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Well-posedness of second order degenerate differential
equations in vector-valued function spaces

by

Shangquan Bu (Beijing)

Abstract. Using known results on operator-valued Fourier multipliers on vector-
valued function spaces, we give necessary or sufficient conditions for the well-posedness
of the second order degenerate equations (P2): d

dt
(Mu′)(t) = Au(t) + f(t) (0 ≤ t ≤ 2π)

with periodic boundary conditions u(0) = u(2π), (Mu′)(0) = (Mu′)(2π), in Lebesgue–
Bochner spaces Lp(T, X), periodic Besov spaces Bsp,q(T, X) and periodic Triebel–Lizorkin
spaces F sp,q(T, X), where A and M are closed operators in a Banach space X satisfying
D(A) ⊂ D(M). Our results generalize the previous results of W. Arendt and S. Q. Bu
when M = IX .

1. Introduction. In this paper, we consider the second order degener-
ate equations

(P2) :
d

dt
(Mu′)(t) = Au(t) + f(t) (0 ≤ t ≤ 2π)

with periodic boundary conditions u(0) = u(2π), (Mu′)(0) = (Mu′)(2π),
where A and M are closed operators in a Banach space X satisfying D(A) ⊂
D(M); f is an X-valued function.

The class of equations (P2) arises as models for nonlinear heat con-
duction in materials of fading memory type and in population dynamics.
Much literature has been devoted to such problems [1, 2, 5]. W. Arendt and
S. Q. Bu have considered the Lp-well-posedness of (P2) when M = IX is the
identity operator of X; they have shown that when X is a UMD Banach
space and 1 < p < ∞, (P2) is Lp-well-posed if and only if −Z2 ⊂ ρ(A) and
the set {k2(k2 + A)−1 : k ∈ Z} is Rademacher bounded [1, Theorem 6.1].
They have also studied the well-posedness of (P2) in periodic Besov spaces
Bs
p,q(T, X) and showed that, when M = IX , (P2) is Bs

p,q-well-posed if and

only if −Z2 ⊂ ρ(A) and the set {k2(k2 + A)−1 : k ∈ Z} is norm bounded
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[2, Theorem 5.3]. A similar characterization of the well-posedness of (P2) in
periodic Triebel–Lizorkin spaces F sp,q(T, X) has been obtained by S. Q. Bu
and J. M. Kim when M = IX [5, Theorem 4.2].

We notice that a detailed study of linear abstract degenerate differen-
tial equations using semigroup theory and the extension of the operational
method of G. Da Prato and P. Grisvard has been treated in the mono-
graph [6], where second order degenerate equations have been systematically
studied in Chapter VI, mainly focusing on the existence and uniqueness of
classical solutions of (P2). We also notice that similar second order equations
with delay have also been extensively studied (see e.g. [4, 8]).

Similar first order degenerate equations

(P1) :
d

dt
(Mu)(t) = Au(t) + f(t) (0 ≤ t ≤ 2π),

with periodic boundary conditions Mu(0) = Mu(2π), have recently been
studied by C. Lizama and R. Ponce [10]; under suitable assumptions on the
R-boundedness of the modified resolvent operator determined by (P1), they
gave necessary and sufficient conditions for the well-posedness of (P1) in
Lebesgue–Bochner spaces Lp(T, X), Besov spaces Bs

p,q(T, X) and Triebel–
Lizorkin spaces F sp,q(T, X).

In this paper, using suitable assumptions on the growth of the mod-
ified resolvent operator determined by (P2), we give necessary or suffi-
cient conditions for (P2) to be Lp-well-posed (resp. Bs

p,q-well-posed and
F sp,q-well-posed). Since A is not necessarily the generator of a semigroup
in our situation, semigroup theory is no longer applicable. Our main tool
is the operator-valued Fourier multiplier theorems obtained by W. Arendt
and S. Q. Bu [1, 2] on Lp(T, X) and Bs

p,q(T, X), and by S. Q. Bu and
J. M. Kim [5] on F sp,q(T, X). In fact we will transform the well-posedness of
(P2) to an operator-valued Fourier multiplier problem in the corresponding
vector-valued function spaces. Our results concerning the Lp-well-posedness
of (P2) involve UMD Banach spaces and the R-boundedness for sets of
bounded linear operators on Banach spaces, which are not too restrictive
conditions for applications. Our results recover the known results of [1, 2, 5]
in the case M = IX .

This paper is organized as follows: in the second section, we study the
Lp-well-posedness for (P2), while the last section is devoted to the well-
posedness of (P2) in Besov spaces Bs

p,q(T, X) and Triebel–Lizorkin spaces
F sp,q(T, X).

2. The Lp-well-posedness of (P2). We first recall some notions and
notation. Throughout, X will be a complex Banach space and T := [0, 2π].
For 1 ≤ p < ∞, we let Lp(T, X) be the space of all X-valued measurable
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functions f defined on T satisfying

‖f‖Lp :=

( 2π�

0

‖f(t)‖p dt
2π

)1/p

<∞.

For f ∈ L1(T, X), we denote by

f̂(k) :=
1

2π

2π�

0

e−k(t)f(t) dt

the kth Fourier coefficient of f , where k ∈ Z and ek(t) = eikt for t ∈ T.
X is said to be a UMD Banach space if the Riesz projection

Rf :=
∑
k≥0

f̂(k)ek

is bounded on Lp(T, X) for some (equivalently for all) 1 < p < ∞ [3].
The scalar Lp-spaces, Sobolev spaces W k,p and Schatten class Sp are UMD
Banach spaces when 1 < p <∞. If Y is another Banach space, we denote by
L(X,Y ) the space of all bounded linear operators from X to Y . If X = Y ,
we simply write L(X).

For results about R-boundedness, we refer to J. Bourgain [3], L. Weis
[11, 12] and W. Arendt and S. Q. Bu [1]. We merely recall the definition
and some basic properties. Let rj be the jth Rademacher function on [0, 1]
given by rj(t) = sgn(sin(2j−1t)) when j ≥ 1. For x ∈ X, we denote by rj⊗x
the vector-valued function t 7→ rj(t)x on [0, 1].

Definition 2.1. Let X and Y be Banach spaces. A set T ⊂ L(X,Y ) is
said to be Rademacher bounded (R-bounded , for short) if there exists C ≥ 0
such that

(2.1)
∥∥∥ n∑
j=1

rj ⊗ Tjxj
∥∥∥
L1([0,1],Y )

≤ C
∥∥∥ n∑
j=1

rj ⊗ xj
∥∥∥
L1([0,1],X)

for all T1, . . . , Tn ∈ T, x1, . . . , xn ∈ X and n ∈ N.

Remark 2.2. Let S,T ⊂ L(X) be R-bounded sets. Then it is clear from
the definition that ST := {ST : S ∈ S, T ∈ T} and S + T := {S + T :
S ∈ S, T ∈ T} are still R-bounded. It is also clear that if Ω ⊂ C is bounded,
then the set {λIX : λ ∈ Ω} is R-bounded [9, Theorem 4.4].

The main tools in our study of the Lp-well-posedness of (P2) are operator-
valued Lp-Fourier multipliers which were studied in [1].

Definition 2.3. For 1 ≤ p < ∞, we say that (Mk)k∈Z ⊂ L(X,Y ) is
an Lp-Fourier multiplier if for each f ∈ Lp(T, X), there exists a unique

u ∈ Lp(T, Y ) such that û(k) = Mkf̂(k) for all k ∈ Z.
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It is known that when (Mk)k∈Z ⊂ L(X,Y ) is an Lp-Fourier multiplier,
then the set {Mk : k ∈ Z} is R-bounded [1, Proposition 1.11]. The follow-
ing theorem, due to W. Arendt and S. Q. Bu [1, Theorem 1.3], plays an
important role in our investigations.

Theorem 2.4. Let X,Y be UMD Banach spaces and (Mk)k∈Z⊂L(X,Y ).
If the sets {Mk : k ∈ Z} and {k(Mk+1 −Mk) : k ∈ Z} are R-bounded, then
(Mk)k∈Z defines an Lp-Fourier multiplier whenever 1 < p <∞.

Remarks 2.5. (i) If (Mk)k∈Z and (Nk)k∈Z are Lp-Fourier multipliers,
then so is the product sequence (MkNk)k∈Z.

(ii) Let ck = 1/k when k 6= 0 and c0 = 1, and let f =
∑

k∈Z ckek. Then
f ∈ L1([0, 2π]) by [7]. Thus if 1 ≤ p < ∞, then (ckIX)k∈Z is an Lp-Fourier
multiplier by Young’s inequality [7].

For 1 ≤ p < ∞, we define the first order periodic “Sobolev” spaces [1]
by

W 1,p
per(T, X) := {u ∈ Lp(T, X) : there exists v ∈ Lp(T, X)

such that v̂(k) = ikû(k) for all k ∈ Z}.

Let u ∈ Lp(T, X). Then u ∈ W 1,p
per(T, X) if and only if u is differentiable

a.e. on T and u′ ∈ Lp(T, X) (in fact u′ is just the function v in the defini-

tion of W 1,p
per(T, X)); in this case u is actually continuous and u(0) = u(2π)

[1, Lemma 2.1].

W 1,p
per(T, X) is a Banach space under the norm

‖u‖
W 1,p

per
:= ‖u‖Lp + ‖u′‖Lp .

We consider the second order degenerate equations

(P2):
d

dt
(Mu′)(t) = Au(t) + f(t) (0 ≤ t ≤ 2π)

with periodic boundary conditions u(0) = u(2π), (Mu′)(0) = (Mu′)(2π),
where A and M are closed operators in X satisfying D(A) ⊂ D(M), and f
is an X-valued function defined on T.

Let 1 ≤ p <∞. We define the Lp-well-posedness solution space for (P2)
by

Sp(A,M) := {u ∈W 1,p
per(T, X) ∩ Lp(T, D(A)) :

u′ ∈ Lp(T, D(M)), Mu′ ∈W 1,p
per(T, X)};

here we consider D(A) and D(M) as Banach spaces equipped with their
graph norms. Sp(A,M) is a Banach space with the norm

‖u‖Sp(A,M) := ‖u‖Lp + ‖u′‖Lp + ‖Au‖Lp + ‖Mu′‖Lp + ‖(Mu′)′‖Lp .
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By [1, Lemma 2.1], if u ∈ Sp(A,M), then u and Mu′ are X-valued
continuous functions on T, and u(0) = u(2π), (Mu′)(0) = (Mu′)(2π).

Definition 2.6. Let 1 ≤ p <∞ and f ∈ Lp(T, X). Then u ∈ Sp(A,M)
is called a strong Lp-solution of (P2) if (P2) is satisfied a.e. on T. We say
that (P2) is Lp-well-posed if for each f ∈ Lp(T, X), there exists a unique
strong Lp-solution of (P2).

When (P2) is Lp-well-posed, there exists a constant C > 0 such that for
each f ∈ Lp(T, X), if u ∈ Sp(A,M) is the unique strong Lp-solution of (P2),
then

(2.2) ‖u‖Lp + ‖u′‖Lp + ‖Au‖Lp + ‖Mu′‖Lp + ‖(Mu′)′‖Lp ≤ C‖f‖Lp .
This is an easy consequence of the Closed Graph Theorem.

Now we introduce the M -resolvent set of A. We recall that under the
assumption that D(A) ⊂ D(M), for any λ ∈ C, the sum operator λM − A
is a linear operator from D(A) into X. We call

ρM (A) := {λ ∈ C : λ2M −A : D(A)→ X is invertible

and (λ2M −A)−1 ∈ L(X)}
the M -resolvent set of A. If λ ∈ ρM (A), then the operator M(λ2M−A)−1 is
well defined by the assumption D(A) ⊂ D(M), and M(λ2M−A)−1 ∈ L(X)
by the closedness of M and boundedness of (λ2M −A)−1.

Now we are able to state our first result which gives a necessary condition
for the Lp-well-posedness of (P2).

Theorem 2.7. Let X be a Banach space, 1 ≤ p < ∞ and let A, M be
closed linear operators in X satisfying D(A) ⊂ D(M). Assume that (P2)
is Lp-well-posed. Then iZ ⊂ ρM (A) and {Nk : k ∈ Z} is R-bounded, where
Nk = k2M(k2M +A)−1 for k ∈ Z.

Proof. Let k ∈ Z and y ∈ X be fixed. We define f(t) = eikty (t ∈ T).

Then f ∈ Lp(T, X), f̂(k) = y and f̂(n) = 0 for n 6= k. Since (P2) is
Lp-well-posed, there exists a unique u ∈ Sp(A,M) satisfying

(2.3) (Mu′)′(t) = Au(t) + f(t)

a.e. on T. We have û(n) ∈ D(A) for n ∈ Z by [1, Lemma 3.1]. We remark
that f, Au, u′, Mu′ and (Mu′)′ are elements of Lp(T, X), so their Fourier
transforms make sense. Thus

(2.4) [(Mu′)′]∧(n) = in[Mu′]∧(n) = inM(u′)∧(n) = −n2Mû(n)

for n ∈ Z by the closedness of M and [1, Lemma 3.1]. Taking Fourier
transforms on both sides of (2.3), we obtain

(2.5) (−k2M −A)û(k) = y
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and (−n2M − A)û(n) = 0 when n 6= k. Thus −k2M − A is surjective. To
show that it is also injective, take x ∈ D(A) such that (−k2M − A)x = 0,
so −k2Mx = Ax. Let u(t) = eiktx for t ∈ T. Then clearly u ∈ Sp(A,M) and
(Mu′)′(t) = Au(t) a.e. on T. Thus u is a strong Lp-solution of (P2) with
f = 0. Hence x = 0 by the uniqueness assumption. We have shown that
−k2M −A is injective. Therefore −k2M −A is bijective from D(A) onto X.

Next, we show that (−k2M − A)−1 ∈ L(X). For f(t) = eikty, we let
u ∈ Sp(A,M) be the unique strong Lp-solution of (P2). Then by (2.5),

û(n) =

{
0, n 6= k,

(−k2M −A)−1y, n = k.

This implies that u(t) = eikt(−k2M−A)−1y. By (2.2), there exists a constant
C > 0, independent of y and k, such that

‖u‖Lp + ‖u′‖Lp + ‖Au‖Lp + ‖Mu′‖Lp + ‖(Mu′)′‖Lp ≤ C‖f‖Lp .

Hence ‖(k2M+A)−1y‖ ≤ C‖y‖ for all y ∈ X. Therefore ‖(k2M+A)−1‖ ≤ C.
We have shown that ik ∈ ρM (A). Thus iZ ⊂ ρM (A).

Finally, we show that if Nk = k2M(k2M +A)−1 for k ∈ Z, then (Nk)k∈Z
defines an Lp-Fourier multiplier. Let f ∈ Lp(T, X). Then by assumption
there exists a strong Lp-solution u ∈ Sp(A,M) of (P2). Taking Fourier trans-
forms on both sides of (P2), by using (2.4) we find that û(k) ∈ D(A) for all
k ∈ Z, and

(−k2M −A)û(k) = f̂(k) (k ∈ Z).

Since −k2M − A is invertible, we have û(k) = (−k2M − A)−1f̂(k). Since
u ∈ Sp(A,M), we have [(Mu′)′]∧(k) = −k2û(k) by (2.4) and so

[(Mu′)′]∧(k)) = −k2Mû(k) = −Nkf̂(k) (k ∈ Z).

We conclude that (Nk)k∈Z defines an Lp-Fourier multiplier as (Mu′)′ ∈
Lp(T, X). Now the result follows immediately from [1, Proposition 1.11].

Our next result gives a sufficient condition for the Lp-well-posedness of
(P2) when X is a UMD Banach space and 1 < p <∞.

Theorem 2.8. Let X be a UMD Banach space, 1 < p <∞ and let A, M
be closed linear operators in X satisfying D(A) ⊂ D(M). Assume that iZ ⊂
ρM (A) and the sets {k(k2M+A)−1 : k ∈ Z} and {k2M(k2M+A)−1 : k ∈ Z}
are R-bounded. Then (P2) is Lp-well-posed.

Proof. Let Nk = k2M(k2M + A)−1 and Sk = k(k2M + A)−1 for k ∈ Z.
Then {Nk : k ∈ Z} and {Sk : k ∈ Z} are R-bounded by assumption. We
claim that (Nk)k∈Z defines an Lp-Fourier multiplier. In view of Theorem 2.4,
it is sufficient to show that {k(Nk+1 − Nk) : k ∈ Z} is R-bounded. Let
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Hk = (k2M +A)−1 ∈ L(X), so Nk = k2MHk. We have

Hk+1 −Hk = Hk[(k
2M +A)− ((k + 1)2M +A)]Hk+1(2.6)

= −(2k + 1)HkMHk+1.

Using this equality, we obtain

k(Nk+1 −Nk) = kM [(k + 1)2Hk+1 − k2Hk](2.7)

= kM [(k + 1)2 − k2]Hk+1 + k3M [Hk+1 −Hk]

= k(2k + 1)MHk+1 − k3(2k + 1)MHkMHk+1

=
k(2k + 1)

(k + 1)2
Nk+1 −

k(2k + 1)

(k + 1)2
NkNk+1.

This implies that {k(Nk+1 −Nk) : k ∈ Z} is R-bounded by Remark 2.2.

Now, we are going to show that (Sk)k∈Z also defines an Lp-Fourier mul-
tiplier. By Theorem 2.4 it is sufficient to show that {k(Sk+1 − Sk) : k ∈ Z}
is R-bounded. Using (2.6), we have

k(Sk+1 − Sk) = kHk+1 + k2[Hk+1 −Hk]

=
k

k + 1
Sk+1 − k2(2k + 1)Hk+1MHk

=
k

k + 1
Sk+1 −

2k + 1

k + 1
Sk+1Nk.

Therefore {k(Sk+1 − Sk) : k ∈ Z} is R-bounded by Remark 2.2. We have
shown that (Nk)k∈Z and (Sk)k∈Z are Lp-Fourier multipliers.

Let Tk = −ikM(k2M + A)−1 for k ∈ Z. Then (Tk)k∈Z is also an Lp-
Fourier multiplier. This follows easily from the fact that (Nk)k∈Z is an Lp-
Fourier multiplier and Remarks 2.5.

Now, we are going to show that (P2) is Lp-well-posed. Since (Nk)k∈Z
is an Lp-Fourier multiplier, for all f ∈ Lp(T, X) there exists u ∈ Lp(T, X)

satisfying û(k) = Nkf̂(k) for all k ∈ Z. Using the identity

IX = k2M(k2M +A)−1 +A(k2M +A)−1,

we have

û(k) = k2M(k2M +A)−1f̂(k) = (IX −A(k2M +A)−1)f̂(k).

Thus (u−f)∧(k) = −A(k2M+A)−1f̂(k). Let v = u−f . Then v ∈ Lp(T, X)

and v̂(k) = −A(k2M + A)−1f̂(k). We notice that A−1 is an isomorphism
from X onto D(A) as 0 ∈ ρM (A) by assumption; here we consider D(A) as
a Banach space equipped with its graph norm. It follows that A−1v̂(k) =

−(k2M + A)−1f̂(k). Put w = A−1v. Then w ∈ Lp(T, D(A)), ŵ(k) ∈ D(A)

and ŵ(k) = −(k2M +A)−1f̂(k). We have

ikŵ(k) = −ik(k2M +A)−1f̂(k) = −iSkf̂(k),
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so w ∈ W 1,p
per(T, X) as (Sk)k∈Z is an Lp-Fourier multiplier. We have shown

that w ∈ W 1,p
per(T, X) ∩ Lp(T, D(A)) and (w′)∧(k) = −ik(k2M + A)−1f̂(k).

Now,

M(w′)∧(k) = −ikM(k2M +A)−1f̂(k) = Tkf̂(k).

Thus w′ ∈ Lp(T, D(M)) as (Tk)k∈Z is an Lp-Fourier multiplier. Hence

ik(Mw′)∧(k) = −k2M(k2M +A)−1f̂(k) = −Nkf̂(k).

Thus Mw′ ∈ W 1,p
per(T, X) and [(Mw′)′]∧(k) = −Nkf̂(k). Here we have used

the fact that (Nk)k∈Z is an Lp-Fourier multiplier. We have shown that w ∈
Sp(A,M). Now,

[(Mw′)′]∧(k)−Aŵ(k) = (k2M +A)(k2M +A)−1f̂(k) = f̂(k)

for k ∈ Z. It follows that (Mw′)′(t) = Aw(t) + f(t) a.e. on T by the unique-
ness theorem [1]. Thus w is a strong Lp-solution of (P2). This shows the
existence.

To show the uniqueness, we let u ∈ Sp(A,M) satisfy (Mu′)′(t) = Au(t)
a.e. on T. Taking Fourier transforms on both sides, one sees by (2.4) that
−k2Mû(k) = Aû(k) for all k ∈ Z. It follows that (k2M + A)−1û(k) = 0
for all k ∈ Z. Therefore u = 0 as ik ∈ ρM (A) for all k ∈ Z. Thus (P2) is
Lp-well-posed.

Remark 2.9. It was shown in [1, Theorem 6.1] that if X is a UMD
Banach space, 1 < p < ∞ and M = IX , then (P2) is Lp-well-posed if
and only if iZ ⊂ ρ(A) and the set {k2(k2 + A)−1 : k ∈ Z} is R-bounded.
When M = IX , we have actually k2(k2M + A)−1 = k2M(k2M + A)−1.
Thus under the only assumption that {k2M(k2M + A)−1 : k ∈ Z} is R-
bounded, we easily deduce the R-boundedness of {k(k2M + A)−1 : k ∈ Z}.
Thus Theorems 2.7 and 2.8 together recover the result of W. Arendt and
S. Q. Bu [1, Theorem 6.1] in the special case M = IX .

3. The Bs
p,q-well-posedness of (P2). In this section, we study the Bs

p,q-
well-posedness of (P2). First, we briefly recall the definition of periodic Besov
spaces Bs

p,q(T, X) in the vector-valued case, introduced in [2]. Let S(R) be
the Schwartz space of all rapidly decreasing smooth functions on R. Let D(T)
be the space of all infinitely differentiable functions on T equipped with the
locally convex topology given by the seminorms ‖f‖α = supx∈T |f (α)(x)|
for α ∈ N0 := N ∪ {0}. Let D′(T, X) := L(D(T), X) be the space of all
bounded linear operators from D(T) to X. In order to define Besov spaces,
we consider the dyadic-like subsets of R:

I0 = {t ∈ R : |t| ≤ 2}, Ik = {t ∈ R : 2k−1 < |t| ≤ 2k+1}
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for k ∈ N. Let φ(R) be the set of all systems φ = (φk)k∈N0 ⊂ S(R) satisfying
supp(φk) ⊂ Īk for each k ∈ N0,∑

k∈N0

φk(x) = 1 for x ∈ R,

and for each α ∈ N0,

sup
x∈R
k∈N0

2kα|φ(α)k (x)| <∞.

Let φ = (φk)k∈N0 ∈ φ(R) be fixed. For 1 ≤ p, q ≤ ∞, s ∈ R, the X-valued
periodic Besov space is defined by

Bs
p,q(T, X) =

{
f ∈ D′(T, X) :

‖f‖Bsp,q :=
(∑
j≥0

2sjq
∥∥∥∑
k∈Z

ekφj(k)f̂(k)
∥∥∥q
p

)1/q
<∞

}
with the usual modification if q =∞.

The set Bs
p,q(T, X) is independent of the choice of φ, and different choices

of φ lead to equivalent norms ‖ · ‖Bsp,q . Equipped with the norm ‖ · ‖Bsp,q ,
Bs
p,q(T, X) is a Banach space.

It is known that if s1 ≤ s2, then Bs2
p,q(T, X) ⊂ Bs1

p,q(T, X) and the em-
bedding is continuous [2]. When s > 0, it is shown in [2] that Bs

p,q(T, X) ⊂
Lp(T, X) and the embedding is continuous; moreover, f ∈ Bs+1

p,q (T, X) if

and only f is differentiable a.e. on T and f ′ ∈ Bs
p,q(T, X). This implies

that if u ∈ Bs
p,q(T, X) is such that there exists v ∈ Bs

p,q(T, X) satisfying

v̂(k) = ikû(k) for all k ∈ Z, then u ∈ Bs+1
p,q (T, X) and u′ = v. See [2, Sec-

tion 2] for more information about the space Bs
p,q(T, X).

For 1 ≤ p, q ≤ ∞, s > 0, we define the Bs
p,q-well-posedness solution space

for (P2) by

Sp,q,s(A,M) := {u ∈ Bs+1
p,q (T, X) ∩Bs

p,q(T, D(A)) :

u′ ∈ Bs
p,q(T, D(M)), Mu′ ∈ Bs+1

p,q (T, X), X)},
where we consider D(A) and D(M) as Banach spaces equipped with their
graph norms. Sp,q,s(A,M) is a Banach space under the norm

‖u‖Sp,q,s(A,M) := ‖u‖Bsp,q + ‖u′‖Bsp,q + ‖Au‖Bsp,q + ‖Mu′‖Bsp,q + ‖(Mu′)′‖Bsp,q .

By [1, Lemma 2.1], if u ∈ Sp,q,s(A,M), then u and Mu′ are continuous
functions on T, and u(0) = u(2π), (Mu′)(0) = (Mu′)(2π). Now we give the
definition of the Bs

p,q-well-posedness of the problem (P2).

Definition 3.1. Let 1 ≤ p, q ≤ ∞, s > 0 and f ∈ Bs
p,q(T, X). Then

u ∈ Sp,q,s(A,M) is called a strong Bs
p,q-solution of (P2) if (P2) is satisfied
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a.e. on T. We say that (P2) is Bs
p,q-well-posed if for each f ∈ Bs

p,q(T, X),
(P2) has a unique strong Bs

p,q-solution.

If (P2) is Bs
p,q-well-posed, then there exists a constant C > 0, such that

for all f ∈ Bs
p,q(T, X), if u is the unique strong Bs

p,q-solution of (P2), then

(3.1) ‖u‖Bsp,q+‖u
′‖Bsp,q+‖Mu′‖Bsp,q+‖(Mu′)′‖Bsp,q+‖Au‖Bsp,q ≤C‖f‖Bsp,q .

This can be easily obtained by the closedness of the operators A, M and
the Closed Graph Theorem.

The main tool in studying the Bs
p,q-well-posedness of (P2) is the operator-

valued Bs
p,q-Fourier multiplier technique.

Definition 3.2. Let X,Y be Banach spaces, 1 ≤ p, q ≤ ∞, s ∈ R and
let (Mk)k∈Z ⊂ L(X,Y ). We say that (Mk)k∈Z is a Bs

p,q-Fourier multiplier

if for each f ∈ Bs
p,q(T, X), there exists (a unique) u ∈ Bs

p,q(T, Y ) such that

û(k) = Mkf̂(k) for all k ∈ Z.

It is easy to see that if (Mk)k∈Z is a Bs
p,q-Fourier multiplier, then the set

{Mk : k ∈ Z} must be bounded. The following result of [2] gives a sufficient
condition for an operator-valued sequence to be a Bs

p,q-Fourier multiplier:

Theorem 3.3. Let X,Y be Banach spaces, 1 ≤ p, q ≤ ∞, s ∈ R and let
(Mk)k∈Z ⊂ L(X,Y ). Assume that

sup
k∈Z

(‖Mk‖+ ‖k(Mk+1 −Mk)‖) <∞,(3.2)

sup
k∈Z
‖k2(Mk+2 − 2Mk+1 +Mk)‖ <∞.(3.3)

Then (Mk)k∈Z is a Bs
p,q-Fourier multiplier.

Remarks 3.4. (i) If (Mk)k∈Z and (Nk)k∈Z are Bs
p,q-Fourier multipliers,

then so is (MkNk)k∈Z.

(ii) If ck = 1/k when k 6= 0 and c0 = 1, then (ckIX)k∈Z satisfies the
sufficient conditions (3.2) and (3.3) in Theorem 3.3. Thus (ckIX)k∈Z is a
Bs
p,q-Fourier multiplier. This can also be deduced from Young’s inequality [7].

Now we are able to state a necessary condition for theBs
p,q-well-posedness

of (P2).

Theorem 3.5. Let X be a Banach space, 1 ≤ p, q ≤ ∞, s > 0 and A, M
be closed linear operators in X satisfying D(A) ⊂ D(M). Assume that (P2)
is Bs

p,q-well-posed. Then iZ ⊂ ρM (A) and (Nk)k∈Z defines a Bs
p,q-Fourier

multiplier, where Nk = k2M(k2M + A)−1 for k ∈ Z. In particular, the set
{Nk : k ∈ Z} is bounded.

Proof. Fix k ∈ Z and y ∈ X and let f(t) = eikty for t ∈ T. Then

f ∈ Bs
p,q(T, X), f̂(k) = y and f̂(n) = 0 when n 6= k. There exists u ∈
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Sp,q,s(A,M) such that

(3.4) (Mu′)′(t) = Au(t) + f(t)

for almost all t ∈ T by assumption. We remark that f, Au, u, u′, Mu′ and
(Mu′)′ are elements of Lp(T, X) as Bs

p,q(T, X) ⊂ Lp(T, X) (here we have
used the assumption that s > 0), so their Fourier transforms make sense.
We have û(n) ∈ D(A) for all n ∈ Z by [1, Lemma 3.1]. Therefore

(3.5) [(Mu′)′]∧(n) = in[Mu′]∧(n) = inM(u′)∧(n) = −n2Mû(n)

for n ∈ Z by the closedness of M and [1, Lemma 3.1]. Taking Fourier
transforms on both sides of (3.4), and using the closedness of A and (3.5),
we obtain

(3.6) (−k2M −A)û(k) = y

and (−n2M − A)û(n) = 0 when n 6= k. Thus −k2M − A is surjective. We
are going to show that it is also injective. Assume that x ∈ D(A) satisfies
(−k2M − A)x = 0, so −k2Mx = Ax. Let u(t) = eiktx for t ∈ T. Then
u ∈ Sp,q,s(A,M) as x ∈ D(A) ⊂ D(M). It is clear that (Mu′)′(t) = Au(t)
for almost all t ∈ T. Hence x = 0 by the uniqueness assumption. We have
shown that −k2M −A is bijective from D(A) to X.

Next, we show that (−k2M − A)−1 ∈ L(X). For f(t) = eikty, we let
u ∈ Sp,q,s(A,M) be the unique strong Bs

p,q-solution of (P2). Then by (3.6),

û(n) =

{
0, n 6= k,

(−k2M −A)−1y, n = k.

This implies that u(t) = eikt(−k2M−A)−1y. By (3.1), there exists a constant
C > 0, independent of y and k, such that

‖u‖Bsp,q + ‖u′‖Bsp,q + ‖Mu′‖Bsp,q + ‖(Mu′)′‖Bsp,q + ‖Au‖Bsp,q ≤ C‖f‖Bsp,q .

This implies that ‖(k2M + A)−1‖ ≤ C. We have shown that ik ∈ ρM (A)
whenever k ∈ Z. Thus iZ ⊂ ρM (A).

Finally, we show that if Nk = k2M(k2M +A)−1 for k ∈ Z, then (Nk)k∈Z
defines a Bs

p,q-Fourier multiplier. Let f ∈ Bs
p,q(T, X). Then by assumption

there exists u ∈ Sp,q,s(A,M) which is the unique strong Bs
p,q-solution of (P2).

Taking Fourier transforms on both sides of (P2), we find that û(k) ∈ D(A)
for all k ∈ Z by [1, Lemma 3.1], and

(−k2M −A)û(k) = f̂(k) (k ∈ Z)

by (3.5). Since −k2M −A is invertible, we have û(k) = (−k2M −A)−1f̂(k).
By (3.5),

((Mu′)′)∧(k) = −k2Mû(k) = −Nkf̂(k) (k ∈ Z).

Hence (Nk)k∈Z defines a Bs
p,q-Fourier multiplier as (Mu′)′ ∈ Bs

p,q(T, X).
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The following result gives a sufficient condition for (P2) to be Bs
p,q-well-

posed.

Theorem 3.6. Let X be a Banach space, 1 ≤ p, q ≤ ∞, s > 0 and A, M
be closed linear operators in X satisfying D(A) ⊂ D(M). Assume that iZ ⊂
ρM (A) and the sets {k(k2M+A)−1 : k ∈ Z} and {k2M(k2M+A)−1 : k ∈ Z}
are bounded. Then (P2) is Bs

p,q-well-posed.

Proof. Let Nk = k2M(k2M + A)−1 and Sk = k(k2M + A)−1 for k ∈ Z.
Then {Nk : k ∈ Z} and {Sk : k ∈ Z} are bounded by assumption. We claim
that (Nk)k∈Z defines a Bs

p,q-Fourier multiplier. In view of Theorem 3.3, it is

sufficient to show that {k(Nk+1−Nk) : k ∈ Z} and {k2(Nk+2−2Nk+1+Nk) :
k ∈ Z} are bounded. The proof that the former set is bounded is the same
as in the proof of Theorem 2.8.

Let Hk = (k2M +A)−1 ∈ L(X). Then Nk = k2MHk and Sk = kHk. We
again have the equality

Hk+1 −Hk = −(2k + 1)HkMHk+1.(3.7)

By the proof of Theorem 2.8,

Nk+1 −Nk = (2k + 1)MHk+1 − k2(2k + 1)MHkMHk+1 =: Ak −Bk.

To show that {k2(Nk+2− 2Nk+1 +Nk) : k ∈ Z} is bounded, it will suffice to
show that both {k2(Ak+1 − Ak) : k ∈ Z} and {k2(Bk+1 − Bk) : k ∈ Z} are
bounded. By (3.7) we have

k2(Ak+1 −Ak) = k2(2k + 3)MHk+2 − k2(2k + 1)MHk+1

= 2k2MHk+2 + k2(2k + 1)M(Hk+2 −Hk+1)

=
2k2

(k + 2)2
Nk+2 −

k2(2k + 1)(2k + 3)

(k + 1)2(k + 2)2
Nk+1Nk+2,

which is clearly uniformly bounded in k ∈ Z by assumption. On the other
hand, again by (3.7),

k2(Bk+1 −Bk) = k2(k + 1)2(2k + 3)MHk+1MHk+2(3.8)

− k4(2k + 1)MHkMHk+1

= k2(6k2 + 8k + 3)MHk+1MHk+2

+ k4(2k + 1)M [Hk+1MHk+2 −HkMHk+1].

The first term is just k2(6k2+8k+3)
(k+1)2(k+2)2

Nk+1Nk+2, so it is uniformly bounded in

k ∈ Z by assumption. To estimate the second term, by (3.7) we have

Hk+1MHk+2−HkMHk+1 = Hk+1M(Hk+2 −Hk+1)+(Hk+1 −Hk)MHk+1

= −(2k + 3)Hk+1MHk+1MHk+2

− (2k + 1)HkMHk+1MHk+1.
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Therefore, the second term in (3.8) is just

−k
4(2k + 3)(2k + 1)

(k + 1)4(k + 2)2
N2
k+1Nk+2 −

k2(2k + 1)2

(k + 1)4
NkN

2
k+1,

which is uniformly bounded in k ∈ Z by assumption. It follows that the set
{k2(Nk+2−2Nk+1+Nk) : k ∈ Z} is bounded. Thus (Nk)k∈Z is a Bs

p,q-Fourier
multiplier by Theorem 3.3.

Now, we show that (Sk)k∈Z is also a Bs
p,q-Fourier multiplier. It is sufficient

to show that {k(Sk+1 − Sk) : k ∈ Z} and {k2(Sk+2 − 2Sk+1 + Sk) : k ∈ Z}
are bounded by Theorem 3.3. The proof for the former set is the same as in
the proof of Theorem 2.8. We know from that proof that

Sk+1 − Sk = Hk+1 − k(2k + 1)Hk+1MHk

for all k ∈ Z. By (3.7) we have

k2(Hk+2 −Hk+1) = −k2(2k + 3)Hk+1MHk+2

= − k2(2k + 3)

(k + 2)2(k + 1)
Sk+1Nk+2,

which is uniformly bounded in k ∈ Z. On the other hand, again by (3.7),

k2[(k + 1)(2k + 3)Hk+2MHk+1 − k(2k + 1)Hk+1MHk]

= k2(4k + 3)Hk+2MHk+1 + k3(2k + 1)[Hk+2MHk+1 −Hk+1MHk]

= k2(4k + 3)Hk+2MHk+1 + k3(2k + 1)(Hk+2 −Hk+1)MHk+1

+ k3(2k + 1)Hk+1M(Hk+1 −Hk)

= k2(4k + 3)Hk+2MHk+1 − k3(2k + 1)(2k + 3)Hk+1MHk+2MHk+1

− k3(2k + 1)2Hk+1MHkMHk+1

=
k2(4k + 3)

(k + 2)(k + 1)2
Sk+2Nk+1 −

k3(2k + 1)(2k + 3)

(k + 1)3(k + 2)2
Sk+1Nk+2Nk+1

− k(2k + 1)2

(k + 1)3
Sk+1NkNk+1,

which is uniformly bounded in k ∈ Z by assumption. We have shown that
the set {k2(Sk+2 − 2Sk+1 + Sk) : k ∈ Z} is bounded. Thus (Sk)k∈Z is a
Bs
p,q-Fourier multiplier by Theorem 3.3.

Let Tk = −ikM(k2M + A)−1 for k ∈ Z. Then (Tk)k∈Z is also
a Bs

p,q-Fourier multiplier. This follows easily from the fact that (Nk)k∈Z
is a Bs

p,q-Fourier multiplier and from Remarks 3.4.
Now we are going to show that (P2) is Bs

p,q-well-posed. Since (Nk)k∈Z is
a Bs

p,q-Fourier multiplier, for all f ∈ Bs
p,q(T, X) there exists u ∈ Bs

p,q(T, X)

satisfying û(k) = Nkf̂(k) for all k ∈ Z. Using the identity

IX = k2M(k2M +A)−1 +A(k2M +A)−1,
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we deduce that

û(k) = k2M(k2M +A)−1f̂(k) = (IX −A(k2M +A)−1)f̂(k).

Thus (u−f)∧(k) = −A(k2M+A)−1f̂(k). Let v = u−f . Then v ∈ Bs
p,q(T, X)

and v̂(k) = −A(k2M + A)−1f̂(k). We notice that A−1 is an isomorphism
from X onto D(A) as 0 ∈ ρM (A) by assumption; here we consider D(A) as
a Banach space equipped with its graph norm. It follows that A−1v̂(k) =

−(k2M +A)−1f̂(k). Put w = A−1v. Then w ∈ Bs
p,q(T, D(A)), ŵ(k) ∈ D(A)

and ŵ(k) = −(k2M +A)−1f̂(k). We have

ikŵ(k) = −ik(k2M +A)−1f̂(k) = −iSkf̂(k),

so w ∈ Bs+1
p,q (T, X) as (Sk)k∈Z is a Bs

p,q-Fourier multiplier. We have shown

that w ∈ Bs+1
p,q (T, X)∩Bs

p,q(T, D(A)) and (w′)∧(k) = −ik(k2M +A)−1f̂(k).
Now,

M(w′)∧(k) = −ikM(k2M +A)−1f̂(k) = Tkf̂(k).

Thus w′ ∈ Bs
p,q(T, D(M)) or equivalently Mw′ ∈ Bs

p,q(T, X) as (Tk)k∈Z is a
Bs
p,q-Fourier multiplier. From this we deduce that

ik(Mw′)∧(k) = −k2M(k2M +A)−1f̂(k) = −Nkf̂(k).

Thus Mw′ ∈ Bs+1
p,q (T, X) and [(Mw′)′]∧(k) = −Nkf̂(k). Here we have used

(3.5) and the fact that (Nk)k∈Z is a Bs
p,q-Fourier multiplier. We have shown

that w ∈ Sp,q,s(A,M) and

[(Mw′)′]∧(k)−Aŵ(k) = −(k2M +A)(k2M +A)−1f̂(k) = f̂(k)

for k ∈ Z. It follows that (Mw′)′(t) = Aw(t) + f(t) a.e. on T by [1]. Thus w
is a strong Bs

p,q-solution of (P2). This shows the existence.
To show the uniqueness, we let u ∈ Sp,q,s(A,M) satisfy (Mu′)′(t)

= Au(t) a.e. on T. Taking Fourier transforms on both sides, one sees by (3.5)
that −k2Mû(k) = Aû(k) for all k ∈ Z, so (k2M+A)−1û(k) = 0 for all k ∈ Z.
Therefore u = 0 as ik ∈ ρM (A) for all k ∈ Z. Thus (P2) is Bs

p,q-well-posed.
The proof is complete.

Remark 3.7. It was shown in [2, Theorem 5.3] that if X is a Banach
space, 1 ≤ p, q ≤ ∞, s > 0 and M = IX , then (P2) is Bs

p,q-well-posed if and

only if iZ ⊂ ρ(A) and the set {k2(k2 + A)−1 : k ∈ Z} is bounded. When
M = IX , we actually have k2(k2M +A)−1 = k2M(k2M +A)−1. Thus under
the only assumption that {k2M(k2M +A)−1 : k ∈ Z} is bounded, we easily
deduce the boundedness of {k(k2M + A)−1 : k ∈ Z}. Hence Theorems 3.5
and 3.6 together recover the result of W. Arendt and S. Q. Bu [2, The-
orem 5.3].

The periodic Hölder continuous function space is a particular case
of the periodic Besov space Bs

p,q(T, X). From [2, Theorem 3.1], we have
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Bα
∞,∞(T, X) = Cαper(T, X) whenever 0 < α < 1, where Cαper(T, X) is the

space of all X-valued functions f defined on T satisfying f(0) = f(2π) and

sup
x 6=y

‖f(x)− f(y)‖
|x− y|α

<∞.

Moreover the norm

‖f‖Cαper := max
t∈T
‖f(t)‖+ sup

x 6=y

‖f(x)− f(y)‖
|x− y|α

on Cαper(T, X) is an equivalent norm on Bα
∞,∞(T, X). If 0 < α < 1, we

say that (P2) is Cαper-well-posed if for every f ∈ Cαper(T, X), there exists a

unique u ∈ Cα+1(T, X) ∩ Cαper(T, D(A)) such that u′ ∈ Cα(T, X), Mu′ ∈
Cα+1(T, X) and (P2) holds true for all t ∈ [0, 2π]. Here Cα+1(T, X) is the
space of all u ∈ C1(T, X) such that u, u′ ∈ Cαper(T, X). Theorem 3.6 has the
following corollary.

Corollary 3.8. Let X be a Banach space, 0 < α < 1, and A, M be
closed linear operators in X satisfying D(A) ⊂ D(M). Assume that iZ ⊂
ρM (A) and the sets {k(k2M+A)−1 : k ∈ Z} are {k2M(k2M+A)−1 : k ∈ Z}
are bounded. Then (P2) is Cα-well-posed.

Remark 3.9. We can introduce the notion of well-posedness of (P2) in
periodic Triebel–Lizorkin spaces F sp,q(T, X) in a similar way. Using operator-
valued Fourier multiplier results on vector-valued periodic Triebel–Lizorkin
spaces established in [5], one can prove a result analogous to Theorem 3.6
for the scale of Triebel–Lizorkin spaces.
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