
STUDIA MATHEMATICA 159 (1) (2003)

Stochastic approximation properties
in Banach spaces

by

V. P. Fonf (Beer-Sheva), W. B. Johnson (College Station, TX),
G. Pisier (College Station, TX, and Paris) and D. Preiss (London)

Dedicated to A. Pełczyński on the occasion of his seventieth birthday

Abstract. We show that a Banach space X has the stochastic approximation prop-
erty iff it has the stochasic basis property, and these properties are equivalent to the
approximation property if X has nontrivial type. If for every Radon probability on X,
there is an operator from an Lp space into X whose range has probability one, then X
is a quotient of an Lp space. This extends a theorem of Sato’s which dealt with the case
p = 2. In any infinite-dimensional Banach space X there is a compact set K so that for
any Radon probability on X there is an operator range of probability one that does not
contain K.

1. Introduction. The paper deals with stochastic versions of the ap-
proximation property (AP) and the basis property (BP) of Banach spaces.
Recall these concepts. One condition equivalent to saying that the Banach
space X has the AP is that for any compact set K ⊂ X there is a sequence
of finite-dimensional (bounded) linear operators in X which pointwise con-
verges to the identity on K. We say that a Banach space X has the BP if
it has a (Schauder) basis. The stochastic versions are the following.

Given a Radon probability measure µ on a Banach space X, we say that
X has the µ-approximation property (µ-AP for short) provided there is a
sequence {Bn} of finite-dimensional operators on X so that ‖x−Bnx‖ → 0
for µ-almost every x in X. If only Bnx→ x weakly for µ-almost every x we
say that X has the weak µ-AP .
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We say that a separable X has the µ-basis property if there is an M -basis
(that is, a sequence of vectors with dense linear span for which there is a
sequence of biorthogonal functions which separates points) {xn}∞n=1 of X
(with biorthogonal functionals {x∗n}∞n=1) for which

µ
{
x ∈ X

∣∣∣ x =
∑

x∗n(x)xn
}

= 1;

{xn}∞n=1 is then called a µ-basis for X.
We say that a Banach space X has the stochastic AP (respectively,

stochastic BP, for separable X) provided X has the µ-AP (respectively,
µ-BP) for every Radon probability measure µ on X (see e.g. [T], where
the stochastic AP is called the “measure approximation property”; for the
stochastic BP see [H], [O]). The weak stochastic AP is defined analogously.

The stochastic AP is (formally) weaker than the AP, and the stochastic
BP is (formally) weaker than the BP. It is well known (see [FJ]) that the AP
is (really) weaker than the BP. It is even better known (see [LT1, Theorem
2.d.6]) that there are separable Banach spaces without the AP.

It is then natural to ask the following two questions:

(1) Is the stochastic approximation property really weaker than the
stochastic basis property (as in the case of the AP and the BP)?

(2) Suppose that a Banach space X has the stochastic approximation
property. Then must X have the approximation property?

Most of the results in this paper were discovered while working on these
questions and variations of them.

In Section 2 we prove that, although the AP and BP are different, the
stochastic AP and stochastic BP are equivalent (see Theorem 2.1 that con-
tains a stronger result and has an application to function theory).

The main result on question (2), Theorem 3.1 of Section 3, is that the
answer is affirmative if X has nontrivial type. It follows, in particular, that
not every Banach space has the stochastic approximation property, which
answers a question asked by J. Rosinski and presented at a conference by
S. Kwapień twenty-two years ago.

It is interesting that µ-stochastic properties for certain naturally occur-
ring µ are of a different behavior. For example, each separable Banach (and
even Fréchet) space has a µ-basis for every Gaussian probability µ (see [H]
and [O] for a generalization).

In Section 4 we discuss the weak stochastic AP and Lp versions of the
AP. Recall that the AP and weak AP are equivalent. We prove that the same
holds for stochastic versions. We also observe that, for any fixed 1 ≤ p ≤ ∞,
the Lp approximation property is equivalent to the AP.

The last two sections are devoted to the problem of covering a measure
support by an operator range. In Section 5 we consider the following ques-



Stochastic approximation properties 105

tion. Assume that K ⊂ X is a compact set in a (separable) Banach space X.
Is it possible to find a probability µ on X such that for any linear operator
A : Z → X from a Banach space Z into X with µ(A(Z)) = 1 we have
A(Z) ⊃ K? This question is a stochastic version of a problem investigated
in [FJPS]. The answer is negative (see Theorem 5.1) and it shows that cov-
ering a compact set and covering a measure support by operator ranges are
of a different nature.

In Section 6 we consider the following situation. Suppose X and Y are
separable Banach spaces such that for every Radon probability onX, there is
an operator from Y to X whose range has probability one. The obvious way
this can happen is for X to be isomorphic to a quotient of Y . In Corollary 6.3
we prove that this is the only way for this to occur when Y is Lp (≡ Lp[0, 1]),
1 < p < ∞. This generalizes a theorem of Sato [Sa], who treated the case
when Y is `2.

We use standard Banach space theory terminology, as may be found in
[LT1], [LT2].

2. Stochastic AP and stochastic BP are equivalent. The main
result of this section is contained in the following

Theorem 2.1. Let µ be a Radon probability measure on a separable Ba-
nach space X. Then the following assertions are equivalent :

(i) X has the µ-approximation property.
(ii) X has a µ-basis.

Proof. Clearly, only (i)⇒(ii) needs to be proved. We use in the proof
some ideas from the proof of Theorem 2.1 in [FJPS]. Let {Bn}∞n=1 be a
sequence of finite-dimensional operators on X which converges µ-almost
everywhere to the identity operator on X. Put Q = {x ∈ X| limBnx = x}.
By using Egorov’s theorem find an increasing sequence {Cn} of subsets of Q
such that limn µ(Cn) = 1 and so that on each Cn the convergence Bnx→ x
is uniform. Take an index n1 such that supC1

‖Bn1x − x‖ < 2−1. Next
take n2 > n1 such that supC2

‖Bn2x − x‖ < 2−2, and so on. In this way
we construct an increasing sequence of indices {nk} such that for each k,
supCk ‖Bnkx − x‖ < 2−k. Put C =

⋃
Ck. Clearly, µ(C) = 1. By passing to

a subsequence of {Bn}, we assume for notational convenience that nk = k
for each k. From the construction it follows that for each k > 1,

sup
Ck

‖(Bk −Bk−1)x‖ < 2−k+2.

In particular, the series
∞∑

k=1

(Bk −Bk−1)x, B0 = 0,
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converges absolutely to x for any x ∈ C. For each k put Lk = (Bk−Bk−1)X
and let Y be the Banach space of all sequences (yk), yk ∈ Lk, k = 1, 2, . . .,
such that the series

∑
yk converges, with norm ‖(yk)‖ = supn ‖

∑n
k=1 yk‖

(see Lemma 2.2 of [FJPS]). It is clear that Y has the bounded approximation
property (and even a finite-dimensional decomposition). Let B : Y → X be
the summation operator, i.e. B(yk) =

∑
yk.

Next define Z as the space of all x ∈ X such that x =
∑∞

k=1(Bk−Bk−1)x,
B0 = 0, with norm

|||x||| = sup
n

∥∥∥
n∑

k=1

(Bk −Bk−1)x
∥∥∥.

Let J : Z → Y be the natural isometry of Z into Y . Clearly, M = J(Z)
is a (closed) subspace of Y. Let I : Z → X be the natural embedding of Z
into X. It is obvious that I(Z) ⊃ C and B|M = IJ−1. Define a (probability)
measure ν on Z by

ν(G) = µ(I(G))

where G ⊂ Z is a Borelian subset of Z. Let {Kn} be a sequence of compact
sets in Z with ν(

⋃
Kn) = 1. Put an = maxx∈Kn ‖x‖, n = 1, 2, . . ., and

K =
⋃

(an + n)−1Kn. Thus, K is compact in Z.

By Theorem 2.1 of [FJPS] there is a one-to-one compact operator T1 :
R→ Y from a reflexive space R with basis into Y such that T1(BR) ⊃ K. Set
F = T1(BR) and put L = KerB. It is not difficult to see that L∩M = {0}.

Apply Lemma 2.6 of [FJPS] to find an automorphism D : Y → Y such
that L ∩ D(F ) ⊂ {0} and D|M = IdM . Finally, put T = BDT1. A simple
verification shows that T is one-to-one and T (R) ⊃ C.

By Lemma 2.10 of [FJPS] there are a 1-norming M -basis {xi} of X and
a basis {yi} of R such that {Tyi} ⊂ {xi}. It is clear that {xi} satisfies
condition (ii) of the theorem.

Now we present an application of Theorem 2.1 to function theory.

Definition 2.2. Let X be a subspace of C[0, 1] and µ a probability
measure on the interval [0, 1]. We say that an M -basis {xi} of X is a µ-
quasi-basis of X if there is a subset Q ⊂ [0, 1] with µ(Q) = 1 such that for
any x ∈ X the Fourier series

∑∞
i=1 x

∗
i (x)xi(t) converges to the function x(t)

for any t ∈ Q ({x∗i } are the biorthogonal functionals for {xi}).

Remark 2.3. If we substitute in the above definition convergence µ-a.e.
by convergence everywhere (i.e. for any t ∈ [0, 1]), then, at least for a sub-
space X which does not contain an isomorphic copy of c0, the notions of
quasi-basis and basis coincide (see [F]).
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Corollary 2.4. Assume that a subspace X ⊂ C[0, 1] has a separable
dual X∗ having the stochastic AP. Then X has a µ-quasi-basis for any prob-
ability measure µ on [0, 1].

Proof. As usual, we consider [0, 1] as a subset of BC∗[0,1]. Thus any
probability measure µ on [0, 1] may be considered as a probability mea-
sure on BC∗[0,1] in the w∗-topology. Denote by J : X → C[0, 1] the natural
embedding of X into C[0, 1] and define a measure ν on X∗ by ν(A) =
µ(J∗−1(A) ∩ [0, 1]), where A ⊂ X∗ is a w∗-Borelian subset of X∗. Since X∗

is separable it follows that the σ-algebra of w∗-Borelian sets coincides with
the σ-algebra of Borelian sets. Thus ν is a probability measure on X∗. Since
X∗ has the stochastic AP there is a one-to-one operator T : R→ X∗ from a
reflexive space R with basis into X∗ such that ν(T (R)) = 1 (see the proof of
Theorem 2.1). Without loss of generality we may assume that T (R) is dense
in X∗. (Indeed, put L = clT (R) and let L1 be a quasi-complement for L in
X∗. Take any dense embedding A : `2 → L1 and define T1 : R⊕ `2 → X∗ by
T1(x+y) = Tx+Ty, x ∈ R, y ∈ `2. Finally, pass to R⊕ `2 and T1.) Clearly,
T is the adjoint operator for some operator T∗ : X → R∗ (R∗ is the predual
of R). Since T is one-to-one it follows that T∗ has a dense range. Clearly, R∗
has a basis {yi} with yi ∈ T∗(X), i = 1, 2, . . . Denote by {y∗i } the biorthog-
onal functionals for {yi} and put xi = T−1

∗ yi and x∗i = Ty∗i , i = 1, 2, . . .
It is not difficult to see that {xi} is an M -basis of X with biorthogonal
functionals {x∗i }. Also it is clear that for any f ∈ T (R), f =

∑∞
i=1 f(xi)x∗i

(the series converges in the norm topology).
We show that {xi} is a µ-quasi-basis of X. Put Q = J∗−1(T (R)) ∩

[0, 1]. Clearly, µ(Q) = 1. Take x ∈ X, t ∈ Q, and check that x(t) =∑∞
i=1 x

∗
i (x)xi(t). Since J∗(t)∈T (R) it follows that J∗(t)=

∑∞
i=1 J

∗(t)(xi)x∗i ,
and hence

x(t) = J∗(t)(x) =
∞∑

i=1

J∗(t)(xi)x∗i (x) =
∞∑

i=1

x∗i (x)xi(t).

(Actually we used the fact that the series f =
∑∞

i=1 f(xi)x∗i converges in
the w∗-topology for any f ∈ T (R).)

Remark 2.5. Corollary 2.4 shows, in particular, that a µ-quasi-basis
need not be a basis (take any subspace X ⊂ C[0, 1] without a basis which
has a separable dual with the AP; see [Sz]).

3. Stochastic AP is equivalent to AP for spaces
with nontrivial type

Theorem 3.1. Let X have a nontrivial type and assume that X fails the
AP. Then X fails the stochastic AP.

To prove Theorem 3.1 we need two known lemmas.
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Lemma 3.2. Let {θn}∞n=1 be an independent , identically distributed se-
quence of symmetric one-stable (Cauchy) random variables on some prob-
ability space (Ω,P) and let {yn} ⊂ Y be a sequence in a Banach space Y.
Then for any 0 < p < 1,

E
∥∥∥
∑

k

θkyk

∥∥∥
p
≥ δ
(∑

k

‖yk‖
)p
,(3.1)

where δ > 0 is a constant which depends only on p.

Proof. First lower estimate the left hand side of (3.1) by E supk ‖θkyk‖p.
Next assume, without loss of generality, that E supk ‖θkyk‖p = 1. Then

1/2 > P[sup
k
‖θkyk‖p > 2] = 1−

∏

k

(1− P[‖θkyk‖p > 2]),

so that
c2−1/p

∑

k

‖yk‖ ≤
∑

k

P[‖θkyk‖p > 2] < ln 2,

where the constant c satisfies P[|θk| > t] ≥ c/t for all t > 1.

The following lemma is an easy consequence of Corollary 3.2 of [HJ1].

Lemma 3.3 ([HJ1]). Let {θn}∞n=1 be an independent , identically distri-
buted sequence of symmetric one-stable random variables on some probabil-
ity space (Ω,P), {xk} ⊂ X a sequence in a Banach space X, and {λk} a
sequence of positive numbers with

∑
λk = 1. Assume that {Tn} is a sequence

of finite rank operators on X such that∥∥∥
∑

k

λkθk(xk − Tnxk)
∥∥∥→ 0

in measure as n→∞. Then

E
∥∥∥
∑

k

λkθk(xk − Tnxk)
∥∥∥
p
→ 0

for each 0 < p < 1, as n→∞.

Proof of Theorem 3.1. Since X fails the AP it follows from the Grothen-
dieck theorem ([Gr], [LT1, Theorem 1.e.4]) that there exists a sequence
{xn}∞n=1 in the unit ball ofX, {x∗n}∞n=1 in the unit ball ofX∗ and a summable
sequence {λn}∞n=1 of positive numbers summing to one so that

∑
λn〈x∗n, xn〉 > α > 0(3.2)

but ∑
λn〈x∗n, Txn〉 = 0(3.3)

for every finite rank operator T on X.
Let {θn}∞n=1 be an independent, identically distributed sequence of sym-

metric one-stable (Cauchy) random variables on some probability space
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(Ω,P). Consider the X-valued random variable

Φ =
∞∑

k=1

λkθkxk.

This series converges almost surely because X has type r > 1. Indeed, use
the type inequality and then replace θk with θk1[|θk|<1/λk]. Next use the fact
that P [θk > t] is like 1/t for large t.

Thus Φ is a well defined X-valued random variable and hence induces a
Radon probability, say ν, on X. The claim is that X fails the ν-stochastic
AP.

Assume to the contrary that there is a sequence {Tn} of finite rank
operators on X which converges ν-a.e. to the identity. Going back to the
random variable, this means that∥∥∥

∑

k

λkθk(xk − Tnxk)
∥∥∥→ 0

in measure, as n→∞. By Lemma 3.3, for each 0 < p < 1 we get

E
∥∥∥
∑

k

λkθk(xk − Tnxk)
∥∥∥
p
→ 0

as n→∞.
However by using Lemma 3.2 (for yk = λk(xk − Tnxk)), (3.2) and (3.3)

we get

E
∥∥∥
∑

k

θk(λk(xk − Tnxk))
∥∥∥
p
≥ δ
(∑

k

λk‖xk − Tnxk‖
)p

(3.4)

≥ δ
(∑

λk|x∗k(xk − Tnxk)|
)p

> δαp,

a contradiction that completes the proof.

Remark 3.4. If X has the µ-stochastic AP for every compactly sup-
ported probability µ then X has the µ-stochastic AP for every Radon prob-
ability µ by Lemma 5.2. But it seems not very convenient to replace the
1-stable measure in the proof of Theorem 3.1 by some measure which has
bounded support.

Remark 3.5. Theorem 3.1 answers negatively the following question of
J. Rosinski (see Math. Nachr. 95 (1980), p. 302, Problem 16; see also [T]):
does every separable Banach space have the stochastic AP? Indeed, take
any separable Banach space X with nontrivial type that does not have the
AP. By Theorem 3.1, X does not have the stochastic AP.

In view of Theorem 3.1 the following conjecture seems to be natural:

Conjecture. The properties AP and stochastic AP coincide.
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4. Stochastic p-approximation property and
weak stochastic AP

Definition 4.1. Given a measure µ on a Banach space X we say that X
has the Lp(µ)-approximation property provided there is a sequence {Sn}∞n=1
of continuous finite rank operators on X such that ‖Snx− x‖ tends to zero
in Lp(µ).

Definition 4.2. Given a Banach space X and 0 ≤ p ≤ ∞ we say that X
has the p-approximation property provided X has the Lp(µ)-approximation
property for every probability µ on X which has compact support.

It is clear that if 0 ≤ p < r ≤ ∞ and X has the r-approximation property
then X has the p-approximation property. It is easy to see that X has the
∞-approximation property if and only if X has the approximation property.
It follows from Lemma 5.2 that X has the 0-approximation property if
and only if X has the stochastic approximation property. Only slightly less
obvious is that for 0 < p < ∞, the p-approximation property implies the
Lp(µ)-approximation property for all Radon measures which have bounded
support.

Proposition 4.3. If X has the p-approximation property , 0 < p < ∞,
and µ is a Radon probability on X which has bounded support , then X has
the Lp(µ)-approximation property.

Proof. Assume, without loss of generality, that there are disjoint, totally
bounded subsets Kn of BX so that µ(

⋃
Kn) = 1. Choose 1 ≤ an ↑ ∞ so

that ∑
apnµKn <∞.(4.5)

Define a measure ν on X by

νB =
∑

apnµ((anB) ∩Kn).

Then ν is a finite Radon measure which is supported on the totally bounded
set
⋃
a−1
n Kn, hence X has the Lp(ν)-approximation property. However, for

any bounded linear operator T on X,
�
‖Tx‖p dµ(x) =

∑ �

Kn

‖Tx‖p dµ(x) =
∑ �

a−1
n Kn

‖Ty‖p dµ(any)

=
∑ �

a−1
n Kn

‖Ty‖p dν(y) =
�
‖Ty‖p dν(y).

Hence X has the Lp(µ)-approximation property if and only if X has the
Lp(ν)-approximation property.

The next theorem implies that for 1 ≤ p ≤ ∞, the p-approximation
property is equivalent to the approximation property. Note, however, that
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when X has nontrivial type, Theorem 4.4 does not follow from Theorem 3.1
since it is clear that if µ is any discrete measure on a Banach space X then
X has the µ-approximation property.

Theorem 4.4. If X fails the approximation property then there is a
compactly supported discrete probability µ on X so that X fails the L1(µ)-
approximation property.

Proof. By the Grothendieck theorem ([Gr], [LT1, Theorem 1.e.4]), there
exists a norm null sequence {xn}∞n=1 in the unit ball ofX, {x∗n}∞n=1 in the unit
ball of X∗ and a summable sequence {λn}∞n=1 of positive numbers summing
to one so that ∑

λn〈x∗n, xn〉 > α > 0(4.6)

but ∑
λn〈x∗n, Txn〉 = 0(4.7)

for every finite rank operator T on X.
Let µ be the discrete probability which assigns mass λn to xn for 1 ≤

n <∞. If T is a finite rank bounded linear operator on X then
�
‖(I − T )x‖ dµ(x) =

∑
‖(I − T )xn‖λn(4.8)

≥
∑

λn〈x∗n, (I − T )xn〉 =
∑

λn〈x∗n, xn〉 ≥ α.
This shows that X fails the µ-AP.

For any fixed p < 1, we do not know whether the p-AP is equivalent to
the AP for Banach spaces which have trivial type.

Now we pass to the weak stochastic AP. It is well known that the weak
AP is equivalent to the AP. The following theorem shows that the same is
true for the stochastic version of the AP.

Theorem 4.5. If X has the weak stochastic AP then X has the stochas-
tic AP.

Proof. Let µ be a separably supported probability on X and {Sn}∞n=1
a sequence of finite rank operators on X for which there is subset A of
X with µ(A) = 1 and Snx → x weakly for each x in A. For x in A set
Mx := supn ‖Snx − x‖ < ∞. Given ε > 0, there is a compact subset B of
A so that µ(B) > 1 − ε and M := supx∈BMx < ∞. Consider the compact
Hausdorff space K = B × BX∗ , where B is given the norm topology from
X and BX∗ is given the weak∗ topology. For each n define fn in C(K) by

fn(x, x∗) = 〈x∗, Snx− x〉.
Then

sup
n
‖fn‖ := sup

n
sup
x∈B

sup
x∗∈BX∗

〈x∗, Snx− x〉 = M <∞.
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Also {fn}∞n=1 converges pointwise to zero on K, hence fn → 0 weakly in
C(K). Consequently, there is a convex combination g :=

∑n
i=1 λifi for which

supt∈K g(t) < ε. But

sup
t∈K

g(t) = sup
x∈B

∥∥∥
( n∑

i=1

λiSi

)
x− x

∥∥∥.

Letting ε = 2−1, 2−2, . . . , we get a sequence of finite rank operators on X
which converges to the identity µ-a.e.

5. Covering a compact set by an operator range of full measure.
The main result of this section is Theorem 5.1, which shows that in any
infinite-dimensional Banach space X there is a compact set K so massive
that for any Radon probability measure µ on X there is an operator range
of probability one that does not contain K.

Theorem 5.1. Let X be an infinite-dimensional Banach space. Then
there is a compact subset K of X so that if µ is any Radon probability on
X then there is a bounded linear operator A : Z → X from a Banach space
Z such that µ(A(Z)) = 1 but K is not a subset of A(Z).

In the proof we use the following simple lemma:

Lemma 5.2. Let µ be a Radon probability on a Banach space X. Then
there is a Radon probability ν on X which is supported on a compact subset
of BX so that for any Borel subspace Y of X, µY = 1 if and only if νY = 1.

Proof. Take totally bounded, disjoint subsets Kn of X so that µ(
⋃
Kn)

= 1. Set Mn := supx∈Kn ‖x‖ and define measures νn on the Borel subsets of
X by the formula νnA := ν((nMnA) ∩Kn). It is routine to verify that the
probability ν :=

∑
νn has the desired properties.

The main technical result needed for the proof of Theorem 5.1 is Propo-
sition 5.3.

Proposition 5.3. Let µ be a Radon probability measure on a Banach
space X. Then there is an operator from a Hilbert space into X with 2-
summing adjoint whose range contains the subspace

Y0 :=
⋂
{Y ⊂ X : Y is an operator range and µY = 1}.(5.9)

First we show how to derive Theorem 5.1 from Proposition 5.3. If X is
(isomorphic to) a Hilbert space, it suffices, by Proposition 5.3, to take for K
any compact subset of X which is not contained in the range of a Hilbert–
Schmidt operator. For example, K can be {0} ∪ {xn}∞n=1, where {xn}∞n=1 is
an orthogonal sequence which converges to zero but

∑ ‖xn‖2 =∞.
If X is not isomorphic to a Hilbert space, there there is even a compact

subset K of X which is not contained in the range of any operator from a
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Hilbert space into X (see, for example, [FJPS]), so also in this case Theorem
5.1 follows from Proposition 5.3.

Proof of Proposition 5.3. Assume, without loss of generality, that X is
separable. Let µ be a Radon probability onH. In view of Lemma 5.2, without
loss of generality we may assume that µBH = 1; in particular, � ‖x‖2dµ(x) <
∞. It is well known that this implies that the mapping S : X∗ → L2(H,µ)
defined by S(x∗)(x) = 〈x, x∗〉 is 2-summing. Indeed, given x∗1, . . . , x

∗
n in H∗

so that
∑n

i=1 |〈x, x∗i 〉|2 ≤ ‖x‖2 for all x in H, we have
n∑

i=1

‖Sx∗i ‖2 =
� n∑

i=1

|〈x, x∗i 〉|2 dµ(x) ≤
�
‖x‖2 dµ(x).

Hence π2(S)2 ≤ � ‖x‖2 dµ(x).
We can also assume, without loss of generality, that the operator S is

one-to-one (for example, replace µ with the average of µ and a discrete
measure whose support is dense in BX). This is just for convenience of
notation later.

Let us first treat the case when X is a Hilbert space. When µ is a Gaus-
sian measure, it is well known that the range of S∗ (called the reproducing
kernel Hilbert space associated with the measure µ) is equal to Y0. The point
of Proposition 5.3 is that the proof of the inclusion Y0 ⊂ S∗L2(H,µ) does not
require that µ be Gaussian. To see this, choose an orthonormal basis {en}∞n=1
for X = X∗ so that {Sen}∞n=1 is orthogonal; say, Sen = λnfn with λn > 0
and {fn}∞n=1 orthonormal. (Here we are using the fact that S is one-to-one.)
Then S∗fn = en, S∗f = 0 if f ⊥ {fn}∞n=1, and

∑∞
n=1 λ

2
n ≤ π2(S)2 <∞.

Fix any x0 in x such that x0 is not in the range of S∗; then x0 =∑∞
n=1 αnen with

∑∞
n=1(αn/λn)2 =∞. Define gn : X → R by

gn(x) =
n∑

k=1

〈x, ek〉αk
λ2
k

.

Note that gn(x0) =
∑n

k=1(αk/λk)2 →∞. Compute

‖gn‖2 =
�
gn(x)2 dµ(x) =

n∑

k=1

(αk/λk)2
�
〈x, ek〉2 dµ(x) =

n∑

k=1

(αk/λk)2.

Set hn = gn/
∑n

k=1(αk/λk)2. Then ‖hn‖L2(µ) = (
∑n

k=1(αk/λk)2)−1/2 → 0
and hn(x0) = 1 for all n. Thus some subsequence {hnk}∞k=1 of {hn}∞n=1
converges to zero µ-almost everywhere. Let X0 = {x ∈ X | hnk(x) → 0}.
Then µX0 = 1 and x0 is not in X0.

To prove that X0 is an operator range introduce on X0 a new norm as
follows:

|||x||| = max{‖x‖,max{|hnk(x)| | k = 1, 2, . . .}}, x ∈M.
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A standard verification shows that (X0, ||| · |||) is a Banach space (call it Z)
and that the natural embedding A : Z → X is a bounded linear operator,
which completes the proof of Proposition 5.3 in the case where X is a Hilbert
space.

Joel Zinn pointed out to us that the general case in Proposition 5.3
follows easily from the Hilbert space case (thereby rendering silly a slightly
involved argument of the authors). So now assume that X is a separable
Banach space and µ is a Radon probability on X so that the support of µ
is BX . Recall that the operator S : X∗ → L2(H,µ) defined by S(x∗)(x) =
〈x, x∗〉 is one-to-one and S∗ is 2-summing. Note also that S is weak∗-to-weak
sequentially continuous by the bounded convergence theorem, and hence
S∗L2(X,µ) ⊂ X. To prove (5.9) by reducing to the Hilbert space case, we
let J be a one-to-one bounded linear operator with dense range from X
into a Hilbert space H and let ν be the image measure on H of µ; that is,
νE = µJ−1E for every Borel subset E of H. Let φJ : L2(H, ν)→ L2(X,µ),
defined by φjf = fJ , be the natural surjective isometry and consider the
commutative diagram

L2(H, ν)
φJ

))TTTTTTTTTTTTTTT

H∗

SH

OO

J∗ // X∗
S // L2(X,µ)

where SH is defined by SH(x∗)(x)=〈x, x∗〉. Keeping in mind that S∗L2(X,µ)
⊂ X we dualize to get the commutative diagram

L2(H, ν)

S∗H
��

H∗ X
Joo L2(X,µ)S∗oo

φ∗J
iiSSSSSSSSSSSSSS

Since ν is the image of µ under J , (5.9) follows from the Hilbert space
case of Proposition 5.3. Indeed, if x0 ∈ X ∼ S∗L2(X,µ)∗ then Jx0 ∈ H ∼
S∗HL2(H, ν)∗, so there is an operator range H0 ⊂ H for which νH = 1 but
Jx0 6∈ H0. It is not hard to check that X0 ≡ J−1H0 is an operator range,
and of course µX0 = 1 while x0 6∈ X0.

Remark 5.4. The operator range X0 constructed in the proof of Theo-
rem 5.1 is an Fσδ set.

6. Covering a measure support by the image of a Banach space.
Say that the pair (Y,X) of separable Banach spaces satisfies (∗) provided
that for any Radon probability µ on X there is a bounded linear operator
T from Y into X so that µ(TY ) = 1.
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We define YT = Y/kerT , and T̂ : YT → X will be the operator canoni-
cally associated to T when T is an operator from Y into X.

Lemma 6.1. Assume that (Y,X) satisfies (∗). Then for any ε > 0 there
is a constant ϕ(ε) such that for any Radon probability measure µ on BX
and for any ε > 0, there is T : Y → X with ‖T‖ ≤ 1 such that

µ({x ∈ X | ‖T̂−1x‖YT ≥ ϕ(ε)‖x‖}) ≤ ε.
Proof. We may clearly assume that µ({0}) = 0. Then, replacing µ by

its image under the map x 7→ x/‖x‖, we see that it suffices to prove this
statement assuming µ is supported on the unit sphere of X. We will then
proceed by contradiction. If the conclusion fails, then there exists ε > 0 such
that for any ϕ > 0 we can find a random variable gϕ : Ω → X (on some
standard probability space (Ω,A,P)) such that ‖gϕ(ω)‖X = 1 but for any
T : Y → X with ‖T‖ ≤ 1 we have

P{‖T̂−1gϕ‖YT ≥ ϕ} > ε.

Let us choose ϕ = n3. For simplicity of notation we set fn = gn3. We then
have ‖fn(·)‖ = 1 and

P{‖T̂−1(fn)‖ ≥ n3} > ε(6.10)

for any T with ‖T‖ ≤ 1 and any n.
We may as well assume that the random variables (fn) are mutually

independent and also that we have a sequence (εn), itself independent of
(fn), of i.i.d. Bernoulli random variables on Ω such that P{εn = ±1} = 1/2.
Then the series S =

∑∞
n=1 n

−2εnfn (with partial sums Sn =
∑n

k=1 k
−2εkfk)

obviously converges a.s. in X. By our assumption (∗) there is T : Y → X

with ‖T‖ ≤ 1 such that S(ω) ∈ TY = T̂ YT for a.e. ω.
Observe that since Sn±(S−Sn) and S have the same distribution, we also

have Sn− (S−Sn) ∈ TY a.s., and hence Sn ∈ TY a.s. for any n. A fortiori,
fn ∈ TY a.s. Consider now the random variable ω 7→ T̂−1(S(ω)) ∈ YT . Note
that its distribution must be Radon (recall Y is separable) and moreover we
obviously have

〈ξ, T̂−1(Sn)〉 → 〈ξ, T̂−1(S)〉
for any ξ in T̂ ∗(X∗). But since T̂ is injective, T̂ ∗(X∗) is a w∗-dense w∗-
separable subspace of Y ∗T . Therefore by a variant of the Ito–Nisio theorem
(see, for example, Theorem 6.2 in [HJ2]), we must have “automatically”

‖T̂−1(Sn)− T̂−1(S)‖YT → 0 a.s.

This implies supn n
−2‖T̂−1(fn)‖ < ∞ a.s., hence (Borel–Cantelli) for some

constant K,
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∑

n

P (‖T̂−1(fn)‖ > Kn2) <∞.

But since Kn2 ≤ n3 for infinitely many n, this contradicts (6.10).

Theorem 6.2. Assume that (Y,X) satisfies (∗) and that Y ⊕ Y is iso-
morphic to a quotient of Y . Then for any 1 ≤ p < ∞ there is a constant
C such that the following holds: for any n and any x1, . . . , xn in X there is
T : Y → X with ‖T‖ ≤ 1 and y1, . . . , yn in Y such that xi = Tyi for all
i = 1, . . . , n and (∑

‖yi‖p
)1/p

≤ C
(∑

‖xi‖p
)1/p

.

Proof. Fix n. Let Cn be the smallest constant such that the preceding
property holds when restricted to n-tuples (x1, . . . , xn). Clearly Cn < ∞.
To prove the preceding statement it suffices to show that supnCn < ∞.
By Lemma 6.1 applied to the probability µ = (

∑ ‖xi‖p)−1∑ ‖xi‖pδxi/‖xi‖
(and by the definition of the quotient norm in YT ), for any ε > 0 there are
T : Y → X with ‖T‖ ≤ 1, a subset A ⊂ {1, . . . , n} and elements {yi | i ∈ A}
in Y such that

Tyi = xi and ‖yi‖ < ϕ(ε)‖xi‖ ∀i ∈ A
and such that ∑

i6∈A
‖xi‖p ≤ ε

∑
‖xi‖p.

By the definition of Cn, there is S : Y → X with ‖S‖ ≤ 1 and {yi | i 6∈ A}
in Y such that xi = Syi, i 6∈ A, and

(∑

i6∈A
‖yi‖p

)1/p
≤ Cn

(∑

i6∈A
‖xi‖p

)1/p
≤ Cnε1/p

(∑
‖xi‖p

)1/p
.

Let v : Y ⊕1 Y → X be defined by v(y1, y2) = (Ty1 + Sy2)/2. Let
ỹi ∈ Y ⊕ Y be defined by ỹi = 2(yi, 0) if i ∈ A and ỹi = 2(0, yi) otherwise.
We then have vỹi = xi and

(∑
‖ỹi‖p

)1/p
≤ (2ϕ(ε) + 2Cnε1/p)

(∑
‖xi‖p

)1/p
.

Since Y ⊕1 Y is isomorphic to a quotient of Y , we may replace Y ⊕1 Y by
Y , but then we find

(∑
‖ỹi‖p

)1/p
≤ K(2ϕ(ε) + 2Cnε1/p)

(∑
‖xi‖p

)1/p

for some constant K depending only on Y . Thus we conclude

Cn ≤ K(2ϕ(ε) + 2Cnε1/p),

and it suffices to choose ε = ε0 such that e.g. 2Kε1/p
0 = 1/2 to obtain finally

Cn ≤ 2Kϕ(ε0) + Cn/2.

Hence Cn ≤ 4Kϕ(ε0), which completes the proof that supnCn <∞.
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Corollary 6.3. Let Y = Lp([0, 1]) with 1 < p < ∞. Then (Y,X)
satisfies (∗) if and only if X is isomorphic to a quotient of Y .

Proof. If X is a quotient of Y then (∗) trivially holds. Conversely, as-
sume (∗). It obviously suffices to show that X is isomorphic to a quotient
of an abstract Lp-space. The latter spaces, which we will call QLp-spaces,
admit the following very nice characterization ([LP]; see also [K2] for a more
complete picture): X is C-isomorphic to a QLp-space iff for any n, any quo-
tient Q of `np and any linear mapping u : `np → Q we have

‖u⊗ IX : `np (X)→ Q(X)‖ ≤ C‖u‖.
Here, if Q = `np/S with S ⊂ `np , the space Q(X) is defined as the quotient
`np (X)/S(X) where S(X) = {(x1, . . . , xn) | (ξ(x1), . . . , ξ(xn)) ∈ S ∀ξ ∈ X∗},
or equivalently in tensor product notation S(X) ' S ⊗X. Thus it suffices
to show that the preceding characteristic property of QLp-spaces is implied
by the conclusion of Theorem 6.2 in the case Y = Lp.

Let u : `np → Q be as above with ‖u‖ ≤ 1. Fix x = (xi) ∈ `np (X). Let
y = (yi) ∈ `np (Y ) and T : Y → X be as in Theorem 6.2 such that ‖T‖ ≤ 1,
xi = Tyi and ‖y‖ ≤ C‖x‖. We then have (since Y = Lp)

‖u⊗ IY : `np (Y )→ Q(Y )‖ ≤ 1,

hence since

(u⊗ IX)(x) = (u⊗ T )(y) = (I ⊗ T )(u⊗ IY )(y)

we find

‖(u⊗ IX)(x)‖Q(X) ≤ ‖T‖ ‖(u⊗ I)(y)‖Q(Y ) ≤ ‖y‖ ≤ C‖x‖.
Thus we conclude that X is C-isomorphic to a quotient of Lp.

In particular, when p = 2, we obtain a new proof of the following result
due to H. Sato [Sa]:

Corollary 6.4. (`2,X) satisfies (∗) if and only if X is isomorphic
to `2.

Using Roberto Hernandez’s generalization [He] of Kwapień’s results from
[K2] we can obtain by an immediate modification of the proof of Corollary
6.3 the following statement valid for a general Y .

Corollary 6.5. Assume (Y,X) satisfies (∗). Then for any 1 ≤ p <∞
the inclusion X → X∗∗ can be factorized through a quotient of an ultrapower
of Lp(Y ).

We do not know whether the conclusion of Corollary 6.5 can be strength-
ened to “the inclusion X → X∗∗ can be factorized through a quotient of an
ultrapower of Y ”.

The following easy lemma is surely folklore.
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Lemma 6.6. Let X be any infinite-dimensional Banach space and let K
be a compact subset of a Hilbert space H. Then there is a compact operator
T from X into H so that TBX contains K.

Hint for proof. Using Dvoretzky’s theorem and standard techniques for
constructing basic sequences, one sees that X has a quotient space, Y , on
which there is a uniformly bounded sequence {Pn}∞n=1 of projections so that
PnPm = 0 for n 6= m and PnX is 2-isomorphic to `n2 . (If X is separable,
by using the technique for constructing weak∗ basic sequences one can even
guarantee that {PnX}∞n=1 is a finite-dimensional decomposition for Y .)

The next proposition, which in some sense goes oppositely to Corol-
lary 6.4, is an immediate consequence of Lemma 6.6.

Proposition 6.7. Let µ be a Radon probability measure on a Hilbert
space H and let X be an infinite-dimensional Banach space. Then there is
a bounded linear operator from X into H so that µ(TX) = 1.
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