
STUDIA MATHEMATICA 150 (3) (2002)

The spectrally bounded linear maps on operator algebras

by

Jianlian Cui (Beijing, Taiyuan and Linfen)
and Jinchuan Hou (Linfen and Taiyuan)

Abstract. We show that every spectrally bounded linear map Φ from a Banach
algebra onto a standard operator algebra acting on a complex Banach space is square-
zero preserving. This result is used to show that if Φ2 is spectrally bounded, then Φ is a
homomorphism multiplied by a nonzero complex number. As another application to the
Hilbert space case, a classification theorem is obtained which states that every spectrally
bounded linear bijection Φ from B(H) onto B(K), where H and K are infinite-dimensional
complex Hilbert spaces, is either an isomorphism or an anti-isomorphism multiplied by a
nonzero complex number. If Φ is not injective, then Φ vanishes at all compact operators.

1. Introduction. Over the past decades, there has been a considerable
interest in the study of linear maps on operator algebras that preserve cer-
tain properties of operators. In particular, a problem how to characterize
linear maps that preserve the spectrum of each operator has attracted the
attention of many mathematicians. In [11], Jafarian and Sourour proved that
a surjective linear map preserving spectrum from B(X) onto B(Y ), where X
and Y are Banach spaces, is either an isomorphism or an anti-isomorphism.
Aupetit and Mouton [3] extended this result to primitive Banach algebras
with minimal ideals. It is shown in [13] that every point spectrum preserving
and surjective linear map on B(X) is an automorphism. Brešar and Šemrl [5]
proved that a linear surjective map preserving spectral radius on B(X) is ei-
ther an automorphism or an anti-automorphism multiplied by a scalar with
modulus 1. For some other papers concerning this type of linear preservers,
see [1, 2, 4, 6–8, 10–11, 13, 16–18].

A natural and interesting question is to ask how to classify the surjective
linear maps Φ on B(X) which are spectrally bounded , i.e., there exists a
positive constant M such that r(Φ(T )) ≤Mr(T ) for every T ∈ B(X), where
r(T ) denotes the spectral radius of T . In the case that M = 1 we say that Φ
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is spectral radius nonincreasing. Note that the study of spectrally bounded
linear maps can be reduced to that of the spectral radius nonincreasing ones.
Indeed, let Ψ = (1/M)Φ; then r(Ψ(T )) = (1/M)r(Φ(T )) ≤ r(T ), that is, Ψ
is spectral radius nonincreasing.

A related reference is [14], where Šemrl proved that a unital bijective
linear map on B(H) with H infinite-dimensional is spectrally bounded if
and only if it is either an automorphism or an anti-automorphism. One of
our main purposes in this note is to improve Šemrl’s result above by omitting
the assumption that Φ is unital.

When the Hilbert space H is finite-dimensional, together with the dis-
cussion of Šemrl [14, Remark 4], one can easily check that a bijective lin-
ear map Φ on B(H) is spectrally bounded if and only if Φ has the form
Φ(T ) = cϕ(T ) + (Φ(I) − cI) trT/n for every T ∈ B(H), where ϕ is either
an automorphism or an anti-automorphism of B(H), c is a nonzero com-
plex number and n = dimH. So when we discuss the spectrally bounded
linear maps, we may always assume that the Hilbert space H is infinite-
dimensional.

Now we describe the main results of this note. In Section 2, we prove
in a quite general framework that a spectrally bounded linear map from
a unital complex Banach algebra onto a standard operator algebra acting
on a complex Banach space preserves square-zero elements (see Theorem
2.1), which generalizes the first step of the proof of Šemrl’s result in [14]
mentioned above. This allows us to prove that a two-fold spectrally bounded
surjective linear map from a unital complex Banach algebra onto a standard
operator algebra acting on a complex Banach space is a homomorphism
multiplied by a nonzero complex number (Theorem 2.2). Here a linear map
Φ : A → B is said to be two-fold spectrally bounded if Φ2 : A ⊗M2(C) →
B⊗M2(C) defined by Φ2((Tij)) = (Φ(Tij)) is spectrally bounded. Section 3
concerns applications of Theorem 2.1 to the Hilbert space case. We show
that a linear bijection Φ from B(H) onto B(K), where H and K are infinite-
dimensional complex Hilbert spaces, is spectrally bounded if and only if
there exist a nonzero complex number d and an invertible operator A ∈
B(H,K) such that either Φ(T ) = dATA−1 for all T ∈ B(H) or Φ(T ) =
dAT trA−1 for all T ∈ B(H) (Theorem 3.1). If the injectivity assumption on
Φ is omitted, then either Φ has one of the above forms or Φ vanishes at every
compact operator (Theorem 3.3). In particular, if H is separable, then Φ is
surjective and spectrally bounded if and only if it is either an isomorphism or
an anti-isomorphism multiplied by a nonzero scalar. From our arguments,
we also answer affirmatively a question raised by Šemrl in [15] where he
gave a characterization of unital bijections on B(H) which preserve square-
zero operators and asked whether or not the “unital” assumption can be
omitted.
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Let us fix some notations. Let B(X) and F(X) be the sets of all bounded
linear operators and of all finite rank bounded linear operators on the Ba-
nach space X, respectively. A subalgebra B in B(X) is called a standard
operator algebra if B is closed and contains the identity operator and F(X).
For T ∈ B(X), we denote by R(T ) and ker(T ) the range and kernel of T ,
respectively. If T 2 = T , we say T is an idempotent operator. Throughout
this paper, we denote by x⊗f the bounded linear operator on X defined for
any x ∈ X and f ∈ X∗ by (x⊗f)(z) = 〈z, f〉x for every z ∈ X, where 〈z, f〉
is the value of f at z. Note that this operator is of rank one whenever both
x and f are nonzero, and that every operator of rank one can be written
in this form. By a projection we mean a self-adjoint idempotent in B(H),
where H is a Hilbert space.

2. General results. In this section we consider the general case of
spectrally bounded linear maps from a Banach algebra onto a standard
operator algebra on a complex Banach space. The following is our main
result.

Theorem 2.1. Let A be a unital complex Banach algebra and B be
a standard operator algebra on a complex Banach space X. Assume that
Φ : A → B is a surjective linear map. If Φ is spectrally bounded , then Φ
preserves square-zero elements.

Proof. By the discussion in the introduction, we may assume that Φ
is spectral radius nonincreasing. We divide the proof into two steps. We
mention that the idea of the proof of Step 1 is the same as an idea used
in [5].

Step 1. Let A ∈ A be such that Ak = 0 for some k ≥ 2. If B ∈ B
satisfies BQiB = 0, i = 0, 1, . . . , k − 1, where Q = Φ(A), then

r(λQk +BQk−1 +QBQk−2 + . . .+Qk−1B) = 0

for every complex number λ.

Let B1 =BQk−1+QBQk−2+. . .+Qk−1B and B2 =Qk. Since r(B + λQ)k

= r[(B + λQ)k] and B2 = BQB = BQ2B = . . . = BQk−2B = 0, it follows
that

r(B + λQ)k = |λ|k−1r(B1 + λB2).

As Φ is surjective, there exists C ∈ A such that Φ(C) = B. Moreover, since
Φ is spectral radius nonincreasing, we have

r(B + λQ)k = r(Φ(C + λA))k ≤ r(C + λA)k.

As Ak = 0, it follows that

r(C + λA)k = r[(C + λA)k] = r(C0 + λC1 + . . .+ λk−1Ck−1),
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where C0 = Ck, C1 = Ck−1A + . . . + ACk−1, . . . , Ck−1 = Ak−1C + . . . +
CAk−1. Thus we have shown that

|λ|k−1r(B1 + λB2) ≤ r(C0 + λC1 + . . .+ λk−1Ck−1).

Therefore, for any complex λ satisfying |λ| ≥ 1, we have

r(B1 + λB2) ≤ |λ|−k+1r(C0 + λC1 + . . .+ λk−1Ck−1)

≤ ‖C0‖+ ‖C1‖+ . . .+ ‖Ck−1‖.
On the other hand, for every complex λ satisfying |λ| ≤ 1, one gets

r(B1 + λB2) ≤ ‖B1 + λB2‖ ≤ ‖B1‖+ ‖B2‖.
Thus the function λ 7→ r(B1 +λB2) is bounded on C. As it is subharmonic,
the Liouville theorem for subharmonic functions [3] shows that r(B1 + λB2)
= r(B1) for every complex λ. Observing that B1B = 0 it is easy to see
that B2

1 = Dk−2BQ
k−2 + Dk−3BQ

k−3 + . . . + D0B for some Di ∈ B and
so B2

1QB = B2
1B = 0. This further implies that B3

1 has the form B3
1 =

Ek−3BQ
k−3 +Ek−2BQ

k−2 + . . .+E0B for some Ei ∈ B, and consequently,
B3

1Q
2B = B3

1QB = B3
1B = 0. Repeating this procedure one shows that

Bk+1
1 = 0. So r(B1 + λB2) = 0 for every complex λ, as desired.

Step 2. If A ∈ A and A2 = 0, then Φ(A)2 = 0.

Based on Step 1, an argument similar to that in Step 5 of the proof of
the main results in [5], where B(X) is replaced by A or B, shows that, for
every k ≥ 2 and every A ∈ A with Ak = 0, we have Φ(A)2k−1 = 0. So
for every A ∈ A satisfying A2 = 0, we have Φ(A)3 = 0. Assume that there
exists some A ∈ A with A2 = 0 but Φ(A)2 6= 0. Let Φ(A) = Q. It follows
that p(Q) 6= 0 for every complex polynomial p of degree not exceeding 2.
Kaplansky’s theorem on local algebraic operators tells us that there is u ∈ X
such that the vectors u, Qu and Q2u are linearly independent. Therefore,
u 6∈M = span{Qu, Q2u−u}. Hence there exists a linear functional f ∈ X∗
such that f(u) = f(Q2u) = 1 and f(Qu) = 0. Let B = (Q2u− u)⊗ f. Then
a straightforward computation shows that B2 = BQB = 0. So, by Step 1,
we have r(Q2 +BQ+QB) = 0. On the other hand, one can easily check

(Q2 +BQ+QB)(u−Qu) = u−Qu,
so r(Q2 + BQ + QB) ≥ 1, which is a contradiction. Hence Φ preserves
square-zero elements.

Applying Theorem 2.1, we can prove the following results.

Theorem 2.2. Let A be a unital complex Banach algebra and B be
a standard operator algebra on a complex Banach space. Assume that Φ :
A → B is a surjective linear map. Then Φ2 : A ⊗M2(C) → B ⊗M2(C)
is spectrally bounded if and only if Φ is a homomorphism multiplied by a
nonzero complex number.



Spectrally bounded linear maps 265

Proof. The sufficiency is clear. Now let us check the necessity. Assume
that Φ2 : A⊗M2(C)→ B⊗M2(C) is spectrally bounded. By Theorem 2.1,
Φ2 preserves square-zero elements. Let C ∈ A be invertible. For any A ∈ A,
since (

A C
−C−1A2 −C−1AC

)2

= 0,

we have (
Φ(A) Φ(C)

−Φ(C−1A2) −Φ(C−1AC)

)2

= 0.

So

Φ(A)2 − Φ(C)Φ(C−1A2) = 0(2.1)

and

Φ(A)Φ(C)− Φ(C)Φ(C−1AC) = 0.(2.2)

Letting C = I in (2.2) gives Φ(I)Φ(A) = Φ(A)Φ(I). Since Φ is surjective
and also spectral radius nonincreasing, and since B is a standard operator
algebra, we must have Φ(I) = cI for some complex number c with |c| ≤ 1.
We claim c 6= 0. Otherwise, taking C = I in (2.1) gives Φ(A)2 = 0 for every
A ∈ A, which contradicts the surjectivity of Φ. So, without loss of generality,
we may assume that Φ(I) = I. Now it is clear that Φ(A2) = Φ(A)2, that is,
Φ is a Jordan homomorphism. By taking A = I in (2.1), we see that Φ also
preserves invertibility. So (2.2) implies

Φ(C−1AC) = Φ(C)−1Φ(A)Φ(C).

Since Φ is Jordan, we have Φ(CAC) = Φ(C)Φ(A)Φ(C) for any A,C ∈ A.
Hence

Φ(AC2) = Φ(C−1CACC) = Φ(C)−1Φ(CAC)Φ(C) = Φ(A)Φ(C)2.(2.3)

Next, choosing any nonzero λ ∈ C so that λ − C is invertible, we get,
replacing C by λ− C in (2.3),

Φ(AC) = Φ(A)Φ(C)

for all A and invertible C in A. When C is not invertible, take λ ∈ C so
that λ− C is invertible; then Φ(A(λ− C)) = Φ(A)(λ− Φ(C)), which again
implies that Φ(AC) = Φ(A)Φ(C). Therefore, Φ is a homomorphism from A
onto B.

Corollary 2.3. Let A be a unital complex Banach algebra and B
be a standard operator algebra on a complex Banach space. Assume that
Φ : A → B is a bijective linear map. Then Φ2 : A ⊗M2(C) → B ⊗M2(C)
is spectrally bounded if and only if Φ is an isomorphism multiplied by a
nonzero complex number.
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If A is a standard operator algebra, then Φ has a more concrete charac-
terization.

Corollary 2.4. Let A and B be two standard operator algebras on a
complex Banach space X. Assume that Φ : A → B is a bijective linear map.
Then Φ2 : A⊗M2(C)→ B⊗M2(C) is spectrally bounded if and only if there
exists a complex number c and an invertible operator A ∈ B(X) such that
Φ(T ) = cATA−1 for every operator T ∈ A.

Proof. It is clear that we need only check the necessity. Assume that
Φ2 is spectrally bounded. By Theorem 2.2, Φ is a scalar multiple of an
isomorphism. Since every isomorphism between standard operator algebras
is spatial, there exists an invertible operator A ∈ B(X) such that Φ(T ) =
cATA−1 for every T ∈ A.

3. Application to Hilbert space case. Let H and K be two infinite-
dimensional complex Hilbert spaces. Applying the results of Section 2, we
can get a complete classification of the spectrally bounded linear maps from
B(H) onto B(K) without the assumption that Φ(I) = I. The following
theorem is our main result in this section.

Theorem 3.1. Let H and K be two infinite-dimensional Hilbert spaces.
Assume that Φ : B(H)→ B(K) is a bijective linear map. Then the following
conditions are equivalent.

(1) Φ is spectrally bounded.
(2) There exists a nonzero complex number d and a bounded linear map

Ψ : B(H)→ B(K) preserving idempotents such that Φ = dΨ .
(3) Φ is a Jordan isomorphism multiplied by a nonzero complex number.
(4) Φ is either an isomorphism or an anti-isomorphism multiplied by a

nonzero complex number.
(5) There exists a nonzero complex number d and an invertible operator

A ∈ B(H,K) such that either Φ(T ) = dATA−1 for all T ∈ B(H) or Φ(T ) =
dAT trA−1 for all T ∈ B(H), where T tr denotes the transpose of T relative
to a fixed but arbitrary orthonormal basis of H.

To prove this theorem, the following lemma is needed.

Lemma 3.2. Suppose that Φ : B(H)→ B(K) is a surjective linear map
which preserves square-zero operators. Then

Φ(R)2Φ(I) = Φ(I)Φ(R)2(3.1)

for all idempotents R ∈ B(H).

Proof. Let H be a direct sum of two closed infinite-dimensional linear
subspaces H1 and H2 (note that we do not assume H1 and H2 are orthogo-
nal). Let P and Q = I − P be the idempotents corresponding to this direct
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sum decomposition, that is, R(P ) = H1 and ker(P ) = H2. Assume that
operators A,B ∈ B(H) satisfy PAP = A and QBQ = B. It follows from
[12, Theorem 2] that A and B can be written as sums of five operators with
square zero. Say A = A1+A2+A3+A4+A5 and B = B1+B2+B3+B4+B5,
with PAiP = Ai and QBiQ = Bi (i = 1, . . . , 5). Clearly, (Ai + Bj)2 = 0.
Consequently, we have Φ(Ai)Φ(Bj) + Φ(Bj)Φ(Ai) = 0, which further yields

Φ(A)Φ(B) + Φ(B)Φ(A) = 0.

In other words, we have

Φ(PAP )Φ((I − P )B(I − P )) + Φ((I − P )B(I − P ))Φ(PAP ) = 0(3.2)

for every A,B ∈ B(H).
We claim that

Φ(R)Φ(I) + Φ(I)Φ(R) = 2Φ(R)2 for all idempotents R.(3.3)

If R ∈ B(H) is an idempotent such that both its range and kernel are
infinite-dimensional, then by (3.2) with A = B = I we get

Φ(R)Φ(I −R) + Φ(I −R)Φ(R) = 0,

which implies (3.3) immediately.
If R has a finite-dimensional image, take an idempotent P1 with both

range and kernel infinite-dimensional such that P1 ⊥ R. Then

Φ(P1)Φ(R) + Φ(R)Φ(P1)

= Φ(P1P1P1)Φ((I − P1)R(I − P1)) + Φ((I − P1)R(I − P1))Φ(P1P1P1) = 0.

Therefore,
Φ(P1 +R)2 = Φ(P1)2 + Φ(R)2

and

Φ(R)Φ(I) + Φ(I)Φ(R)

= Φ(P1 +R− P1)Φ(I) + Φ(I)Φ(P1 +R− P1)

= Φ(P1 +R)Φ(I) + Φ(I)Φ(P1 +R)− Φ(P1)Φ(I)− Φ(I)Φ(P1)

= 2Φ(P1 +R)2 − 2Φ(P1)2 = 2Φ(R)2.

If R has finite-dimensional kernel, then

Φ(I −R)Φ(I) + Φ(I)Φ(I −R) = 2Φ(I −R)2,

and hence
Φ(R)Φ(I) + Φ(I)Φ(R) = 2Φ(R)2,

completing the proof of (3.3). Thus, for any idempotent R ∈ B(H), we have

Φ(R)2Φ(I) + Φ(R)Φ(I)Φ(R) = 2Φ(R)3

and
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Φ(I)Φ(R)2 + Φ(R)Φ(I)Φ(R) = 2Φ(R)3,

which implies that Φ(R)2Φ(I) = Φ(I)Φ(R)2.

Theorem 3.3. Let H and K be two infinite-dimensional Hilbert spaces.
Assume that Φ : B(H)→ B(K) is a surjective linear map. If Φ is spectrally
bounded , then either Φ(T ) = 0 for all compact operators T ∈ B(H) or Φ is
injective. In the last case, there exists a nonzero complex number d and an
invertible operator A ∈ B(H,K) such that either Φ(T ) = dATA−1 for all
T ∈ B(H) or Φ(T ) = dAT trA−1 for all T ∈ B(H), where T tr denotes the
transpose of T relative to a fixed but arbitrary orthonormal basis of H.

Proof. Assume that Φ is spectrally bounded. By Theorem 2.1, Φ pre-
serves square-zero operators. We may assume that Φ is spectral radius non-
increasing by the discussion in the introduction.

Claim 1. For any orthogonal idempotents P1 and P2 in B(H), we have

Φ(P1 + P2)2 = Φ(P1)2 + Φ(P2)2.(3.4)

It is easily seen from the proof of Lemma 3.2 that (3.4) is true if dimR(Pi)
= dimR(I − Pi) =∞ for i = 1 or 2. There are four cases left to check:

(i) dimR(P1) <∞, dimR(P2) <∞;
(ii) dimR(P1) <∞, dimR(I − P2) <∞;

(iii) dimR(I − P1) <∞, dimR(P2) <∞;
(iv) dimR(I − P1) <∞, dimR(I − P2) <∞.

In case (i), we can find an idempotent P3 orthogonal to P1 + P2 with
dimR(P3) = dimR(I − P3) =∞. Thus

Φ(P1 + P2)2 + Φ(P3)2 = Φ(P1 + P2 + P3)2 = Φ(P1)2 + Φ(P2 + P3)2

= Φ(P1)2 + Φ(P2)2 + Φ(P3)2,

so Φ(P1 + P2)2 = Φ(P1)2 + Φ(P2)2. The remaining cases are similar.

Claim 2. Φ(I) = cI for some nonzero complex number c.

We first prove that Φ is bounded. Since Φ is a spectral radius nonincreas-
ing surjection and B(K) is semisimple, it follows from Aupetit [2] that Φ is
bounded.

Let C ∈ B(H) be a linear combination of orthogonal projections, that
is, C =

∑n
i=1 αiPi, where {Pi}ni=1 is an orthogonal set of projections. Then

Φ(C)2 =
∑n

i=1 α
2
iΦ(Pi)2 by (3.4). It follows that Φ(C)2Φ(I) = Φ(I)Φ(C)2

by Lemma 3.2. Now suppose D ∈ B(H) is self-adjoint; then D is a limit
of linear combinations of orthogonal projections. Since Φ is bounded and
linear, we have Φ(D)2Φ(I) = Φ(I)Φ(D)2. Let C,D ∈ B(H) be self-adjoint.
Then Φ(C +D)2Φ(I) = Φ(I)Φ(C +D)2, which yields

(Φ(C)Φ(D) + Φ(D)Φ(C))Φ(I) = Φ(I)(Φ(C)Φ(D) + Φ(D)Φ(C)).
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For any T ∈ B(H), there exist self-adjoint operators C and D such that
T = C + iD. Because

Φ(C + iD)2Φ(I)

= Φ(C)2Φ(I)− Φ(D)2Φ(I) + i(Φ(C)Φ(D) + Φ(D)Φ(C))Φ(I)

= Φ(I)Φ(C + iD)2,

we see that
Φ(T )2Φ(I) = Φ(I)Φ(T )2

for every T ∈ B(H), and consequently S2Φ(I) = Φ(I)S2 for all S ∈ B(K)
by the surjectivity of Φ. This implies that Φ(I) = cI for some c ∈ C. Fur-
thermore, c 6= 0. Indeed, if c = 0, then Φ(I) = 0. Thus by (3.3) we have
Φ(R)2 = 0 for all idempotents R, which implies that Φ(C)2 = 0 for all
self-adjoint operators C by the boundedness of Φ. Hence Φ(T )2 = 0 for all
T ∈ B(H), which contradicts the surjectivity of Φ.

Therefore, with no loss of generality, we may assume Φ(I) = I. Thus,
by (3.3) again, Φ is idempotent preserving. Let A ∈ B(H) be self-adjoint
and A =

∑n
i=1 tiPi where ti ∈ R and Pi are pairwise orthogonal projections.

Since Φ maps mutually orthogonal projections to mutually orthogonal idem-
potents, Φ(A2) = Φ(A)2. Now, because the set of self-adjoint elements that
are finite real linear combinations of orthogonal projections is dense in the
set of all self-adjoint elements in B(H), we see that Φ(A2) = Φ(A)2 for all
self-adjoint A in B(H) by the boundedness of Φ. Replacing A by A+B where
both A and B are self-adjoint, we get Φ(AB+BA) = Φ(A)Φ(B)+Φ(B)Φ(A).
Since every T ∈ B(H) can be written in the form T = A + iB with A and
B self-adjoint, the last relations imply that Φ(T 2) = Φ(T )2. So Φ is Jordan.

Since B(K) is a prime ring, by [9, Thm. 3.1], Φ is either a homomorphism
or an anti-homomorphism. If Φ is not injective, then kerΦ is a nonzero
closed ideal in B(H). Since the smallest nontrivial closed ideal of B(H)
is the ideal K(H) of compact operators, we have kerΦ ⊇ K(H). Hence
Φ(T ) = 0 for all compact operators T ∈ B(H). If Φ is injective, then Φ is
either an isomorphism or an anti-isomorphism. Since every isomorphism or
anti-isomorphism from B(H) onto B(K) is spatial, there exists an invertible
operator A ∈ B(H,K) such that Φ(T ) = ATA−1 for all T ∈ B(H) or
Φ(T ) = AT trA−1 for all T ∈ B(H), where T tr denotes the transpose of T
relative to an orthonormal basis in H.

Remark 3.4. Claim 2 in the proof of Theorem 3.3 also answers af-
firmatively a question due to Šemrl [15], who showed that a unital linear
bijection on B(H) is square-zero preserving if and only if it is either an
automorphism or an anti-automorphism and he asked whether or not the
unital assumption may be omitted. So we find that a linear bijection on
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B(H) is square-zero preserving if and only if it is either an automorphism
or an anti-automorphism multiplied by a nonzero scalar.

Proof of Theorem 3.1. (2)⇒(3)⇒(4)⇒(5)⇒(1) are obvious. (1)⇒(2) fol-
lows from Theorem 3.3.

Note that if the Hilbert space H is separable, then Φ is injective in
Theorem 3.3. In fact, if Φ is not injective, then B(H) is isomorphic to the
quotient algebra B(H)/K(H), which contradicts the fact that B(H)/K(H)
is simple. So we have the following corollary which generalizes [14, Thm. 2]
by omitting the unital assumption.

Corollary 3.5. Let H and K be two infinite-dimensional Hilbert spaces
with H separable. Assume that Φ : B(H)→ B(K) is a surjective linear map.
Then Φ is spectrally bounded if and only if there exists a nonzero complex
number d and an invertible operator A ∈ B(H,K) such that either Φ(T ) =
dATA−1 for all T ∈ B(H) or Φ(T ) = dAT trA−1 for all T ∈ B(H), where
T tr denotes the transpose of T relative to a fixed but arbitrary orthonormal
basis of H.

Remark 3.6. Our proofs still work if B(K) is replaced by a standard
operator algebra acting on a complex Banach space. So the results in this
section also hold true when Φ is a linear map from B(H) onto a standard
operator algebra B.
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