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Supercyclicity in the operator algebra

by

Alfonso Montes-Rodŕıguez and
M. Carmen Romero-Moreno (Sevilla)

Abstract. We prove a Supercyclicity Criterion for a continuous linear mapping that
is defined on the operator algebra of a separable Banach space B. Our result extends a
recent result on hypercyclicity on the operator algebra of a Hilbert space. This kind of
result is a powerful tool to analyze the structure of supercyclic vectors of a supercyclic
operator that is defined on B. For instance, as a consequence of the main result, we give a
very simple proof of the recently established fact that certain supercyclic operators defined
on a Banach space have an infinite-dimensional closed subspace of supercyclic vectors.

1. Introduction. A bounded linear operator T on a Banach space B is
called supercyclic if there is a vector x ∈ B such that the projective orbit

{λTnx : λ ∈ C, n = 0, 1, 2, . . .}
is dense in B. Such an x is also called a supercyclic vector. When the orbit
itself is dense, without the help of the scalar multiples, the operator as well
as the vector are called hypercyclic. Clearly, separability of the underlying
space is a necessary condition for supercyclicity, and hypercyclicity is a
stronger form of supercyclicity.

The notion of supercyclicity was introduced by Hilden and Wallen in the
early seventies [HW]. However, the first example of a supercyclic operator
in the Banach space setting was due to Rolewicz in the late sixties [Ro]. He
proved that the backward shift defined on `p, 1 ≤ p <∞, or c0 is supercyclic.

Recall that the operator T is cyclic if there is a vector x ∈ B, called a
cyclic vector, such that the linear span of the orbit {T nx}n≥0 is dense in B.
For instance, it is easy to see that the forward shift defined on `p or c0 is
cyclic with cyclic vector e0. Cyclicity has been studied for a long time due to
its relationship with invariant subspaces. Supercyclicity is a stronger form of
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cyclicity. Thus supercyclic operators have many more properties than cyclic
ones. For instance, any supercyclic operator always has a residual set of
supercyclic vectors and this, of course, is not true for the forward shift. In
this context, it is worth to mention Herrero’s work [He1] in which it is shown
that there are different situations in which the set of noncyclic vectors of a
cyclic operator has nonempty interior.

Suppose that H is a separable Hilbert space and let L(H) denote the
operator algebra on H, that is, the space of all bounded operators on H.
Since this space is not separable when considered with its operator norm
topology, the study of supercyclicity or hypercyclicity of a continuous linear
mapping defined on L(H) does not make sense. However, Kit Chan [Ch1]
had the nice idea of considering L(H) endowed with the strong operator
topology; with this new topology, L(H) becomes a separable space. Thus,
Chan gave sense to considering hypercyclic operators on L(H). The ex-
tension of the hypercyclicity concept to the operator algebra is interesting
due to its applications to hypercyclic operators on Hilbert spaces (see also
[Ch2]). For instance, Chan gave a new and very simple proof (in the Hilbert
space setting) of Theorem 2.2 in [Mo] that provides sufficient conditions on
an operator to have an infinite-dimensional closed subspace of hypercyclic
vectors. However, some of the techniques of [Ch1] depend strongly on the
Hilbert space structure and do not always generalize to the Banach space
setting. For the sake of completeness, even if Chan’s techniques do work for
some statements given below, proofs are also included.

The aim of this work is twofold: On the one hand, we can remove the
hypothesis that the operator algebra lies on the Hilbert space and, on the
other hand, we will prove the results for the more general concept of super-
cyclicity on L(B), the operator algebra of all bounded operators on a Banach
space B. Since hypercyclicity is a particular case of supercyclicity, we will
recover Chan’s results for Hilbert spaces. Actually, even in the Hilbert space
case we obtain some improvements.

In Section 2, we construct a strong operator topology dense subset in the
operator algebra L(B) on a separable Banach space, which will be used in
later parts of this work. The fact that the operator algebra L(B) is separable
with respect to the strong operator topology may be known to specialists.
Therefore, the supercyclicity concept also makes sense for continuous linear
mappings defined on L(B). Then we will prove a Supercyclicity Criterion
for a continuous linear mapping Λ : L(B)→ L(B). This condition is similar
to the Supercyclicity Criterion stated by Salas and the first named author
[MS, Thm. 2.2], which follows from the Universality Criterion for complete
metric spaces of Gethner and Shapiro (see [GS, Theorem 2.2 and remarks
following it]). We stress here that L(B) endowed with the strong operator
topology is not a complete metric space.
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In Section 3, multiplication operators on L(B) are considered. If T :B→B
is a bounded operator, then the multiplication operator ΛT that assigns to
each V ∈ L(B) the operator ΛT = TV , is continuous and linear. We prove
that if ΛT is supercyclic, then so is T . The converse is also true provided that
T satisfies the Supercyclicity Criterion. We close that section by showing
a theorem that guarantees the existence of an infinite-dimensional closed
subspace of supercyclic vectors. This latter result has been first stated by
Héctor N. Salas and the first named author [MS, Thm. 3.2], and (at least)
for weighted shifts it furnishes a necessary and sufficient condition (see [MS,
Sections 5 and 6]). As a particular case, for hypercyclicity we obtain

Theorem 1.1. Let B be a separable Banach space and T ∈ L(B). Sup-
pose that there is a strictly increasing sequence {nk} of positive integers for
which there are

(a) a dense subset X of B and a right inverse S : X → X (possi-
bly discontinuous) with TS = identity on X such that ‖Tnkx‖ → 0 and
‖Snkx‖ → 0 for every x ∈ X.

(b) an infinite-dimensional Banach subspace B0⊂B such that ‖Tnke‖→0
for every e ∈ B0.

Then there is an infinite-dimensional Banach subspace B1 ⊂ B such that
each z ∈ B1 \ {0} is hypercyclic for T .

The above theorem was first obtained in [Mo, Thm. 2.2] (see remarks
following it) and characterizes the operators satisfying the Hypercyclicity
Criterion that have an infinite-dimensional closed subspace of hypercyclic
vectors (see [LM1], [LM2] and [GLM]). The proof of Theorem 1.1 we present
here is slightly simpler than that of Chan for the Hilbert space case. Hypoth-
esis (a) in Theorem 1.1 is one of the more usual forms of the Hypercyclicty
Criterion. Salas [Sa1-2] proved the existence of hypercyclic operators that
did not satisfy the Hypercyclicity Criterion for the whole sequence of positive
integers and some people thought for some time that there were counterex-
amples to the criterion (see [He2, p. 189], for instance). In [LM1] and [LM2]
it is shown that the operators constructed by Salas do satisfy the Hyper-
cyclicity Criterion for subsequences of positive integers. Thus the question of
whether every hypercyclic operator satisfied the criterion for subsequences
arose again (see [LM1, p. 544]). Bès [Be] (see also [BP]) took over this
question and he gave a refinement of the original criterion and proved that
satisfying the criterion is equivalent to being hereditarily hypercyclic. So
far, it is not known if every hypercyclic operator satisfies the Hypercyclicity
Criterion.

The supercyclicity/hypercyclicity of multiplication operators in the op-
erator algebra of a separable Banach space turns out to be a very useful tool
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to handle large subspaces of supercyclic/hypercyclic vectors. For instance,
we will see that if there is a T ∈ L(B) which is supercyclic/hypercyclic for
ΛT , then every nonzero vector is supercyclic/hypercyclic for T . The same
is true if there is an onto operator V which is supercyclic/hypercyclic for
ΛT . Thus, in any of these cases, we would obtain an operator that has no
invariant closed subspace/subset. Therefore, the invariant subspace/subset
problem would be solved. As is well known, Enflo [En] solved the invariant
subspace problem in the Banach space setting and Read [Re] solved the in-
variant subset problem in `1. But both problems remain open in the Hilbert
space setting.

Acknowledgments. The authors would like to thank Héctor N. Salas
and Jaroslav Zemánek for some helpful comments and suggestions.

2. Supercyclic operators on the operator algebra

The Supercyclicity Criterion. Our starting point will be the following
Supercyclicity Criterion stated in [MS, Thm. 2.2].

Theorem 2.1. Let T be a bounded linear operator on a separable Ba-
nach space B. Suppose that there exist a strictly increasing sequence {nk}
of positive integers and a sequence {λnk} ⊂ C \ {0} for which there are a
dense subset X in B and a right inverse S : X → X with TS = identity
on X such that ‖λnkTnkx‖ → 0 and ‖(1/λnk)Snkx‖ → 0 for every x ∈ X.
Then there is a vector x such that {λnkTnkx} is dense in B. In particular ,
T is supercyclic.

Proposition 2.5 in [MS] states that the above Criterion is equivalent to
another one proved by Salas [Sa3, Lemma 2.6] and used by him to character-
ize the supercyclic bilateral weighted shifts. In particular, Salas showed that
there are operators satisfying the Supercyclicity Criterion that do not satisfy
the Hypercyclicity Criterion. If we take, in Theorem 2.1, λnk = 1 for every
k, we recover the Hypercyclicity Criterion. In fact, our point of view will
be to study supercyclicity and treat hypercyclicity as a special case. There
are good reasons to do so. First, supercyclic operators are divided into two
classes: those whose set of normal eigenvalues is empty (as for hypercyclic
operators) and those whose set of normal eigenvalues is a one-point set {α}
with α 6= 0 (see [He2, Prop. 3.1]). The former share many properties with
hypercyclic operators (see [MS, Sections 2–4]): for instance, it is not known
if there is a supercyclic operator whose point spectrum is empty and which
does not satisfy the Supercyclicity Criterion. If T satisfies the Supercyclic-
ity Criterion, then the set of normal eigenvalues is empty [MS, Props. 4.3
and 4.6]. Finally, we point out here that these supercyclic operators are
completely understood in terms of hypercyclic operators [GLM, Thm. 5.2].
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Separability of the operator algebra. Next, we will see that it is possible
to extend Theorem 2.1 to the operator algebra L(B) endowed with the strong
operator topology. The strong operator topology (SOT) on L(B) is defined
by the family {px : x ∈ B} of seminorms, where px(T ) = ‖Tx‖ for each
T ∈ L(B). A basic open neighborhood of the origin is given by

U(ε; y1, . . . , yn) = {T ∈ L(B) : ‖Tyi‖ < ε for every i = 1, . . . , n},
where ε > 0 and y1, . . . , yn are vectors in B.

Clearly, L(B) endowed with the strong operator topology becomes a
locally convex topological vector space, but, as an easy exercise shows, it is
not metrizable. Along with the SOT on L(B) we will use the operator norm
topology that comes from the usual norm in L(B) and makes it a Banach
space. We agree that, in what follows, only those topological terms with the
prefix “SOT” refer to the strong operator topology; otherwise, they refer to
the operator norm topology.

The following result may be known to specialists in Operator Theory on
general Banach spaces, but we have not found a reference in the literature.
Since it is the key point in the proofs of Theorems 2.3 and 3.1, we include
a proof.

Theorem 2.2. If B is a separable Banach space, then L(B) is separable
for the strong operator topology.

Proof. First of all, there is a basis of SOT neighborhoods U(ε; y1, . . . , yn)
of zero, where ε > 0 and yi, 1 ≤ i ≤ n, are linearly independent. For
if y1, . . . , yn, not all zero, are linearly dependent, then we choose a basis
F = {yn1 , . . . , ynk} with 1 ≤ k ≤ n of span{yi : 1 ≤ i ≤ n}. Then the linear
dependence of yi, 1 ≤ i ≤ n, with respect to F shows that if we choose δ
small enough, then U(δ; yn1 , . . . , ynk) ⊂ U(ε; y1, . . . , yn).

Now, let T ∈U(ε; y1, . . . , yn) where ε> 0 and yi, 1 ≤ i ≤ n, are linearly
independent. As span{y1, . . . , yn} is finite-dimensional, it is complemented
in B. Therefore, we can take a projection P from B onto span{y1, . . . , yn}.
The finite rank operator H = TP belongs to U(ε; y1, . . . , yn) since Hyi =
Tyi for 1 ≤ i ≤ n. Since the SOT is invariant under translations, we find
that the finite rank operators are SOT dense in L(B).

Finally, since B is separable, so is B∗with respect to the weak star topol-
ogy. Let Y be a denumerable weak star dense subset of B∗ and let X be
a denumerable dense subset of B. Then the set D(X) defined to be the
linear span over the rational numbers of {x 7→ y(x)x0 : (y, x0) ∈ Y × X}
is a denumerable dense subset in the finite rank operators and the result
follows.

The Supercyclicity Criterion in the operator algebra. Now, once Theo-
rem 2.2 is proved, as in [Ch1] for hypercyclicity, we can say that a continuous



206 A. Montes-Rodŕıguez and M. C. Romero-Moreno

linear mapping Λ : L(B) → L(B) is supercyclic if there is an operator T in
L(B) such that {λΛnT : λ ∈ C, n = 0, 1, 2, . . .} is SOT dense in L(B). In
such a case, the operator T is said to be a supercyclic vector for Λ. The
hypercyclicity of a map Λ on L(B) can be defined in the obvious way.

We next give a Supercyclicity Criterion on L(B). As a particular case
we obtain the Hypercyclicity Criterion proved by Chan in the Hilbert space
setting. Unlike the corresponding result of Chan, we do not require linearity
nor continuity of the inverse map.

Theorem 2.3. Let Λ : L(B) → L(B) be a continuous linear mapping.
Suppose that there exist a strictly increasing sequence {nk} of positive in-
tegers and a sequence {λnk} ⊂ C \ {0} for which there are a denumerable
SOT dense subset D in L(B) and a right inverse Θ : D → D with ΛΘ =
identity on D such that

‖λnkΛnkV ‖ → 0 and ‖(1/λnk)ΘnkV ‖ → 0 for each V ∈ D.
Then there is an operator T ∈ L(B) such that {λnkΛnkT} is SOT dense in
L(B). In particular , T is a supercyclic vector for Λ. Furthermore, if λnk = 1
for every k, then T is a hypercyclic vector for Λ.

Proof. The hypercyclic part of the statement is a trivial consequence of
the supercyclic part and it needs no proof. To simplify the notation we will
prove the theorem in the case that the hypotheses are satisfied for the whole
sequence {n} of positive integers. One easily checks that the same proof
works for a subsequence. Suppose that D = {Tk : k ≥ 1}. We construct a
sequence {nk : k ≥ 1} of integers as follows. Let n1 be a positive integer
such that ∥∥∥∥

1
λn1

Θn1T1

∥∥∥∥ <
1
2
.

We choose a positive integer n2 large enough to have
∥∥∥∥

1
λn2

Θn2T2

∥∥∥∥ <
1
22 ,

∥∥∥∥λn1Λ
n1

1
λn2

Θn2T2

∥∥∥∥ =
∥∥∥∥
λn1

λn2

Θn2−n1T2

∥∥∥∥ <
1
22 ,

∥∥∥∥λn2Λ
n2

1
λn1

Θn1T1

∥∥∥∥ =
∥∥∥∥
λn2

λn1

Λn2−n1T1

∥∥∥∥ <
1
22 .

Once nk−1 is chosen, we can take nk large enough to have
∥∥∥∥

1
λnk

ΘnkTk

∥∥∥∥ <
1
2k
,(1)

∥∥∥∥λnjΛnj
1
λnk

ΘnkTk

∥∥∥∥ =
∥∥∥∥
λnj
λnk

Θnk−njTk

∥∥∥∥ <
1
2k

for 1 ≤ j ≤ k − 1,(2)
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(3)
∥∥∥∥λnkΛnk

k−1∑

j=1

1
λnj

ΘnjTj

∥∥∥∥ =
∥∥∥∥
k−1∑

j=1

λnk
λnj

Λnk−njTj

∥∥∥∥ <
1
2k
.

Now, condition (1) ensures that the series

T =
∞∑

j=1

1
λnj

ΘnjTj

defines an operator that belongs to L(B). We now show that T is a super-
cyclic vector for Λ. For every integer k we can write

λnkΛ
nkT =

∞∑

j=1

λnk
λnj

Λnk ΘnjTj

=
k−1∑

j=1

λnk
λnj

ΛnkΘnjTj + Tk +
∞∑

j=k+1

λnk
λnj

ΛnkΘnjTj .

Therefore, applying (3) and (2) in the second inequality below, we have

‖λnkΛnkT − Tk‖ ≤
∥∥∥∥
k−1∑

j=1

λnk
λnj

Λnk−njTj

∥∥∥∥+
∞∑

j=k+1

∥∥∥∥
λnk
λnj

Θnj−nkTj

∥∥∥∥

<
1
2k

+
∞∑

j=k+1

1
2j

=
1

2k−1 .

Therefore,

(4) ‖λnkΛnkT − Tk‖ → 0 as k →∞.
Let V0 be any element in L(B) and let U = U(ε;x1, . . . , xN ) be any basic

SOT neighborhood of the origin, where ε > 0 and x1, . . . , xN are vectors
in B. By (4), there is an integer k0 such that for k ≥ k0 and for all xi,
1 ≤ i ≤ N , we have

‖λnkΛnkTxi − Tkxi‖ ≤ ‖λnkΛnkT − Tk‖ · ‖xi‖ < ε/2.

On the other hand, since {Tk : k ≥ k0} is SOT dense in L(B), we can
choose an integer j ≥ k0 such that Tj − V0 ∈ U(ε/2;x1, . . . , xN ). Hence, for
1 ≤ i ≤ N , we have

‖λnjΛnjTxi−V0xi‖ ≤ ‖λnjΛnjTxi−Tjxi‖+‖Tjxi−V0xi‖ < ε/2+ε/2 = ε,

which proves that λnjΛ
njT − V0 ∈ U and shows that Λ is supercyclic.

Remark. If we require linearity of the inverse map (as in [Ch1]) and
that ΛD ⊂ D an easier proof can be given. For in this case, the hypotheses
of the theorem imply that the Banach subspace

B1 = span{V : V ∈ D}
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of L(B) is separable and the restriction of Λ to B1 satisfies all the hypotheses
of the Supercyclicity Criterion. In fact, in Theorem 2.1 we take

X = span{V : V ∈ D}
as a dense set in B1, define the right inverse by SV = ΘV if V ∈ D and then
extend by linearity to X. Therefore, there is V ∈ B1 such that {λnkΛnkV }
is dense in B1. Since B1 is SOT dense in L(B), the result follows. This proof
also works in more general situations but it gets more complicated.

It is obvious that a necessary condition for a continuous linear map-
ping Λ : L(B) → L(B) to be supercyclic is that Λ has SOT dense range.
In particular, the same is true for hypercyclicity. In the latter case more is
true: for each complex number λ the mapping Λ− λ has SOT dense range
[Ch1, Lem. 3]. For hypercyclic operators on Banach spaces this result was
proved by Kitai [Ki, Cor. 2.4]. In [MS, Prop. 4.3], it was shown that if an
operator satisfies the Supercyclicity Criterion (Theorem 2.1), then T − λ
always has dense range. The next proposition shows that this result also ex-
tends to the operator algebra. The proof is similar to that of Proposition 4.3
in [MS].

Proposition 2.4. Suppose that Λ : L(B) → L(B) is a continuous lin-
ear mapping satisfying the Supercyclicity Criterion. Then for each complex
number λ the mapping Λ−λ has dense range for the strong operator topology.

Proof. We denote by Λ∗ the adjoint of Λ. Assume that there exist λ∈C
and a nonzero SOT functional S such that Λ∗S = λS. We set λ = |λ|eiα.
Since Λ satisfies the Supercyclicity Criterion, so does e−iαΛ. Without loss
of generality, we may suppose that the sequence {λnk} for which the Super-
cyclicity Criterion is satisfied is a sequence of positive numbers. Now, if T
is a supercyclic vector for Λ such that {λnke−inkαΛnkT} is SOT dense in
L(B), then the set of complex numbers 〈λnke−inkαΛnkT, S〉 is also dense in
the complex plane. But we have

〈λnke−inkαΛnkT, S〉 = λnk〈T, e−inkαΛ∗nkS〉 = λnk |λ|nk〈T, S〉
and it is obvious that the set of complex numbers defined by the right side
of the above display, as k ranges through the positive integers, is at most
dense in a straight line through the origin, a contradiction. Therefore, if Λ
satisfies the Supercyclicity Criterion, and S is a nonzero SOT continuous
linear functional on L(B), then there is an operator T ∈ L(B) such that
〈(Λ− λ)T, S〉 6= 0. Thus (Λ− λ)L(B) is SOT dense.

If a continuous linear mapping Λ : L(B) → L(B) is supercyclic, then it
has a SOT dense set of supercyclic vectors. This follows immediately from
the fact that if {λnΛnT}n≥0 is SOT dense in L(B) for some T , then so is
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{λnΛnT}n≥k = {λn+kΛ
nΛkT}n≥0. Thus if T is supercyclic for Λ, then so is

ΛkT for each positive integer k.
Now, suppose that Λ satisfies the Supercyclicity Criterion. Proposi-

tion 2.4, as in [Ch1, Prop. 4] for hypercyclic operators, can be used to prove
that

M = {p(Λ)T : p is a polynomial}
is an invariant linear manifold of supercyclic vectors for Λ. This result for
hypercyclic operators on Banach spaces was proved, independently, by Her-
rero [He2] and Bourdon [Bo]. The analogous fact for operators satisfying
the Supercyclicity Criterion in the Banach space setting was noticed in [MS,
Section 2].

We close this section by stating the following theorem which is the best
that one can obtain using the proof of Theorem 2.3. It should be compared
with the comparison principle for hypercyclic or supercyclic operators (see
[Sh, p. 111]).

Theorem 2.5. Let F be an F -space, that is, a complete metric vector
space. Let d denote the metric on F . Let τ be a topology on F weaker than
that induced by d and that makes F a separable topological vector space. Let
Λ : F → F be a continuous linear mapping. Suppose that there exist a strictly
increasing sequence {nk} of positive integers and a sequence {λnk} ⊂ C\{0}
for which there is a τ -dense subset D in F and a right inverse Θ : D → D
with ΛΘ = identity on D such that

d(0, λnkΛ
nkx)→ 0 and d(0, (1/λnk)Θnkx)→ 0 for each x ∈ D.

Then there is x ∈ F such that {λnkΛnkx} is τ -dense in F . In particular , x
is a τ -supercyclic vector for T . Furthermore, if λnk = 1 for every k, then
x is τ -hypercyclic for T .

For instance, as a corollary of Theorem 2.5, we find that in Theorem 2.3
the strong operator topology can be replaced by the weak operator topology.

3. Multiplication operators on the operator algebra. In this sec-
tion we consider multiplication operators on L(B). Corresponding to any op-
erator T ∈ L(B), we consider the (left) multiplication operator ΛT : L(B)→
L(B) that assigns to each V ∈ L(B) the operator ΛTV = TV . Again, in the
next theorem we do not require the linearity or continuity of the inverse
maps, which makes its proof different from that of [Ch1, Prop. 6].

Theorem 3.1. Let T be a bounded operator on a separable Banach space
B. If T satisfies the Supercyclicity Criterion with respect to a sequence
{λnk}, then so does ΛT : L(B) → L(B) with respect to the same sequence.
In particular , if T satisfies the Hypercyclicity Criterion, then so does ΛT .
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Proof. To save some notation, we assume that the Supercyclicity Crite-
rion is satisfied for {λn}n≥1. One easily checks that the same proof works
for {λnk}k≥1. It is easy to check that there is no loss of generality if we
suppose that the set X in the hypotheses of Theorem 2.1 is denumerable.
Since X is dense in B, we may consider the set D(X) furnished by the proof
of Theorem 2.2. Let V ∈ D(X). Recall that V can be written for all x ∈ B
as V x = y∗1(x)x1 + . . .+ y∗m(x)xm where y∗i ∈ B∗ and xi ∈ X. In addition,
we may assume that the set {x1, . . . , xm} is linearly independent and still
contained in X. We fix one such representation for each V ∈ D(X). Now,
for each nonnegative integer j we set

(1) ΘjV x =
m∑

i=1

y∗i (x)Sjxi (x ∈ B).

Since xi ∈ X, 1 ≤ i ≤ m, and S : X → X, we find that ΘjV defines a finite
rank operator from B into span(X). Therefore, Θj defines a map from D(X)
into L(B). Note that Sj may not even be defined on span{xi : 1 ≤ i ≤ m}
and if it is defined on some element of this subspace, the hypotheses of
Theorem 2.1 do not require S to be linear. In particular, this implies that,
in general, the definition of ΘjV depends on the fixed set {x1, . . . , xm}.
Using the fact that Sn tends pointwise to zero on X and that {x1, . . . , xm}
is a linearly independent set, it is not difficult to show that ΘjV 6= ΘiV
whenever V 6= 0 and i 6= j. This will allow us to define the map Θ below.

Now, consider the set

E =
∞⋃

j=0

ΘjD(X)

which is denumerable and SOT dense in L(B). To define the inverse map
Θ we set D(X) = {Vk}k≥1. We may suppose that 0 is not one of the Vk’s.
Now, by induction, for k = 1 we define Θ on V1 = {ΘjV1 : j ≥ 0} as
ΘΘjV1 = Θj+1V1. Next we consider {Vk} \ V1; if this set is void, we are
finished. If not, let k0 be the first positive integer such that Vk0 ∈ {Vk} \ V1

and then define Θ on Vk0 = {ΘjVk0 : j ≥ 0} \ V1 as ΘΘjVk0 = Θj+1Vk0 .
Note that the iterates ΘnΘjVk0 may be eventually equal to Θn+mV1, where
m is an integer. Next we consider {Vk} \ (V1 ∪ Vk0). It is clear that we can
continue in this way to get a well defined map Θ : E → E . Since ΛT is linear
and TS = identity on X, it is easy to see that ΛTΘ = identity on E .

Now, we prove that (1/λn)Θn tends to zero pointwise on E . Any element
in E is of the form ΘjV for some V ∈ D(X) and some nonnegative integer
j, and the iterates ΘnΘjV are eventually of the form Θn+mW for some
W ∈ D(X), where m is an integer. We have Wx = y∗1(x)x1 + . . .+ y∗m(x)xm
where y∗i ∈ B∗, xi ∈ X and x ∈ B. If m ≥ 0, for n large enough we have



Supercyclicity in the operator algebra 211

‖(1/λn)Θn+mW‖ = sup
‖x‖=1

‖(1/λn)Θn+mWx‖

= sup
‖x‖=1

∥∥∥
m∑

i=1

y∗i (x)(1/λn)SnSmxi
∥∥∥

≤ max
1≤i≤m

‖y∗i ‖
m∑

i=1

‖(1/λn)SnSmxi‖.

Since Smxi, 1 ≤ i ≤ m, belongs to X, we find that (1/λn)SnSmxi goes to
zero pointwise on X and, therefore, so does the last display. If m < 0, then
for n > −m we have (1/λn)Θn+mW = Λ−mT (1/λn)ΘnW , which also goes to
zero because T is bounded.

A similar argument also shows that λnΛnT goes to zero pointwise on E
and, therefore, the hypotheses of Theorem 2.3 are fulfilled. The proof is
complete.

Theorem 3.1 states that, under the assumption that T satisfies the Su-
percyclicity Criterion, the supercyclicity of T implies that of ΛT . The con-
verse is always true, even if ΛT does not satisfy the Supercyclicity Criterion
(compare with the proof given in [Ch1]):

Theorem 3.2. Let B be a separable Banach space and suppose that ΛT :
L(B)→ L(B) has a supercyclic (resp. hypercyclic) vector V and x0 ∈ B is a
nonzero vector. Then V x0 is a supercyclic (resp. hypercyclic) vector for T .
In particular , if ΛT is supercyclic (resp. hypercyclic), then so is T .

Proof. We only prove the supercyclic part. We take x∗0 ∈ B∗ such that
x∗0(x0) = 1. Now for each vector y ∈ B, we define the one-dimensional
operator Sy ∈ L(B) by Syx = x∗0(x)y. Since V is a supercyclic vector for ΛT ,
there exists a sequence {nk} of integers and a sequence {λnk} of scalars such
that λnkΛ

nk
T V x0 → Syx0 = y in B. Thus, {λTnV x0 : λ ∈ C, n = 0, 1, 2, . . .}

is dense in B.

It would be interesting to know if the converse of Theorem 3.2 holds.
Theorem 3.2 has the following intriguing corollary.

Corollary 3.3. If T is a supercyclic (resp. hypercyclic) vector for ΛT ,
then every nonzero vector in B is supercyclic (resp. hypercyclic) for T . The
same is true if V is onto and supercyclic (resp. hypercyclic) for ΛT . In other
words, in either case T has no nontrivial , closed invariant subspace (resp.
subset).

Since 0 cannot be a supercyclic vector of T , the supercyclic vectors V of
ΛT are (at least) one-to-one and have dense range.

Finally, we have the following theorem whose proof is slightly simpler
than that of Chan for hypercyclic operators in the Hilbert space setting.
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Theorem 3.4. Let B be a separable Banach space. Suppose that there
exist a strictly increasing sequence {nk} of positive integers and a sequence
{λnk} ⊂ C \ {0} for which there are

(a) a dense subset X in B and a right inverse S : X → X with TS =
identity on X such that ‖λnkTnk‖ → 0 and ‖(1/λnk)Tnk‖ → 0,

(b) an infinite-dimensional Banach subspace B0 ⊂ B such that λnkT
nke

→ 0 for each e ∈ B0.

Then there is an infinite-dimensional closed subspace B1 ⊂ B such that
for each z ∈ B1 the sequence {λnkTnkz} is dense in B. In particular , B1 is
an infinite-dimensional closed subspace consisting , except for zero, of super-
cyclic vectors for T .

Proof. By Theorem 3.1, ΛT satisfies the Supercyclicity Criterion with
respect to {λnk}. Therefore, there is an operator V ∈ L(B) such that
{λnkΛnkT V } is SOT dense in L(B). The proof of Theorem 3.2 implies that for
any nonzero x in B the sequence {λnkTnkV x} is dense in B. Without loss of
generality we may assume that ‖V ‖ < 1. Consequently, the operator I + V
is invertible and, therefore, B1 = (I + V )B0 is a closed infinite-dimensional
subspace of B. Take any z ∈ B1; then z = e + y with y = V e. Now, the
result follows because

λnkT
nk(e+ y)− λnkTnky = λnkT

nke→ 0

as k →∞ and {λnkTnky} is dense in B.

Remark. The above theorem was first stated in [MS, Prop. 4.1]. It is a
particular case of the remarks following Theorem 2.2 in [Mo]. By just taking
λnk equal to 1 for every k we obtain Theorem 1.1 as a corollary. Actually,
we have obtained a slight improvement of Theorem 2.2 in [Mo]. In fact, by
taking V to be a supercyclic vector for ΛT with 0 < ‖V ‖ < ε for ε ∈ (0, 1)
we see that B1 is as close to B0 as desired. The proof of Theorem 2.2 in
[Mo] only shows that B1 is as close as desired to a subspace of B0 with a
Schauder basis.
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