gék)(mjgiq@i—l)‘ <
k>ko

1

n2j+1

Also for every 2i > iy such that mj,, # w(gy) for every k > iy, the function-
als gok—1, ghr, k > ko, satisfy the assumptions of Lemma 4.21, and so

1
(4.36) |3 Qg g2t1 + g (m,)

< .
Nos
k>ko 25+1

For the unique ¢ > 41 such that there exists k > iy with w(gy) = m;, (if such
an ¢ exists), we have, using Lemma 4.21,

(4.37) ’ Z (Agy, 9261 + gor) (mj, ;)
k>ko

1
<1+ .
n2j+1

Now we distinguish the cases of i1 = 2kg—1 and iy = 2kg. If i1 = 2kg—1, we
have range(gx) Nrange(z;) = () for every k < 2ky — 1 and every ¢ > 2kg — 1,
and from (4.35)—(4.37) we get

1 n2j+1
S g+ o) (o D0 () )

o
k>ko 2+ i oko—1

1 1 noi+1 3
< (1 + + ) < :
n2j+1 n25+1 n2j+1 n2j+1

(4.38)
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If iy = 2ko then range(wor,—1) N range(gy) = 0 for every k > 2k and
k < 2ko — 1, and from (4.35)—(4.37) we get

n2j+1
1 .
(4.39) Z (/\gékg%q + 9go1) <n ) Z (_1)z+1mji:ci> ‘
k>ko L+ ok -1
1
< n2;5+1 (p\gékolg%o_l(mhko1$2k0_1)’
n2j+1
+ ‘ Z (Ags, 926—1 + gék)( Z (—1)Z+1mjixi> )
k>ko i=2ko

1 1 1 9, 4
< + <1 + + 2”1) < :
N2j+1  N2j+1 n2j+1  N2j4+1 T25+1
From (4.34), (4.38) and (4.39) we get
n2j4+1
1 . 1 2 4 1
(4.40) ‘g( Z (_1)l+1mji$i> ‘ < ( + ) < .
n2j+1 = majr1 \M2j+1  N25+1 N2j+1

The inequalities (4.30) and (4.40) show that indeed condition (d) is satisfied
for € = 1/ngj41. Proposition 4.9(2) now yields the desired result. =

Proof of Lemma 4.15. We shall follow similar arguments to those in
the proof of Lemma 4.14. We shall establish conditions (a)—(d) of the basic
inequality for C = 2, ¢ = 1/ngj41 and mj, = mgj;1. Lemma 4.2 shows
that the sequence (y;); satisfies (a) and (c) for C' = 2. Furthermore the
properties of the function o imply that (b) is also satisfied for € = 1/ng;11.

To establish condition (d) we shall show that for every f € K with

w(f) = maj1,

1 n2j41/2
’f( > ym)

M2+l o

1 1 1 1
< + < :
maj+1 \M2j+1  N2j+1 n2j+1

First observe that for every f € Ky of the form

1 n2j4+1/2
=F Ay 1+ f
f S ; (Agy, Jok—1 + for)
we have
1 ngj41/2
| =0.
f(n2j+1 ; y21>

This is due to supp f5, = supp f2; and supp foi—1 < y2i < supp fa;iy1 for
every i < ngjt1/2.
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Let ¢ = (21,91, 22,92, .- - ,zn2j+1,gn2j+l) be a special sequence of length
n2j+1 and let
1 n2j4+1/2
f=E Agt 92k—1 + gox) € K.
M1 kzz:l ( Ghi, 2k) ¢

We may assume that E=N. Let iy =min{i < ngji1 : z;#z; or f;#g;}, and
let kg € N be such that iy = 2kg — 1 or iy = 2kg. Observe that range(gi) N
range(yz;) = 0 for every k < iy and every 2i > .

From the injectivity of o, it follows that there exists at most one k > i
such that

w(gg) € {my, i1 < i <mngjir}

Let 2i > i1 be such that w(gx) # m;,, for all & > ;. Then the functionals
92k—1 Yops k > ko, satisfy the assumptions of Lemma 4.21(a), and therefore

1
(4.41) ‘( > Ay, 92k1 +9§k> (y2i) —.
ngj+1

k>ko J

<

For the unique 2i > ¢; such that there exists k > i; with w(gy) = my,, (if
such a 2i exists), we have

(4.42) ‘( Z Agy, 92k—1 + 9&;:)(3/21) <1+
k>ko

N2j+1

Summing up (4.41)—(4.42) we get

n2j4+1/2
1 1 1 1 1
(4.43) ’f( > y2i> < < + >< :
M2j+1 \N2j+1  N2j+1 12j+1

m2j+1 i
Inequality (4.43) implies that condition (d) of the basic inequality is satisfied,
and Proposition 4.9 yields the desired result. =

REMARK 4.22. As pointed out by A. Pelczynski, there is no obstacle
to the existence of an indecomposable closed subspace of a Banach space
with an unconditional basis. However our space is not such an example. In
particular the space Xj,s does not embed into a Banach space with an un-
conditional f.d.d. This follows from the property that no subsequence of the
basis (e, )n is an unconditional basic sequence. For the same reason the space
Xius is not a quotient of a space with a shrinking unconditional f.d.d. [O].
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