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Extension of smooth functions
in infinite dimensions II: manifolds

by

C. J. Atkin (Wellington)

Abstract. Let M be a separable C∞ Finsler manifold of infinite dimension. Then it
is proved, amongst other results, that under suitable conditions of local extensibility the
germ of a C∞ function, or of a C∞ section of a vector bundle, on the union of a closed
submanifold and a closed locally compact set in M , extends to a C∞ function on the
whole of M .

1. Introduction. In the preceding paper [2], I presented a theorem, [2,
5.1], which asserts the possibility of extending functions of various classes
from a finite union of convex sets to the whole of a locally convex space. A
particular example, assuming the space to be normed, would be the Fréchet
C∞ differentiability class. The purpose of this paper is to show how that
theorem may be used to obtain extension theorems for functions of a given
class from suitable subsets of a manifold to the whole manifold.

An extension theorem will say that any “function” of a certain class
defined on a subset X of a space M is necessarily the “restriction” of a
“function” of some related class on M . The “functions” need not always
be functions in the usual sense, and “restriction” may not be a completely
obvious procedure, as with the trace of a Sobolev function on the boundary
of its domain. Setting aside such possibilities, there are several kinds of
extension theorem that one might consider. One might ask simply for a
function onM whose restriction toX is given; or one might, for instance, also
ask that its infinitesimal behaviour at points of X should be prescribed. This
is the content of Whitney’s famous theorem, [11], which in effect extends
suitable C∞-jets on a closed set X in Rn to C∞ functions on Rn. One might
also ask for a function on M whose germ at X agrees with a given germ,
that is, it agrees on some unspecified small neighbourhood of X with a given
function on some neighbourhood of X. The principal theorem presented
here, 5.5, is of this last kind: if X is a suitable subset (a closed locally
compact subset, a closed submanifold, or a union of both) of the manifoldM ,
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a “smooth” function f defined on a neighbourhood V of X coincides on a
certain smaller neighbourhood W of X with a “smooth” function on M .
The neighbourhood W depends only on V and X.

When X is just a pair of points, 5.5 has the following very weak but
interesting consequence, proved as 5.6 below:

Lemma 1.1. Let M be a paracompact C∞ manifold modelled on the Ba-
nach space C or on the Banach space `1. The class of real-valued C∞ func-
tions on M separates points.

This answers the question raised by Elworthy in [5], and mentioned in
the introduction to [2]. In fact, the restriction to C and `1 as models is quite
unnecessary, in view of extension properties and smoothing theorems that
will be presented in later papers.

For the sake of general applicability, my principal results are presented
in terms of the extension of sections of fibrations rather than of functions.
There are theorems similar to 5.5 that may be derived from [2, 5.5]; I have
omitted them, since their proofs are essentially the same, and their hypothe-
ses inevitably more complicated. Some of the definitions of [2, §2] will be
assumed.

There are two obvious difficulties in applying the results of [2] on man-
ifolds. [2, 5.1] and its variants depend on convexity (see [2, 3.3] for some
remarks on this) and on “extensibility” of the functions considered (see [2,
1.5] for the definition). One cannot usually expect either of these properties
to be preserved by the coordinate transformations of a manifold. However,
for a C1 manifold modelled on a separable normed space with the Fréchet
definition of differentiability, the charts may be so chosen that the coordinate
transformations preserve convexity “approximately”, and this is enough for
the proof here. The requirement that the functions in question be extensible
is not so simply overcome, but, as I pointed out at [2, 1.3], there are many
standard models for which the C∞ class, at least, consists entirely of exten-
sible functions. As I have already hinted, I hope to demonstrate elsewhere
that, for many cases of interest, the requirement of extensibility either is
satisfied automatically or can be satisfied by a careful choice of charts.

When the model is not a normed space, there is no natural notion of
differentiability, and the definitions usually presented (see [7] and [8], for
example) are insufficient to support the “approximate convexity” arguments
used in the normed case. Thus the result that I present for such models,
Theorem 6.1, is much weaker, but not altogether uninteresting.

Whitney’s method of proving his extension theorem cannot be applied
in infinite dimensions, since it employs smooth partitions of unity, which
need not always exist ([3], [4]), and covers by bounded cubes with disjoint
interiors, which never can. There are, in fact, well known counterexamples to
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many natural conjectures. If f is a function which is 1 on a neighbourhood
of the origin of a separable normed space E of infinite dimension and is 0
on a neighbourhood of the unit sphere S of E, any C∞ extension of f to
the whole of E may easily be adjusted to give a non-zero C∞ function of
bounded support, which, by [3] or [4], is impossible in many spaces (such as
C and `1).

At first glance, the reason for this counterexample is that S separates E.
However, the set S × {0} in E × E is homotopy-negligible (the inclusion

(E × E) \ (S × {0})→ E × E
is a homotopy equivalence), and yet any C∞ extension to E×E of a function
which is 1 at (0, 0) and 0 on S × {0} would also lead to a non-zero C∞

function of bounded support in E×{0}. In these examples, it is immaterial
that S is a norm-sphere; any bounded closed set separating a subspace of E
that does not admit C∞ non-zero functions of bounded support would give
a like result. It seems, then, that certain sets in some spaces are “bad” for
extension problems, and that their “badness” is a rather subtle property,
related not merely to their topological embedding in the ambient space but
also to its analytical or geometrical character. There is a vague analogy with
the theory of several complex variables, in which spheres are similarly “bad”
for holomorphic functions. One cannot expect a simple characterization of
“good” sets for a given extension problem, since it would have to depend on
the spaces and the function classes involved; nevertheless, the theorems of
this paper do assert the “goodness”, for the problems considered, of certain
rather simple kinds of set.

The arguments here were developed over a very long period. I am grateful
to the Institutes of Mathematics of the University of Warsaw and of the
Polish Academy of Sciences for the hospitality which enabled me at last to
put them into a reasonable form, and to the referee for helpful suggestions.

2. Localization and fibrations

Definition 2.1. Suppose that C is a category of mappings between
topological spaces. (There may be very few objects in the category C.) Ex-
tend C by “localization” to the class LC of locally-C mappings between open
sets of objects of C, as follows.

Let U be an open set in X and V an open set in Y , where both X and Y
are objects of C, and let i : V → Y denote the inclusion. Then f : U → V
belongs to LC if and only if, for each x ∈ U , there exist a neighbourhood
W of x in U and a morphism g : X → Y of C such that g|W = i ◦ f |W .

In the language of [2, 1.5], LC consists of the C-extensible mappings of
open sets of objects of C. If C consists of continuous mappings, then so does
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LC, which is itself a category. The mappings in LC are automatically locally
defined (see [2, 1.4]).

Definition 2.2. The category C is admissible if its objects are topolog-
ical vector spaces and, for each pair E,F of objects of C, the C-morphisms
from E to F form an F -admissible class (see [2, 1.7]).

It then follows that, if X is open in E and Y is open and convex in F ,
the LC-morphisms X → Y are Y -admissible in the sense of [2, 1.7].

Definition 2.3. Given a category C, as in 2.1 above, which consists of
continuous maps, an LC-manifold is a manifold, modelled on an object E
of C, for which all the coordinate transformations are isomorphisms in LC.

In other words, LC determines a pseudogroup GE(C) of transformations
in E, consisting of the mappings f : U → V between open subsets of E which
are in LC and have inverses f−1 : V → U also in LC. An LC-manifold mod-
elled on E is then a GE(C)-manifold. I shall always write of LC-manifolds
and LC-charts, rather than mention the pseudogroup GE(C); this accords
with familiar usage.

The category LC may now be further extended. If M and N are LC-
manifolds, modelled respectively on the objects E and F of C, a mapping
f : M → N is described as being in LC, or as being an LC-mapping, if, for
each x ∈ M , there are open neighbourhoods U of x in M and V of f(x)
in N , and LC-manifold charts φ : U → φ(U) ⊆ E, ψ : V → ψ(V ) ⊆ F ,
where φ(U) is open in E and ψ(V ) is open in F , such that f(U) ⊆ V and
ψ ◦ (f |U) ◦ φ−1 : φ(U)→ ψ(V ) is in LC.

If this condition holds for one specific choice of LC-manifold charts φ
and ψ with the given domains U and V , it also holds for all other choices.
Since C is assumed to consist of continuous maps, an LC-mapping of LC-
manifolds must be continuous; and such mappings form a category, which
may be called the LC-category. (This name is somewhat ambiguous, in view
of 2.1, but it is an ambiguity of a kind familiar from the Cp category.)

An open subset U of an LC-manifold M itself clearly has a unique LC-
manifold structure such that the inclusion U →M is an LC-mapping. Fur-
thermore, any LC-mapping into M whose image is included in U is then an
LC-mapping into U .

Definition 2.4. A category D is applicable if its objects are open sets
in topological vector spaces, its morphisms are continuous mappings, and,
together with any morphism φ, it contains all mappings obtained from φ by
restriction to an open subset of its domain or image. (The categories LC are
examples of applicable categories.)

Definition 2.5. Suppose that the topological vector space E is an ob-
ject of the applicable category D, and F is a linear subspace of E. Let M be
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a D-manifold modelled on E. A D-submanifold of M modelled on F is a non-
null subset N of M which may be covered by D-charts φ : U → φ(U) ⊆ E
of M such that φ(U ∩ N) = φ(U) ∩ F . Such charts may be called D-
submanifold charts for N .

When E is a normed space and M is a C1-manifold modelled on E, a
C1-submanifold modelled on F is, similarly, a non-null subset N of M such
that every point of M is contained in the domain of some C1 chart of M ,
φ : U → φ(U) ⊆ E, for which φ(U ∩N) = φ(U) ∩ F.

The submanifolds just defined are the only ones that will be considered
in this paper, although in other contexts other definitions are appropriate.
In this case, the submanifold N is closed in M if and only if its model F is
closed in E.

Remark 2.6. The LC-category is merely an ad hoc tool for the conve-
nient formulation of theorems, and is not a useful general setting for ge-
ometry, even when C is the C∞ category; for it is not, in principle, closed
under simple analytical operations such as the solution of ordinary differ-
ential equations. Of course, if one restricts attention to many “standard”
normed spaces, LC∞ =C∞ (see [2, 1.3]), and there is no problem.

As defined here, an LC-submanifold need not even be an LC-manifold
in a natural way, although a C1-submanifold of a C1-manifold does have a
natural C1 structure and the same is true for many other common choices
of C.

Definition 2.7. Given the category C as in 2.1 and an object E of C,
a subspace F of E is C-imbedded if the inclusion i : F → E belongs to C
and any mapping g : H → F (where H is an object of C) such that i ◦ g ∈ C
itself belongs to C.

Lemma 2.8. Let N be an LC-submanifold , modelled on the subspace F ,
of the LC-manifold M modelled on the space E, and suppose that F is
C-imbedded in E. Then there is a unique LC-structure on N such that the
inclusion N →M is an LC-mapping.

Proof. If φ : U → φ(U) ⊆ E and ψ : V → ψ(V ) ⊆ E are LC-charts
of M such that φ(U ∩N) = φ(U) ∩ F and ψ(V ∩N) = ψ(V ) ∩ F , then the
coordinate transformation

χ := (φ|U ∩ V ) ◦ (ψ|U ∩ V )−1 : ψ(U ∩ V )→ φ(U ∩ V )

in LC carries ψ(U ∩ V )∩F into φ(U ∩ V )∩F . However, if F is C-imbedded
in E, this implies that χ|ψ(U ∩ V ) ∩ F as a mapping into φ(U ∩ V ) ∩ F is
itself in LC. The LC-structure on N thus defined is the only possible one
making the inclusion LC.



220 C. J. Atkin

Definition 2.9. Let E,F be objects of C; suppose that, whenever map-
pings φ : E → E and ψ : F → F are in C, φ × ψ : E × F → E × F is also
in C. Then, for any two LC-manifolds M,N with models E,F respectively,
there is an LC-manifold M × N defined by an atlas whose charts are the
products of charts for M and for N in the usual way.

Assume further that the projections E×F → E and E×F → F , and the
diagonal map E → E×E, are in C (compare 2.8); then both the coordinate
projections p1 : M ×N → M and p2 : M ×N → N , and the diagonal map
∇ : M →M ×M , are also in C.

By a locally trivial LC-fibration (with base M , whose model is E, and
fibre N , whose model is F ) I mean an LC-mapping π : E → M of LC-
manifolds, such that, for each x ∈ M , there are an open neighbourhood U
of x in M (hence U and π−1(U) have natural LC-structures, by the remarks
after 2.3) and an LC-isomorphism φ : π−1(U)→ U×N for which p1 ◦φ = π.
Such a neighbourhood U is called an LC-trivializing neighbourhood (of x in
M , for the fibration π), and such an LC-diffeomorphism φ may be called an
LC-local trivialization for π over the base U . Any smaller open neighbour-
hood of x will then also be LC-trivializing, an LC-local trivialization being
furnished by the restriction of φ. The notion of the restriction of the locally
trivial LC-fibration π, also called E , to a (suitable—for instance open) subset
V of M is defined as usual, and will be denoted by E|V .

By an LC-vector fibration (with base M and fibre E) I mean a locally
trivial LC-fibration π : E → M for which each fibre is given the structure
of a topological vector space isomorphic to E, in such a way that M may
be covered by the bases U of LC-local trivializations φ : π−1(U) → U × E
whose restriction to each fibre is a topological linear isomorphism. These
may be called LC-local vector trivializations of π.

Equivalently, the transformation ψ◦φ−1 between two such local trivializa-
tions is to be a topological linear isomorphism in each fibre. This is a weaker
definition than is usually given (see [9]) for a vector bundle with normed
infinite-dimensional fibres. For a C0-vector bundle whose fibre is a normed
space E, the bundle transition functions θUV : U ∩V → GL(E) between two
local bundle trivializations φ : π−1(U) → U × E and ψ : π−1(V )→ V × E
are defined by setting θUV (x)ξ := ψ ◦ φ−1(x, ξ) for any x ∈ U ∩ V and
ξ ∈ E, and are required to be continuous as maps into GL(E) with the
uniform norm topology. This condition is evidently needed if the notion of
a Finsler structure in the bundle is to make sense. (For clarity, I shall call
such a Finsler structure a bundle Finsler structure; a Finsler structure on
a manifold, which is the same as a bundle Finsler structure in its tangent
bundle, may be called a tangential Finsler structure.) A C1-vector fibration
is a C0-vector bundle, since the transition functions may be obtained by
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differentiation at the points of the zero-section; but it is also a C1-manifold,
which a C0-vector bundle need not be. This is the “loss of differentiability
problem” discussed in [5].

Definition 2.10. Let π : E →M be an LC-vector fibration with base M
and fibre E, and suppose that E1 is a subset of E and G is an C-imbedded
vector subspace of E. Then π1 := π|E1 is an LC-vector subfibration of π,
with fibre G, if M may be covered by the bases U of LC-local trivializations
φ : π−1(U)→ U × E such that

φ(π−1(U) ∩ E1) = U ×G.
In such a case, π1 is an LC-vector fibration in its own right (as G is C-
imbedded in E).

Provided that the category C satisfies suitable conditions on the forma-
tion of quotients, one may construct a quotient LC-vector fibration π/π1
(or E/E1), which is an LC-vector fibration with base M and fibre E/G.
(The category C0 is certainly satisfactory for this purpose.) Similarly, an
LC-morphism of LC-vector fibrations is an LC-map which respects fibres
and is linear in each fibre; the inclusion map of an LC-vector subfibration,
and the quotient map when it is defined, are LC-morphisms. LC-morphisms
may be added and multiplied by scalars. There are similar definitions for
C0-vector bundles.

Definition 2.11. Let π : L → M be a locally trivial LC-fibration, as
above. A section of π over a subset X of M is of course a function σ : X → L
such that π ◦σ is the inclusion of X in M . When U is an open subset of M ,
an LC-section of π over U is a section which is an LC-mapping.

An LC-local trivialization φ : π−1(U) → U × N establishes a one-one
correspondence between LC-sections of π over U and LC-mappings U → N ;
the section σ defines the mapping p2 ◦ φ ◦ σ, and the mapping f gives the
section σ, where σ(x) := φ−1 ◦ (1× f) ◦ ∇(x).

Remark 2.12. The usual constructions, such as pullbacks, may be car-
ried out for locally trivial LC-fibrations, provided that C is large enough for
the constructions to make sense. Therefore, at 3.6, I shall restrict discus-
sion to LC-sections of a locally trivial LC-fibration π : L → M . There are
similar results for LC-liftings to L of an LC-mapping k : R → M , where
R is another LC-manifold; they may be proved either by the same method,
with some slight complications of notation, or, if C is a suitable category,
by associating such liftings with sections of k∗π.

3. An extension theorem. This section is devoted to the proof of the
technical result 3.6, whose application occupies the rest of the paper. The
proof is inductive; its structure is very similar to the proof of [2, 4.2], and
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it depends on [2, 5.1]. In particular, the definitions of [2, §2] will be used
without explanation. D is to denote an applicable category (see 2.4), and
the convex envelope of a subset Q in a vector space E will be denoted by
co(Q).

Definition 3.1. Let M be a D-manifold. An extension family in M is a
pair ({(U j, U j0 ) : j ∈ J}, Θ) consisting of a class of pairs of open sets indexed
by a finite or countable set J , and of a subset Θ of J , which satisfies the
conditions:

(i) the class {U j
0 : j ∈ J} covers M ;

(ii) for any ψ ∈ J \Θ, the set Θψ := {θ ∈ Θ : Uψ ∩ U θ 6= ∅} is finite;
(iii) for any j ∈ J , clM (U j0) ⊆ U j .

For any extension family, I shall write

U0(Θ) :=
⋃

i∈Θ
U i0 and U(Θ) :=

⋃

i∈Θ
U i.

Lemma 3.2. If ({(U j, U j0 ) : j ∈ J}, Θ) is an extension family in M ,
then clM (U0(Θ)) ⊆ U(Θ).

Proof. Suppose x ∈ clM (U0(Θ)) \ U0(Θ). By 3.1(i), there is some ψ ∈
J \ Θ such that x ∈ Uψ

0 , and Uψ meets U θ0 (for θ ∈ Θ) only when θ is
in the finite set Θψ. Hence, x ∈ clM (

⋃
θ∈Θψ U

θ
0 ) =

⋃
θ∈Θψ clM (U θ0 ), and

clM (U θ0 ) ⊆ U θ ⊆ U(Θ) for θ ∈ Θ.

Definition 3.3. If M is a D-manifold and V is an open cover of M ,
a V-extension system in M is an extension family ({(U j , U j0) : j ∈ J}, Θ)
satisfying the additional condition

(iv) for any finite subset T ⊆ J and any ψ ∈ J \ Θ, there is a D-chart
ωψ,T : Oψ,T → E for M such that

(a) Oψ,T ⊆ V for some V ∈ V,
(b) when k, l ∈ T and Uψ ∩Uk 6= ∅ 6= Uk ∩U l, then U l ⊆ Oψ,T and

co(ωψ,T (U l0)) ≺ ωψ,T (U l).

If V consists of all the open sets of M , one might speak of an extension
system.

If one takes T := {j}, (iv)(b) shows that {U j} must refine V.

Remark 3.4. In most respects, the above Definition 3.3 is what is needed
in the proof of 3.6. However, the full strength of (iv) is superfluous, for J is
taken in 3.6 to be a subset of N and, for a given ψ ∈ J \ Θ, the only set T
that is used is (J ∩ [1, ψ])∪ (

⋃
j∈J∩[1,ψ] Θj) (so that the chart ωψ,T depends

only on ψ). Definition 3.3 could, therefore, be weakened somewhat, but at
the cost of assuming a specific ordering of J .
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The details of the argument are somewhat arbitrary, and, in fact, to ap-
ply 3.6, I shall prove the substantially stronger properties 3.5. As a defini-
tion, therefore, 3.3 is an ugly compromise; but it has the potential advantage
that, as in the suggested weaker version, (iv)(b) only imposes finitely many
conditions on ωψ,T .

The definitions here do not require an LC-manifold, and it is in principle
quite permissible, albeit not usually possible, that

⋃
ψ∈J\Θ U

ψ
0 itself should

be the whole of M .
If 3.1(ii) were weakened to require only that {θ ∈ Θ : Uψ ∩ U θ0 6= ∅}

be finite, with a corresponding change in 3.3(iv)(b), the later arguments
could with some effort be improved to show that any closed set in a Finsler
manifold is an LC-extension core in the sense of 3.9. That conclusion is false,
as I noted in §1; the induction in 3.6 would indeed fail. But it is curious that
the form of (ii) is so crucial for the extension theorems.

Definition 3.5. Again, let M be a D-manifold and V an open cover
of M . A strong V-extension system in M is a pair ({(U j , U j0 ) : j ∈ J}, Θ)
satisfying 3.1(i)–(iii) and

(iv′) for any ψ ∈ J \Θ, there is a D-chart ωψ : Oψ → E for M such that

(a) there is some V ∈ V such that Oψ ⊆ V ,
(b) when k, l ∈ J and Uψ ∩ Uk 6= ∅ 6= Uk ∩ U l, then U l ⊆ Oψ and

co(ωψ(U l0)) ≺ ωψ(U l).

Proposition 3.6. Suppose C is an admissible category (see 2.2). Sup-
pose that π : L→M is a locally trivial LC-fibration of LC-manifolds, with
base M and fibre N (see 2.9), where N is LC-diffeomorphic to the open con-
vex subset Y of the topological vector space F and M has the locally convex
Lindelöf model E.

Let V be any cover of M by open sets V in M for which there is an
LC-local trivialization φ : π−1(V ) → V × N of π. Suppose that the pair
({(U j, U j0 ) : j ∈ J}, Θ) is a V-extension system in M . Then, for any LC-
section τ of π over U(Θ), there exists an LC-section σ of π over M such
that σ|U0(Θ) = τ |U0(Θ).

Proof. (a) Taking T := (J ∩ [1, ψ])∪ (
⋃
j∈J∩[1,ψ] Θj) in 3.3(iv), one finds

that, for the given V and for each ψ ∈ J \ Θ, there exist both an LC-chart
ωψ : Oψ → E (I write ωψ for ωψ,T and Oψ for Oψ,T ) with the stated
properties, and an LC-local trivialization φψ : π−1(Oψ) → Oψ × Y , where
the LC-diffeomorphism of the fibre with Y has been assimilated into φψ.

(b) Define, for r = 1, 2, . . . ,

(1) Tr := {i : (1 ≤ i ≤ r) or

(i ∈ Θ & (∃ψ 6∈ Θ)(1 ≤ ψ ≤ r & Uψ ∩ U i 6= ∅ ))}.
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Clearly {1, . . . , r} ⊆ Tr ⊆ Tr+1 for each r ≥ 1. Furthermore, hypothe-
sis 3.1(ii) implies that Tr must be finite. Let A(r) := {U i : i ∈ Tr} and
B(r) := {U i

0 : i ∈ Tr}, and recall the terminology of [2, 2.10]. The inductive
hypotheses at stage r are as follows:

H1(r): for every simplex ∆ of A(r), there is an LC-section σr(∆) of π
over A(r)∆, the star

⋃
i∈∆ U

i of the simplex ∆ in A(r);
H2(r): whenever ∆1,∆2 are simplices of A(r) and i ∈ ∆1 ∩∆2,

σr(∆1)|U i0 = σr(∆2)|U i0.
(The LC-sections σr(∆) will therefore fit together to define an LC-section
σr over the carrier B(r) :=

⋃
i∈Tr U

i
0.)

H3(r): for each simplex ∆ of A(r), and any i ∈ ∆ ∩Θ,

σr(∆)|U i0 = τ |U i0.
(In other words, σr|U i0 = τ |U i0 for each i ∈ Tr ∩Θ).

(c) The induction begins with r = 0, T0 = ∅, A(0) = B(0) = ∅.
(d) Suppose the inductive hypotheses satisfied for some r≥0. If r+1∈Tr,

then r + 1 ∈ Θ and Tr+1 = Tr. If r + 1 6∈ Tr, then Tr+1 \ Tr consists of
r + 1 and, if r + 1 6∈ Θ, also of those θ ∈ Θ for which U θ meets U r+1 but
no earlier Uψ with ψ 6∈ Θ (that is, θ ∈ Θr+1 \ (

⋃
r≥ψ 6∈Θ Θψ)). Thus the

simplices of A(r + 1) fall, by (1), into three disjoint classes, which will be
treated separately:

I. simplices of A(r);
II. simplices not in A(r) of which r + 1 is not a vertex;

III. simplices not in A(r) with r + 1 as a vertex.

(Simplices of classes II and III only exist when r + 1 6∈ Tr.)
(e) If ∆ is a simplex of A(r + 1) in class I, define σr+1(∆) := σr(∆).

(f) Next, suppose that ∆ is a simplex of A(r + 1) in class II. As ∆ is
not a simplex of A(r), it has at least one vertex k > r+ 1, necessarily in Θ,
such that Uk does not meet any Uψ for which 1 ≤ ψ ≤ r and ψ 6∈ Θ. But
this implies that such vertices ψ cannot belong to ∆ at all, so that ∆ ⊆ Θ.
Hence, A(r + 1)∆ ⊆ U(Θ), and one may define σr+1(∆) := τ |A(r + 1)∆.

(g) The inductive hypotheses H1(r + 1), H2(r + 1), and H3(r + 1) are
satisfied when ∆1,∆2,∆ are simplices in class I, because, by (e), they reduce
toH1(r),H2(r), andH3(r). When ∆ is in class II, the definition (f) instantly
gives H3(r+ 1). Ergo, H2(r+ 1) follows from H3(r+ 1) and H3(r) when ∆1

is in class II and ∆2 is in class I or class II, since the vertices of ∆1 are all
in Θ anyway.

(h) The non-trivial case is that of a simplex of class III. Recall that, for
such a simplex to exist, r + 1 6∈ Tr, and any vertex j > r + 1 must belong
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to Θr+1. Let

Hr := {k ∈ Tr+1 : (∃j ∈ Tr+1)(U r+1 ∩ U j 6= ∅ & Uk ∩ U j 6= ∅)}.
Take the LC-chart ωr+1 : Or+1 → E and the LC-local trivialization of π over
Or+1, φr+1 : π−1(Or+1)→ Or+1 × Y , as before. Thus, for every k ∈ Hr,

Uk ⊆ Or+1 and co(ωr+1(Uk0 )) ≺ ωr+1(Uk).(2)

Choose a convex open neighbourhood W of 0 in E such that, for all k ∈ Hr,

Rk,r := co(ωr+1(Uk0 )) +W ≺ ωr+1(Uk).(3)

Rk,r is convex open in E, and Sk,r :=ωr+1(Uk0 )≺Rk,r. Let Pk,r := ωr+1(Uk).
Define complexes

Rr := {Rk,r : r + 1 6= k ∈ Hr}, Sr := {Sk,r : r + 1 6= k ∈ Hr},
Pr := {Pk,r : r + 1 6= k ∈ Hr}.

By (3), Sr ≺ Rr, and Rr consists of convex open sets.
Take any simplex ∆ of Pr. Since ωr+1 is injective, ∆ is also a simplex

of {Uk : r + 1 6= k ∈ Hr}; consequently, ∆ is a simplex of A(r + 1), and,
as r + 1 6∈ ∆, it must be a simplex of class I or class II. Hence σr+1(∆) has
already been defined over A(r + 1)∆ at (e) or (f). By (g), the LC-sections
σr+1(∆) for simplices ∆ of Pr agree on the sets Uk

0 for r + 1 6= k ∈ Hr

(which is H2(r+ 1) for simplices of classes I and II), and coincide with τ on
Uk0 for r + 1 6= k ∈ Hr ∩Θ (which is H3(r + 1)).

The LC-sections σr+1(∆) may be translated into LC-mappings µr+1(∆) :
P∆r → Y (P∆r is the star of ∆ in the complex Pr), by the formula

µr+1(∆) := p2 ◦ φr+1 ◦ σr+1(∆) ◦ ω−1
r+1.(4)

The mappings µr+1(∆) fit together over the sets Sk,r, and also agree with
p2 ◦φr+1 ◦ τ ◦ω−1

r+1 on Sk,r when r+ 1 6= k ∈ Hr ∩Θ. Any simplex of Rr is a
fortiori a simplex of Pr, and Rr consists of open convex sets (although Pr
need not), so [2, 5.1] applies with Rr in place of “A”, Sr instead of “B”, the
whole of E as “X”, and µr+1(∆) as “f∆”; hence, there is an LC-mapping
hr : E → Y which agrees with µr+1(∆) on Sk,r, for any simplex ∆ of Rr
and any vertex k of ∆. One may therefore use hr to define σr+1(Γ ) simul-
taneously for all simplices Γ of A(r + 1) of class III; for each such simplex
Γ , A(r + 1)Γ ⊆ Or+1 by 3.3(iv), and one may set, for any x ∈ A(r + 1)Γ ,

σr+1(Γ )(x) := φ−1
r+1(x, hr ◦ ωr+1(x)).(5)

This gives an LC-section of π over A(r + 1)Γ , and is the restriction of the
LC-section over Or+1 defined by the formula on the right-hand side.

(j) Let Γ,∆ be simplices of A(r + 1), and j ∈ Γ ∩∆. If both Γ and ∆
are of class III, then (4) shows that σr+1(Γ ) and σr+1(∆) agree on U j and
not just on U j

0 .
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If only Γ is of class III, then Γ 3 r + 1 6∈ Tr ∪ ∆. Given any i ∈ ∆,
U i ∩U j 6= ∅, and, as j ∈ Γ , U j ∩U r+1 6= ∅, so i ∈ Hr and i 6= r+ 1. Hence,
by (2), A(r + 1)∆ ⊆ Or+1, and ∆ is also a simplex of Pr of class I or class
II. However, hr was constructed to agree with µr+1(∆) over each Sk,r for
which k ∈ ∆, and in particular over Sj,r; from the formulæ (4) and (5), this
means that, for any x ∈ U j

0 , ωr+1(x) ∈ Sj,r,
σr+1(Γ )(x) := φ−1

r+1(x, hr ◦ ωr+1(x))

= φ−1
r+1(x, p2 ◦ φr+1 ◦ σr+1(∆)(x)) = σr+1(∆)(x),

which, with (g), completes the proof of H2(r + 1). In the same way, hr was
constructed to agree with p2◦φr+1◦τ ◦ω−1

r+1 when r+1 6= k ∈ Hr∩Θ, so that

σr+1(Γ )|Uk0 = τ |Uk0 .
This establishes the case of H3(r + 1) not already settled by (g). Conse-
quently, the inductive hypotheses at stage r + 1 have been ensured by the
construction at stage r, and it may be iterated to produce a whole sequence
of LC-mappings σr(∆).

(k) Recall the definition of σr atH2(r). The inductive construction above
entails immediately that σr+1|U i0 = σr|U i0 for any i ∈ Tr. (Take ∆ := {i}
in (e).) Consequently, a section σ of π may be well defined by setting σ to
agree with σr over U i0 when i ∈ Tr. Since

⋃∞
r=1 Tr = J by (1), this defines σ

over M (by 3.1(i)); σ is an LC-mapping, since each σr is LC by construction;
and H3(r) evidently ensures that σ|U0(Θ) = τ |U0(Θ).

Remark 3.7. The induction above is reminiscent of [2, 4.2], because of
the necessity of maintaining consistency of each step of the construction
with some fixed data (in this case τ is given, in [2, 4.2] f). A curiosity of
the proof is that the local extension hr does not need to be defined on the
whole of E, but only on ωr+1(Or+1). However, this does not permit any
useful weakening of the hypotheses.

As here stated, 3.6 fails to mention a set X such as appears in [2, 5.1]. To
incorporate it directly into a similar proposition, one would have to make
clumsy hypotheses on the coordinate transformations of M . A relatively
attractive consequence of that stronger version of [2, 5.1] is given later, 6.1.

In the simple result 3.8 that follows, the topology on F is not really
necessary—it is included only for consistency with Definition 2.3. With a
little revision of the definitions, one could obtain the proposition for func-
tions into any vector space. The proof of 3.8 is exactly as in 3.6, with all
mention of local trivializations removed.

There are also versions of 3.6 corresponding to [2, 5.5], which I shall not
discuss here because they require some further structure on the manifold,
and an extended version corresponding to [2, 4.6], mentioned after 3.12.
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Proposition 3.8. Let C be an admissible category , and let M be an
LC-manifold with locally convex Lindelöf model E. Let Y be a convex set
in the topological vector space F . Suppose ({U i}, {U i0}, Θ) is an extension
system in M . Then, for any LC-mapping g : U(Θ) → F with image in
Y , there exists an LC-mapping f : M → F with image in Y such that
f |U0(Θ) = g|U0(Θ).

Definition 3.9. Let M be an LC-manifold. Say that a set X in M is an
LC-extension core in M (for LC-sections of locally trivial LC-fibrations with
fibres LC-diffeomorphic to open convex sets in topological vector spaces)
if it is closed and, for any open neighbourhood U of X in M , there is an
open neighbourhood V of X such that, for any LC-section τ over U of a
locally trivial LC-fibration π : L → M with fibre LC-diffeomorphic to an
open convex subset Y of a locally convex space F , there is an LC-section σ
of π over M for which σ|V = τ |V .

This definition may be varied by considering different kinds of τ and σ,
such as real-valued LC-functions or sections of locally trivial LC-fibrations
with more general fibres. In the rest of the paper, I shall consider a condition
which is sufficient to ensure that a set is an LC-extension core either in the
sense above, or for LC-functions with values in a topological vector space.

Definition 3.10. The subset X of the D-manifold M is simply D-
extensible, where D is an applicable category, if X is closed in M and, for
any open cover V of M and open neighbourhood V of X, there is a strong
V-extension system ({(U j , U j0 ) : j ∈ J}, Θ) (see 3.5) such that X ⊆ U0(Θ)
and U(Θ) ⊆ V .

Remark 3.11. This condition involves only X and M , and not a specific
extension problem; to prove that X is an LC-extension core in a particular
sense, it is commonly not necessary to demand strong extension systems or to
allow arbitrary open covers V. The proof of 3.6 only requires the members
of V to admit LC-local trivializations, which in some circumstances will
exist over certain sets for any locally trivial fibration, for instance because
of contractibility. In short, simple LC-extensibility is often an excessively
strong condition for LC-extension cores of a given kind, but it works rather
generally.

If M is, as usual, T4, explicit mention of V in 3.10 may seem superfluous,
as one could consider the finer cover V′ consisting of all the sets V ∩W and
W \M as W varies over V. However, it might then be necessary to diminish
Θ in order to ensure that U(Θ) ⊆ V , and the removal of some element θ
from Θ may invalidate 3.1(ii), since there is no reason why U θ should meet
only finitely many other sets Uφ for which φ ∈ Θ. If one were to add to 3.5
a requirement that Θ := {j ∈ J : U j ∩ X 6= ∅}, this objection ceases to
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apply and mention of V in 3.10 could be suppressed. The proposed extra
requirement is fairly natural and is true in the specific constructions of §5,
but is not otherwise necessary.

Proposition 3.12. Suppose C is an admissible category (see 2.2), and
M is an LC-manifold with locally convex Lindelöf model. If X is a simply
LC-extensible subset of M , then X is an LC-extension core in M .

Furthermore, for any LC-map g : U → F , where F is a topological
vector space and U is a neighbourhood of X in M , there exists an LC-map
f : M → F such that f |V = g|V (where V ⊆ U is the neighbourhood of X
which is specified in Definition 3.9) and f(M) ⊆ co(g(U)).

The section σ or the mapping f is obtained from τ or g by a procedure of
taking convex combinations of local extensions (see 3.6 and [2, passim]) in a
way which does not depend on τ or g, but only on X, U and M ; hence, if the
local extensions depend affine-linearly on τ or g, so do the global extensions.
In this paper, the existence of linear local extension operators in the sense
of [2, 4.4] is assured for LC-sections or LC-functions by linear algebra, since
there are surjective linear restriction operators by definition.

My purpose now is to establish criteria for sets to be simply LC-exten-
sible. I shall concentrate my attention on manifolds which are modelled on
normed spaces and C1 in the sense of Fréchet calculus; for them the con-
dition 3.5(iv′)(b) is rather easily satisfied, because a C1 mapping deforms
small norm-balls whilst approximately preserving convexity. This property
is most easily described by Finsler structures. (There are other less nat-
ural categories C for which similar but more complicated procedures are
possible).

4. ε-flatness in Finsler manifolds

Definition 4.1. Let M be a C0 manifold modelled on a topological
space Y . A chart for M is then just a homeomorphism of an open set in
M with an open set in Y . Define a chart to be strong in M if it is a chart
ψ : U → Y (where U is open in M and ψ(U) open in Y ) such that, whenever
C is a closed set in M and C ⊆ U , then ψ(C) is closed in Y , and, conversely,
whenever D is a closed set in Y which is included in ψ(U), then ψ−1(D) is
closed in M .

This definition is useful because charts may “misbehave near the bound-
ary”. In finite dimensions, the problem is customarily avoided by making
use of compact rather than closed sets.

A C0 atlas A for M is hereditary if, whenever ψ : U → ψ(U) ⊆ Y is a
chart belonging to A and V is an open subset of U , ψ|V : V → ψ(V ) is also
in A.
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Lemma 4.2. Suppose the spaces X and Y are both T4. Let U be open in
X and V in Y , and let ψ : U → V be a homeomorphism. If C is a closed
subset of X included in U and such that ψ(C) is closed in Y , then there
exists an open neighbourhood W of C in U such that ψ establishes a one-one
correspondence between the closed sets of X included in W and the closed
sets of Y included in ψ(W ). Similarly , if M is a regular C0 manifold , M
an open submanifold , and A a hereditary atlas for M , the charts of A which
are strong in M also form an atlas for M . Finally , the restriction of a chart
strong in M to an open subset of its domain is also a chart strong in M .

Proof. As Y and X are T4, take neighbourhoods W1 of C in X, and
W2 of ψ(C) in Y , such that the closure W 1 of W1 in X is within U and
the closure W 2 of W2 in Y is within ψ(U). Take W := W1 ∩ ψ−1(W2). It is
easy to check that W has the required property. For the second assertion,
it suffices to replace “C” by an arbitrary point “x”, and the argument then
only requires regularity.

Definition 4.3. The category D is adequate if it is applicable (see 2.4),
its objects are open subsets in normed spaces, and all its morphisms are C1

in the Fréchet sense.

For the rest of this section M is to be a paracompact, but not necessarily
separable, D-manifold, where D is an adequate category and M is modelled
on the normed space E. (M and E are therefore regular.) There is no need
here for D to have a local extensibility property. M admits a tangential
Finsler structure p (for the infinite-dimensional case, see, for instance, [10]
or [1]), which induces a corresponding Finsler metric d. The metric ball of
radius r about x ∈M will be denoted by B(x; r). (In 3.6 a similar notation
B(r) was used with a quite different meaning). I shall write px(ξ) or p(x, ξ) to
denote the Finsler norm of the vector ξ in the tangent space TxM to M at x.

Definition 4.4. Suppose that ε ≥ 0. A D-chart ψ : U → E of M is
ε-flat if it is strong in M and, for any two points y, z ∈ U , and any ξ ∈ E,

py((Tyψ)−1ξ) ≤ (1 + ε)pz((Tzψ)−1ξ).(6)

Lemma 4.5. Any subchart of an ε-flat D-chart of M is itself ε-flat. If
ε > 0, ψ : U → E is a D-chart of M , and x ∈ U , then x has a base of open
neighbourhoods in U on each of which the restriction of ψ is ε-flat.

Proof. Any restriction to an open subset of a chart in A satisfying (6)
and strong in M is also a chart strong in M , by 4.2, and evidently still
satisfies (6). It therefore suffices to prove the existence of one ε-flat neigh-
bourhood of x. Take any strong chart ψ : U → E, where x ∈ U , and then,
using the definition of a tangential Finsler structure ([10] or [1]), let V be
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an open neighbourhood of x in U such that, for all y ∈ V and all ξ ∈ E,

(1 + ε)−1/2py((Tyψ)−1ξ) ≤ px((Txψ)−1ξ) ≤ (1 + ε)1/2py((Tyψ)−1ξ).

Then ψ|V is an ε-flat chart.

Lemma 4.6. Let ω : B(x;R)→ E be a D-chart of M . Norm E by

‖ξ‖ω,x := px((Txω)−1ξ),(7)

and let B′ω,x(η;κ) denote the ball of radius κ about η ∈ E with respect
to ‖ξ‖ω,x. If ω is ε-flat , then, for any r ∈ [0, R),

B′ω,x(ω(x); (1 + ε)−1r) ⊆ ω(B(x; r)) ⊆ B′ω,x(ω(x); (1 + ε)r).(8)

Proof. (6) ensures that, for each y ∈ B(x; r), and each η ∈ TyM ,

(1 + ε)−1‖Tyω · η‖ω,x ≤ py(η) ≤ (1 + ε)‖Tyω · η‖ω,x.(9)

(Take ξ := Tyω · η to see this.) If y ∈ B(x;R) and δ > 0, and γ(t), for
0 ≤ t ≤ 1, is a piecewise C1 path in B(x;R) from x to y of p-length less
than d(x, y) + δ, then, from the first inequality of (9), ω ◦γ has ‖ ‖ω,x-length
not exceeding (1 + ε)(d(x, y) + δ), and

‖ω(x)− ω(y)‖ω,x ≤ (1 + ε)(d(x, y) + δ).

Since δ may be arbitrarily small, the second inclusion of (8) follows.
Let a ∈ E, ‖a‖ω,x = 1. Define the ray γa by γa(t) := ω(x) + ta, for t ≥ 0.

Let
τa := sup{t ≥ 0 : γa([0, t]) ⊆ ω(B(x; r))}.(10)

Since ω(B(x; r)) is open in E, certainly τa > 0. Consider the lifted path

γ̂a := ω−1 ◦ γa : [0, τa)→ B(x; r).

This is a C1 path without end-point. Its length in M is
τa�

0

p(γ̂a(t), (Tγ̂a(t)ω)−1a) dt ≤
τa�

0

(1 + ε)‖a‖ω,x dt = (1 + ε)τa,

by the second inequality of (9). Thus γ̂a([0, τa)) ⊆ B(x; (1 + ε)τa).
Suppose, if possible, that (1 + ε)τa < r. The closure C of B(x; (1 + ε)τa)

in M is then included in B(x; r). As ω is a chart strong in M (by Defini-
tion 4.4; see also 4.1), ω(C) is closed in E. Since γ̂a([0, τa)) ⊆ C, certainly
γa([0, τa)) ⊆ ω(C). Hence γa(τa) ∈ ω(C) ⊆ ω(B(x; r)), which is open in E,
so γa([0, t]) ⊆ ω(B(x; r)) for some values of t greater than τa, contradicting
(10). Therefore (1 + ε)τa ≥ r. This means, by (10), that ta ∈ ω(B(x; r)) for
0 ≤ t < (1 + ε)−1r, and proves the result.
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Lemma 4.7. Let ε ∈ [0,
√

2 − 1], and suppose that ω : B(x; 2δ) → E is
an ε-flat D-chart of M . Then, for any y, z ∈ B(x; δ),

(1 + ε)−1‖ω(y)− ω(z)‖ω,x ≤ d(y, z) ≤ (1 + ε)‖ω(y)− ω(z)‖ω,x.
Proof. Since d(y, z) < 2δ by the triangle inequality, d(y, z) is the infimum

of lengths of piecewise C1 paths shorter than 2δ between y and z. Any such
path must stay wholly within B(x; 2δ); otherwise it would join y to a point
w outside B(x; 2δ), by a segment necessarily of length greater than δ, and
then w to z, by a second segment of length more than δ; thus, the whole
path would have to be of length greater than 2δ.

Let γ : [0, 1]→M be a piecewise C1 path in B(x; 2δ) ⊆M . Introduce a
norm in E by (7). The Finsler length of γ with respect to p, L(γ), is given
by the formula

L(γ) :=
1�

0

pγ(t)(γ
′(t)) dt,

and, by (9), it follows that

L(γ) ≥ (1 + ε)−1
1�

0

‖Tγ(t)ω · γ′(t)‖ω,x dt.

The right-hand integral is the ‖ ‖ω,x-length in E of ω ◦ γ, which cannot
be less than ‖ω(γ(1)) − ω(γ(0))‖ω,x. (Rectilinear segments in E minimize
the norm-length of C1 paths between their end-points—from the triangle
inequality and Riemann sums, for instance). Thus, for any piecewise C1

path γ in B(x; 2δ),

L(γ) ≥ (1 + ε)−1‖ω(γ(1))− ω(γ(0))‖ω,x.
Since d(y, z) is the infimum over such paths γ between z and y, the first of
the stated inequalities is established.

Now join y to x by a piecewise C1 path β : [0, 1]→M of Finsler-length
less than δ. Then

‖ω(y)− ω(x)‖ω,x ≤
1�

0

‖(ω ◦ β)′(t)‖ω,x dt =
1�

0

‖Tβ(t)ω · β′(t)‖ω,x dt

≤ (1 + ε)
1�

0

pβ(t)(β
′(t)) dt = (1 + ε)L(β) < (1 + ε)δ.

The same holds for ‖ω(z) − ω(x)‖ω,x. Hence, the straight-line segment θ
between ω(y) and ω(z), defined by θ(t) := tω(z) + (1− t)ω(y) for 0 ≤ t ≤ 1,
lies entirely within the open ball of radius (1 + ε)δ about ω(x) in E. By
hypothesis, (1 + ε)δ ≤ 2δ/(1 + ε); hence, from 4.6, all points of the segment
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lie in ω(B(x; 2δ)), so that the path ζ := ω−1 ◦ θ joining y to z is defined and
C1 in B(x; 2δ). Apply (9):

d(y, z) ≤ L(ζ) =
1�

0

pζ(t)(ζ
′(t)) dt ≤ (1 + ε)

1�

0

‖Tζ(t)ω · ζ ′(t)‖ω,x dt

= (1 + ε)
1�

0

‖θ′(t)‖ω,x dt = (1 + ε)‖ω(z)− ω(y)‖ω,x,

and this is exactly the second inequality required.

Definition 4.8. Given t ∈ R and a ∈ E, the affine expansion by t about
a is the mapping A(t, a) : E → E : ξ 7→ tξ + (1− t)a.

Remark 4.9. If C is a convex subset of E and a ∈ C, then, whenever
t > 1, C ≺ A(t, a)C.

Corollary 4.10. Let r,R, δ, ε be positive numbers such that ε ≤
√

2−1
and

2(1 + ε)3(r + δ) ≤ R.
Then, if ω : B(x;R)→ E is an ε-flat chart and y ∈ B(x; r),

A(1 + ε, ω(y))co(ω(B(y; δ)) ⊆ ω(B(y; (1 + ε)3δ).

Proof. Certainly B(y; δ) ⊆ B(x; r + δ), and 2(r + δ) ≤ R. By the first
inequality of 4.7, ω(B(y; δ)) ⊆ B′ω,x(ω(y); (1 + ε)δ), and, therefore,

co(ω(B(y; δ)) ⊆ B′ω,x(ω(y); (1 + ε)δ).(11)

But, by 4.6, ω(y) ∈ B′ω,x(ω(x); (1 + ε)r), and so

B′ω,x(ω(y); (1 + ε)2δ) ⊆ B′ω,x(ω(x); (1 + ε)2(r + δ))

⊆ ω(B(x; (1 + ε)3(r + δ))).

So, if ζ ∈ B′ω,x(ω(y); (1 + ε)2δ), there is some z ∈ B(x; (1 + ε)3(r+ δ)) such
that ω(z) = ζ, and, by the second inequality of 4.7, z ∈ B(y; (1 + ε)3δ).
Hence

B′ω,x(ω(y); (1 + ε)2δ) ⊆ ω(B(y; (1 + ε)3δ)).(12)

From (11),

A(1 + ε, ω(y))co(B(ω(y); δ)) ⊆ A(1 + ε, ω(y))B ′ω,x(ω(y); (1 + ε)δ)

= B′ω,x(ω(y); (1 + ε)2δ),

which, with (12), proves the result.

Definition 4.11. Let A be a hereditary D-atlas for M . The modulus of
ε-flatness of M with respect to A and p is the function %ε : M → R defined
as follows. For each x ∈ N , consider the class of positive numbers δ such
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that B(x; δ) is the domain of an ε-flat chart of A. This class has a supremum
%′ε(x), which may be ∞ or −∞. Set %ε(x) := min(1, %′ε(x)).

Lemma 4.12. If ε > 0, the modulus of ε-flatness %ε with respect to the
Finsler structure p and the atlas A takes strictly positive values, and satisfies
the Lipschitz condition that , for any x, y ∈ N , |%ε(x)− %ε(y)| ≤ d(x, y).

Proof. If ψ : U → E is a chart of A, where x ∈ U , then by 4.5 there is
an open neighbourhood V of x in U such that ψ|V is ε-flat. Take δ > 0 such
that B(x; δ) ⊆ V ; then %′ε(x) ≥ δ. This proves the first assertion.

Suppose d(x, y) < %′ε(x); let κ ∈ (d(x, y), %′ε(x)). By hypothesis, there
is an ε-flat chart of A, φ : B(x;κ) → E. Now B(y;κ − d(x, y)) ⊆ B(x;κ);
hence, φ|B(y;κ − d(x, y)) is also ε-flat and in A, and %′ε(y) ≥ κ − d(x, y).
Since κ was arbitrary in (d(x, y), %′ε(x)), %′ε(y) ≥ %′ε(x)−d(x, y). This is also
trivially true if d(x, y) ≥ %′ε(x).

Consequently, either %′ε(x) is infinite for all x, or it is finite for all x. In
the second case, by symmetry, |%′ε(x) − %′ε(y)| ≤ d(x, y). The desired result
for %ε(x) follows.

Lemma 4.13. Suppose σ : M → [0,∞) is a function satisfying the Lip-
schitz condition that |σ(x)−σ(y)| ≤ d(x, y) for all x, y ∈M . Let 0 ≤ α < 1.
If xi ∈M for i = 0, 1, 2, 3, 4, and , for i = 0, 1, 2, 3,

B(xi;ασ(xi)) ∩B(xi+1;ασ(xi+1)) 6= ∅,
then, for 0 ≤ i ≤ 4,

σ(xi) <
(

1 + α

1− α

)i
σ(x0) and B(x4;ασ(x4)) ⊆ B(x0;βσ(x0)),

where

β := α

(
9 + 4α+ 14α2 + 4α3 + α4

(1− α)4

)
.

Proof. Certainly d(x0, x1) < ασ(x0)+ασ(x1), so that from the Lipschitz
condition,

σ(x1) < σ(x0) + ασ(x0) + ασ(x1),

and consequently σ(x1) < ((1 + α)/(1− α))σ(x0), and similarly σ(x2) <
((1 + α)/(1− α))σ(x1) and so on. Hence, if y ∈ B(x4;ασ(x4)),

d(x0, y) < α

(
1 + 2

1 + α

1− α + 2
(

1 + α

1− α

)2

+ 2
(

1 + α

1− α

)3

+ 2
(

1 + α

1− α

)4)
σ(x),

which is, in effect, the result stated.

This result trivially implies similar statements for smaller numbers of
balls.
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5. Simply D-extensible sets

Proposition 5.1. Let M be a paracompact D-manifold , where D is an
applicable category (see 2.4). Let X be a closed subset of M , and let K be
a closed locally compact subset of M . If X is simply D-extensible, then so
is X ∪K.

A finite-dimensional submanifold, in the sense of 2.5, of a (topological)
manifold M modelled on a topological vector space (one takes D in 2.5 to
consist of all continuous maps of open sets) is necessarily a closed locally
compact set in M . (The corresponding subspace of the model is closed, being
finite-dimensional.)

Proof. (a) Suppose that V is an open neighbourhood of X ∪K and V is
an open cover of M . As K is closed in M , it is paracompact in itself. As it is
locally compact,K =

⋃
β∈BKβ , where {Kβ : β ∈ B} is a locally finite family

of compact sets in M whose relative interiors cover K; the index set B may
be assumed not to contain 0. By 5.1.19 of [6], there are open sets Wβ ⊇ Kβ ,
for each β ∈ B, and W0 ⊇ X, such that T := {Wβ : β ∈ B ∪ {0}} is locally
finite in M . I may also suppose that Wβ ⊆ V for each β ∈ B0 := B ∪ {0}.
Write K0 for X.

(b) If x 6∈ X ∪K, let U(x) be an open neighbourhood of x in M which
does not meet X ∪K and meets only finitely many Wβ. If x ∈ X ∪K, let

B(x) := {β ∈ B0 : x ∈ Kβ},
which is finite, and set U(x) := (

⋂
β∈B(x) Wβ)\(⋃γ∈B\B(x)Kγ), which is also

an open neighbourhood of x. In this way U(x) has the property for each x
that it meets only finitely many Wβ , and, if it meets Kβ , then x ∈ Kβ and
U(x) ⊆Wβ.

Let S := {U(x) : x ∈ M}, an open cover of M . Let W be an open
cover of M which simultaneously refines V and S. By hypothesis, there is
a W-extension system ({(U j , U j0 ) : j ∈ J}, Θ) in M such that X ⊆ U0(Θ)
and U(Θ) ⊆W .

(c) For each β ∈ B, there is, as Kβ is compact, a finite subset Φ(β) of J
such that Kβ ⊆

⋃
j∈Φ(β) U

j
0 . By omitting indices for which it is false, I may

suppose that
Uk0 ∩Kβ 6= ∅ for each k ∈ Φ(β).(13)

Let Φ :=
⋃
β∈B Φ(β), and set Θ′ := Θ ∪ Φ.

(d) Take any ψ ∈ J \ Θ. Then {θ ∈ Θ : Uψ ∩ U θ 6= ∅} is finite by
3.1(ii). On the other hand, if φ ∈ Φ, Uφ ⊆ U(x) for some x ∈ M (as {U j}
refines S); but, by (13), Uφ∩K 6= ∅, and therefore U(x)∩K 6= ∅. From (b),
U(x) ⊆ Wβ for each β ∈ B such that U(x) ∩Kβ 6= ∅. Hence, if φ ∈ Φ(β),
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Uφ ⊆ U(x) ⊆Wβ, and, if Uψ ∩Uφ 6= ∅, necessarily Uψ ∩Wβ 6= ∅. But, again
because {U j} refines S, there are only finitely many such β (see (b)). Ergo,
φ must be in one of finitely many finite sets Φ(β), and {φ ∈ Φ : Uφ∩Uψ 6= ∅}
is finite.

(e) The pair ({(U j, U j0 ) : j ∈ J}, Θ′) clearly satisfies 3.1(i). I have just
shown that, if ψ ∈ J \Θ′ (indeed, if ψ ∈ J \Θ), Uψ∩U j 6= ∅ for only finitely
many j ∈ Θ′, which is 3.1(ii). As for 3.1(iii) and 3.5(iv′), they are evidently
still true.

This result would remain true if 3.3 were substituted for 3.5 in Definition
3.10 (just read 3.3(iv) for 3.5(iv′)). Note that D need only be applicable (cf.
5.3 below). However, even the null set has not yet been proved to be simply
D-extensible.

One might on instinct expect a converse to Proposition 5.1, stating that,
if X∪K is simply D-extensible, X is closed, and K is closed locally compact
in M , then X is simply D-extensible. This is not obvious, and probably false
for the reasons noted after 3.10.

Lemma 5.2. Let D be an adequate category (see 4.3), and let M be a
D-manifold , furnished with a Finsler structure p and induced metric d and
modelled on the normed space E, with a D-submanifold N modelled on the
closed linear subspace F of E (see 2.5). Metric balls are with reference to
the metric d. Suppose x ∈ N , and ω : B

(
x; 24

25%1/5(x)
)
→ E is a 1

5-flat
D-submanifold chart for N. Then ω and p induce a norm ‖ ‖ω,x on E, as at
(7) of 4.6. Let π : E → E/F be the quotient map, and let ‖ ‖′′ω,x denote the
quotient norm on E/F . Then, if y ∈ B

(
x; 1

6%ε(x)
)
,

5
6‖π ◦ ω(y)‖′′ω,x ≤ d(y,N) ≤ 6

5‖π ◦ ω(y)‖′′ω,x,(14)

where, as usual , d(y,N) := inf{d(y, z) : z ∈ N} (and similarly for other
subsets of M).

Proof. For notational convenience, write ε := 1
5 . Recall from 4.6 that

B′ω,x(η;κ) denotes a ball in E with respect to ‖ξ‖ω,x. If y ∈ B
(
x; 1

6%ε(x)
)
,

then d(y,N) < 1
6%ε(x). Now, d(y, z) > 1

6%ε(x) for any z 6∈ B
(
x; 1

3%ε(x)
)
,

and therefore d(y,N) may be calculated as the infimum of the distances
d(y, z) for points z ∈ N ∩ B

(
x; 1

3%ε(x)
)
. For any such z, 4.7 implies that

‖ω(y)− ω(z)‖ω,x ≤ 6
5d(y, z). Taking infima over all choices of z, I find that

‖π ◦ ω(y)‖′′ω,x ≤ 6
5d(y,N), the first inequality of (14).

By 4.6, ω
(
B
(
x; 1

6%ε(x)
))
⊆ B′ω,x

(
ω(x); 1

5%ε(x)
)
. As a consequence,

‖π ◦ ω(y)‖′′ω,x < 1
5%ε(x).

If ζ ∈ F and, for some positive δ,

‖ω(y)− ζ‖ω,x < ‖π ◦ ω(y)‖′′ω,x + δ < 1
5%ε(x),



236 C. J. Atkin

then ‖ζ‖ω,x < 2
5%ε(x), and, once again applying to 4.6, ζ = ω(w) for some

w ∈ N ∩B
(
x; 12

25%ε(x)
)
. By 4.7,

d(y,N) ≤ d(y, w) ≤ 6
5‖ω(y)− ζ ‖ω,x ≤ 6

5(‖π ◦ ω(y)‖′′ω,x + δ).

Since δ is arbitrarily small, d(y,N) ≤ 6
5‖π ◦ ω(y)‖′′ω,x, which is the second

inequality of (14).

Proposition 5.3. Let M be a separable metrizable D-manifold modelled
on the normed space E, where D is an adequate category. Let {Nβ : β ∈ B}
be a discrete family of D-submanifolds of M , where, for each β ∈ B, Nβ is
modelled on the closed linear subspace Fβ of E. Then N :=

⋃
β∈B N is a

simply D-extensible subset of M .

Proof. Since M is paracompact, it admits a Finsler structure p which,
in turn, induces a metric d (with respect to which metric balls are defined).
Suppose given an open cover V of M and an open neighbourhood V of
N in M . Let A be the hereditary D-atlas for M consisting of D-charts
φ : U → E such that

(i) U ∩Nβ 6= ∅ for at most one index β,
(ii) φ is a D-submanifold chart for Nβ , for all β ∈ B,

(iii) there is a W ∈ V such that either U ⊆W ∩ V or U ⊆W \N.
Since {Nβ} is a discrete family, these charts do form an atlas. Indeed, if
x 6∈ N , take any D-chart about x, and restrict it to an open neighbourhood
U of x such that U ∩N = ∅ and U ⊆ W for some W ∈ V; if x ∈ Nβ , take
any D-submanifold chart for Nβ about x and restrict its domain to an open
neighbourhood U of x such that U ∩Nγ = ∅ for any γ 6= β and U ⊆W ∩ V
for some W ∈ V.

As in 5.2, take ε := 1
5 , and let %ε be the modulus of ε-flatness with

respect to p and A (see 4.11).

(a) The open cover
{
B
(
x; 1

120%ε(x)
)

: x ∈ N
}

of N has a countable
subcover,

{
B
(
xn; 1

120%ε(xn)
)

: n ∈ N
}

. For each n ∈ N, let
{
Un0 := B

(
xn; 1

120%ε(xn)
)
∩
{
y ∈M : d(y,N) < 1

240n
−1%ε(xn)

}
,

Un := B
(
xn; 1

60%ε(xn)
)
∩
{
y ∈M : d(y,N) < 1

120n
−1%ε(xn)

}
.

(15)

Since B
(
xn; 1

120%ε(xn)
)
∩ N = Un0 ∩ N , {Un0 } remains an open cover of N .

By the construction of A and %ε, either B
(
xn; 1

2%ε(xn)
)
⊆ M \N (which is

false) or B
(
xn; 1

2%ε(xn)
)
⊆ V for each n, so that

⋃
n∈N U

n ⊆ V , as required
by 3.10.

N being closed, d(x,N) > 0 for each x ∈ M \ N . Cover M \ N by the
balls B

(
x; 1

120 min(%ε(x), d(x,N))
)
, where x varies over M \ N . There is a

countable subcover, whose index set Ψ may be chosen to be disjoint from N,
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{
B
(
xψ; 1

120 min(%ε(xψ), d(xψ, N))
)

: ψ ∈ Ψ
}

; define Θ := N, J := Θ ∪ Ψ , so
that xj ∈ N when and only when j ∈ Θ, and set, for each ψ ∈ Ψ ,

{
Uψ0 := B

(
xψ; 1

120 min(%ε(xψ), d(xψ, N))
)
,

Uψ := B
(
xψ; 1

60 min(%ε(xψ), d(xψ, N))
)
.

(16)

The condition 3.1(i) is satisfied, and, for any j ∈ J , U j ⊆ B
(
xj ; 1

60%ε(xj)
)
.

(b) Given ψ ∈ Ψ , (16) shows that, for any z ∈ Uψ,

d(z,N) ≥ d(xψ, N)− 1
60d(xψ, N) = 59

60d(xψ, N).

On the other hand, if z ∈ Un, (15) implies that d(z,N) < 1
120n

−1, since
%ε(xn)≤1 by Definition 4.11. Hence, Uψ∩Un 6=∅ only if 1

120n
−1> 59

60d(yψ, N),
and so for only finitely many n. This proves 3.1(ii).

(c) Suppose that ψ ∈ Ψ . There are two possibilities. The first is that,
for any r, s ∈ J such that Uψ ∩ U r 6= ∅ 6= U r ∩ U s, necessarily s ∈ Ψ . This
means, in particular, that the sets appearing in 3.5(iv′)(b) are all metric
balls of the form (16). By 4.13, U s ⊆ B

(
xψ; 1

6%ε(xψ)
)
. By Definition 4.11,

there is some ε-flat D-chart with domain B
(
xψ; 2

3%ε(xψ)
)
, and I choose such

a chart as ωψ, taking Oψ := B
(
xψ; 2

3%ε(xψ)
)
. Then 3.5(iv′)(a) is satisfied

automatically.

(d) Suppose in the case (c) that k, l ∈ J and Uψ ∩ Uk 6= ∅ 6= Uk ∩ U l.
From 4.13, %ε(xl) <

(61
59

)2
%ε(xψ). In 4.10 take y := xl, x := xψ, and suppose

R := 2
3%ε(xψ), r := 1

6%ε(xψ), 0 < δ ≤ 1
120%ε(xl).

The hypothesis of 4.10 is satisfied, because

2
(6

5

)3(1
6 +

(61
59

)2 1
120

)
%ε(xψ) ≤ 2

3%ε(xψ).

So

A
(6

5 , ωψ(xl)
)
co(ωψ(B(xl; δ))) ⊆ ωψ

(
B
(
xl;
(6

5

)3
δ
))
⊆ ωψ(B(xl; 2δ)).

If, in particular, δ := 1
120 min(%ε(xl), d(xl, N)), then

A
(6

5 , ωψ(xl)
)
co(ωψ(U l0)) ⊆ ωψ(U l).

(e) The second possibility is that there are some r ∈ J and θ ∈ Θ such
that Uψ ∩ U r 6= ∅ 6= U r ∩ U θ. (Here, U θ is not defined as a metric ball; see
(15). Indeed, (14) shows it usually is not one.) In this case, I choose such a θ
and r. Certainly xθ ∈ Nβ for some β ∈ B. There is an ε-flat D-submanifold
chart for Nβ with domain B

(
xθ; 24

25%ε(xθ)
)
; I take one such chart to be ωψ,

letting Oψ be B
(
xθ; 24

25%ε(xθ)
)
, which again satisfies 3.5(iv′)(a).

If y ∈ B
(
xθ; 1

6%ε(xθ)
)
, then d(y,Nγ) > 5

6%ε(xθ) for any γ 6= θ, since, by
the definition of %ε, B

(
xθ; d(y, xθ)+ 5

6%ε(xθ)
)
∩Nγ = ∅. Therefore, d(y,N) =

d(y,Nβ).
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(f) Suppose k, l ∈ J and Uψ ∩Uk 6= ∅ 6= Uk ∩U l. By 4.13 (this time with
a full chain of five sets), U l ⊆ B

(
xθ; 1

6%ε(xθ)
)
. If l ∈ Ψ , note that

2
(6

5

)3(1
6 +

(61
59

)4 1
120

)
%ε(xψ) ≤ 24

25%ε(xψ),(17)

so that 4.10 applies again (compare (d)) and

A
(6

5 , ωψ(xl)
)
(co(ωψ(U l0))) ⊆ ωψ(U l).

(g) If l ∈ N = Θ, take δ := 1
120%ε(xl) in 4.10, and one deduces that

A
(6

5 , ωψ(xl)
)
co(ωψ(U l0)) ⊆ A

(6
5 , ωψ(xl)

)
co
(
ωψ
(
B
(
xl; 1

120%ε(xl)
)))

(18)

⊆ ωψ
(
B
(
xl; 1

60%ε(xl)
))
.

If y ∈ U l0, (14) holds with xθ for “x”, Fβ for “F”, ωψ for “ω”, Nβ for “N”,
and the projection πβ : E → E/Fβ instead of “π”. The hypotheses of 5.2 are
satisfied. From the first inequality of (14) and the definition (15), in which,
from (e), one may read d(y,Nβ) for “d(y,N)”,

‖πβ ◦ ωψ(y)‖′′ωψ,xθ < 1
200 l

−1%ε(xl).

As πβ is linear and πβ ◦ ωψ(xl) = 0, this implies that

πβ(A
(6

5 , ωψ(xl)
)
co(ωψ(U l0))) = A

(6
5 , 0
)
co(πβ(ωψ(U l0)))(19)

= 6
5co(πβ(ωψ(U l0)))

⊆ B′′ωψ,xθ
(
0; 3

500 l
−1%ε(xl)

)
,

the ‖ ‖′′ωψ ,xθ -ball about the origin in E/Fβ of radius 3
500 l

−1%ε(xl).

Because of the second inequality of (14), if y ∈ B
(
xθ; 1

6%ε(xθ)
)

and
‖πβ ◦ ωψ(y)‖′′ωψ,xθ < 3

500 l
−1%ε(xl), then

d(y,Nβ) < 9
1250 l

−1%ε(xl) < 1
120 l

−1%ε(xl).

Hence, by (19), (18) and (15), and because ωψ is one-one on B
(
xθ; 1

6%ε(xθ)
)
,

A
(6

5 , ωψ(xl)
)
co(ωψ(U l0))

⊆ ωψ
(
B
(
xl; 1

60%ε(xl)
)
∩
{
y ∈ N : d(y,N) < 1

120 l
−1%ε(xl)

})
= ωψ(U l).

Since co(ωψ(U l0)) is open, 4.9 shows that co(ωψ(U l0)) ≺ ωψ(U l). I have
now established 3.5(iv′)(b) in all cases. Finally, 3.1(iii) follows from (15)
and (16).

Remark 5.4. The above method of proof may be extended, with some
additional complications, to show that certain other sets in M are also sim-
ply D-extensible: for instance, D-submanifolds with corners and locally fi-
nite arrays of D-submanifolds in “general position”, as suitably defined.
The above case is probably the most interesting. It should be noted that the
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submanifolds need not be split-embedded. Recall, however, that the exten-
sion problem concerns functions already defined on a neighbourhood of the
supposed core.

The numerical values used in the proof are of course without significance.
The construction satisfies the condition that Θ = {j ∈ J : U θ ∩N 6= ∅},

which is a natural property to ask of a V-extension system; it was not,
however, required in the extension argument 3.6. If it were imposed, 3.10
could be simplified—see 3.11.

Theorem 5.5. Let C be an admissible category (see 2.2) of mappings
between topological vector spaces, and let C ′ be the subcategory of C whose
objects are normed spaces and whose morphisms are C1 in the sense of
Fréchet. Let M be a separable metrizable LC ′-manifold. Suppose that X is
a subset of M that may be expressed as the union of a discrete family of
closed LC′-submanifolds and of a closed locally compact subset. Then, to any
open neighbourhood U of X in M , there exists a neighbourhood V of X,
with V ⊆ U , such that

(i) for any locally trivial LC-fibration π : L→M of LC-manifolds, with
fibre N that is LC-diffeomorphic to an open convex set Y in the topological
vector space F , and to any LC-section σ of π over U , there corresponds an
LC-section τ of π over M such that σ|V = τ |V ; call τ the “extension” of σ;

(ii) if π is an LC-vector fibration (see 2.9), and a linear space F of
LC-sections of π over U is given (with respect to pointwise operations),
then the extensions of these sections may be so constructed as to define a
linear operator from F into the space of LC-sections of π over M ;

(iii) for any LC-mapping g : U → F into a topological vector space
F , there is an LC-mapping f : M → F (the “extension” of g) such that
f |V = g|V and f(M) ⊆ co(g(U)); furthermore, if a linear space F of LC-
mappings U → F (with respect to pointwise operations) is given, their ex-
tensions may be so constructed as to define a linear operator from F into
the space of LC-mappings M → F .

As remarked at 3.7, the topology on F is not really important in (iii).

Proof. X is simply LC ′-extensible by 5.3 and 5.1; it follows that it is
simply LC-extensible, and the result follows by 3.12 and the remark following
it.

Corollary 5.6. Any paracompact C∞ manifold M modelled on the Ba-
nach space C or on the Banach space `1 admits a non-constant real-valued
C∞ function.

Proof. It suffices to assume M is connected, and therefore separable and
metrizable. By [2], 1.3, M is an LC∞-manifold. For distinct points a, b ∈M ,
let g take the values 1 on a neighbourhood of a and 0 on a neighbourhood
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of b. By 5.5, there is an LC∞ function f : M → R which agrees with g on
some (smaller) neighbourhoods of a and b.

6. Other cases. §§4 and 5 rely on continuous Fréchet differentiation
in normed spaces to satisfy the approximate convexity requirements of 3.5
for a D-manifold. If the model is not normed and the differential calculus
employed does not have suitable properties with respect to convex neigh-
bourhoods of the origin (properties that one has no right to expect), argu-
ments such as those must fail. However, 3.6 may still sometimes be used, in
a slightly modified version. Instead of introducing an “approximate convex
structure” on the manifold by means of a Finsler structure, one may have
something given a priori . The simplest example is an open set in a locally
convex space, but a little more generality is possible.

Theorem 6.1. Let X be a subset of a locally convex Hausdorff Lindelöf
space E, and let Y be a convex subset of a vector space F ; let F be a
Y -admissible class of functions X → Y (see [2, 1.7]). If K is a subset of X
that is closed locally compact in E and U is an open neighbourhood of K
in E, there is an open neighbourhood V ⊆ U of K in E such that , for any
LF-function g : U ∩X → Y , there is an LF-function f : X → Y for which
f |V ∩X = g|V ∩X. (f may be called the “extension” of g). Moreover , if a
whole convex set E of LF-functions U ∩X → Y (with respect to pointwise
operations) is given, their extensions may be so constructed as to define an
affine-linear map from E into the space of LF-functions X → Y .

Proof. The details of this proof will be omitted, for it contains no new
ideas. As in 5.2, one may construct a V-extension family for X of the form
({(U j, U j0 ) : j ∈ J}, Θ), where

U j := X ∩ (xj +Bj), U j0 := X ∩
(
xj + 1

2Bj
)
, V := {U ∩X,X \K},

Bj an open convex neighbourhood of 0 in E, Θ := {j ∈ J : U j ∩K 6= ∅};
one takes

V :=
⋃

θ∈Θ
U θ0 ⊆

⋃

θ∈Θ
U θ ⊆ U.

The argument of 3.6 may now be followed, with many simplifications, using
[2, 5.1] exactly as stated (with the set X); instead of charts ωj , one has
convex subsets of E.
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