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Triebel–Lizorkin spaces with non-doubling measures

by

Yongsheng Han (Auburn, AL) and Dachun Yang (Beijing)

Abstract. Suppose that µ is a Radon measure on Rd, which may be non-doubling.
The only condition assumed on µ is a growth condition, namely, there is a constant C0 > 0
such that for all x ∈ supp(µ) and r > 0,

µ(B(x, r)) ≤ C0r
n,

where 0 < n ≤ d. The authors provide a theory of Triebel–Lizorkin spaces Ḟ spq(µ) for
1 < p < ∞, 1 ≤ q ≤ ∞ and |s| < θ, where θ > 0 is a real number which depends on
the non-doubling measure µ, C0, n and d. The method does not use the vector-valued
maximal function inequality of Fefferman and Stein and is new even for the classical case.
As applications, the lifting properties of these spaces by using the Riesz potential operators
and the dual spaces are given.

1. Introduction. Suppose that µ is a Radon measure on Rd, which may
be non-doubling. The only condition we assume on µ is a growth condition,
namely, there is a constant C0 > 0 such that for all x ∈ supp(µ) and r > 0,

(1.1) µ(B(x, r)) ≤ C0r
n,

where 0 < n ≤ d.
Our goal in this paper is to develop a theory of Triebel–Lizorkin spaces

associated to non-doubling measures. The theory of Besov spaces associated
to non-doubling measures has already been established in [4].

It is well known that the doubling property of the underlying measure
is a basic condition in the classical Calderón–Zygmund theory of harmonic
analysis. Recently much attention has been payed to non-doubling measures.
It has been shown that many results of this theory still hold without assum-
ing the doubling property. See [18–21, 25–27, 31, 7, 8] for some results on
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Calderón–Zygmund operators, [17, 28–30] for some other results related to
the spaces BMO(µ) and H1(µ), and [9, 10, 22] for vector-valued inequalities
for Calderón–Zygmund operators and weights.

However, there is still no counterpart of the Fefferman–Stein [5] vector-
valued inequality for the non-centered maximal operator M(%)f(x) defined
by

M(%)f(x) = sup
x∈Q

1
µ(%Q)

�

Q

|f(y)| dµ(y),

where % > 1. Such an inequality was a key tool to develop a theory of
Triebel–Lizorkin spaces on Rd and spaces of homogeneous type. Thus, in
the current circumstances, to develop a theory of Triebel–Lizorkin spaces
with non-doubling measures, we need a new method without using the
Fefferman–Stein inequality. We manage to overcome this difficulty. We re-
mark that although Garćıa-Cuerva and Martell in [10] have already obtained
some counterparts of Fefferman and Stein’s result of [5] for some kind of
vector-valued maximal operators, their inequalities are not suitable for our
purposes.

Another key tool to study the Triebel–Lizorkin spaces (and some other
function spaces) on Rd is the so-called Calderón reproducing formula which
was first proved by Calderón in [1]. This formula says that given any suitable
function ψ, there exists a function φ with similar properties such that

(1.2) f =
∞∑

k=−∞
φk ∗ ψk ∗ f,

where the series converges in both

S∞(Rd) =
{
f ∈ S(Rd) :

�

Rd
xαf(x) dx = 0 for all α ∈ (N ∪ {0})d

}

and S ′(Rd)/P(Rd), where S(Rd) is the space of Schwartz test functions,
and S ′(Rd)/P(Rd) is the Schwartz distribution space modulo the space of
all polynomials. It is well known that S ′(Rd)/P(Rd) is naturally identified
with the dual space of S∞(Rd), S ′∞(Rd); see [6, 23, 33, 34] for more details.

Using Coifman’s ideas, David, Journé and Semmes [3] developed the
Littlewood–Paley theory on spaces of homogeneous type introduced by Coif-
man and Weiss [2]. More precisely, let {Sk}∞k=−∞ be an approximation to
the identity whose kernels {Sk(x, y)}∞k=1 satisfy certain size and regularity
conditions. (See [3] for the construction of this approximation to the iden-
tity. It is worth pointing out that the doubling property plays an important
role in this construction.) Set Dk = Sk − Sk−1. Based on Coifman’s ideas
(see [3] for the details), at least formally, the identity operator I can be
written as
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I =
∞∑

k=−∞
Dk =

( ∞∑

k=−∞
Dk

)( ∞∑

j=−∞
Dj

)
(1.3)

=
∑

|k−j|≤N
DkDj +

∑

|k−j|>N
DkDj = TN +RN .

David, Journé and Semmes proved that if N is large enough, then RN is
bounded on Lp(X), 1 < p <∞, with operator norm less than 1. Thus, they
obtained the following Calderón-type reproducing formulae:

(1.4) f =
∞∑

k=−∞
T−1
N DN

k Dk(f) =
∞∑

k=−∞
DkD

N
k T
−1
N (f),

where T−1
N is the inverse of TN and the series converge in Lp(X), 1 < p <∞.

Using these formulae, they were able to obtain the Littlewood–Paley
theory for Lp(X): There exists a constant C > 0 such that for all f ∈
Lp(X), 1 < p <∞,

C−1‖f‖Lp(X) ≤
∥∥∥
{ ∞∑

k=−∞
|Dk(f)|2

}1/2∥∥∥
Lp(X)

≤ C‖f‖Lp(X).

In [14], using the Littlewood–Paley theory, the Triebel–Lizorkin spaces were
generalized to spaces of homogeneous type. More precisely, Sawyer and the
first author [14] first introduced a test function space M(X), which is also
called smooth molecular space in [11], and approximations to the iden-
tity {Sk}∞k=−∞ whose kernels satisfy all size and regularity conditions as
in Coifman’s construction, and furthermore, a second difference smooth-
ness condition. They then proved that if N is large enough, RN is bounded
on M(X) with operator norm less than 1. Using this fact, Sawyer and
the first author [14] obtained the Calderón reproducing formula. More pre-
cisely, let {Sk}∞k=−∞ be any approximation to the identity defined in [14] and
Dk = Sk−Sk−1 for k ∈ Z. Then there exist families of operators {D̃k}∞k=−∞
and {Dk}∞k=−∞ such that

(1.5) f =
∞∑

k=−∞
D̃kDk(f) =

∞∑

k=−∞
DkDk(f),

where the series converge in the Lp(X) norm, 1 < p <∞, in the norm of the
test function spaceM(X), and in (M(X))∗, the corresponding distribution
space.

Notice that (1.5) is similar to (1.2) and the second difference smoothness
condition plays a crucial role for the proof of (1.5). Thus, the theory of
Triebel–Lizorkin spaces on spaces of homogeneous type can be developed as
in the case of Rd. See [12]–[16] for the details.



108 Y. S. Han and D. C. Yang

The main difficulty in developing a theory of Triebel–Lizorkin spaces
with respect to a non-doubling measure µ which does not have any regu-
larity property, apart from the growth condition (1.1), is the construction
of an approximation to the identity. Recently, Tolsa constructed a “reason-
able” approximation to the identity. More precisely, in [29] he constructed a
sequence {Sk}∞k=−∞ of integral operators given by kernels {Sk(x, y)}∞k=−∞
defined on Rd × Rd, satisfying some appropriate size and regularity condi-
tions, and also �

Rd
Sk(x, y) dµ(y) = 1

for all x ∈ supp(µ) and Sk(x, y) = Sk(y, x) for all k ∈ Z. For each k ∈ Z, set
Dk = Sk − Sk−1. Then, again, based on Coifman’s ideas mentioned above,
and by use of the appropriate size and regularity conditions on Sk(x, y), the
Cotlar–Stein lemma (see [24]) and the Calderón–Zygmund theory associated
to non-doubling measures, Tolsa proved that the Calderón-type reproducing
formula in (1.4) still holds for non-doubling measures. Using this formula,
he was able to produce a theory of Littlewood–Paley associated to non-
doubling measures. However, the size and regularity conditions on Sk(x, y)
given by Tolsa are not enough to obtain a Calderón reproducing formula
similar to (1.5). A crucial observation of this paper (see also [4]) is that if
the norm ‖f‖Ḟ spq(µ) for all L2(µ) functions f is defined by

‖f‖Ḟ spq(µ) =
∥∥∥
{ ∞∑

k=−∞
2skq|Dk(f)|q

}1/q∥∥∥
Lp(µ)

<∞,

where {Dk}∞k=−∞ are as in Tolsa’s Calderón-type reproducing formula, then
RN in (1.3) is bounded with respect to this norm and its operator norm
is less than 1 if N is large enough. Hence, T−1

N is bounded with respect to
this norm. This observation leads to introduce a new “test function space”
defined by

Ḟsp,q(µ) = {f ∈ L2(µ) : ‖f‖Ḟ spq(µ) <∞}.
We will prove that the Calderón-type reproducing formulae (1.4) with Tol-
sa’s approximations to the identity hold for the test function space Ḟsp,q(µ).

To show that the formulae (1.4) still hold in the distribution space
(Ḟsp,q(µ))∗ (as they do for spaces of homogeneous type), a second differ-
ence smoothness estimate of the approximation to the identity is needed.
See [4] for similar formulae associated to Besov spaces Ḃs

pq(µ).
The plan of this paper is the following. In the next section, we will show

that the operator T−1
N is bounded with respect to the norm ‖ · ‖Ḟ spq(µ). To

this end, we first prove that RN in (1.3) is bounded with respect to this
norm with small operator norm; see Theorem 1 below. The duality method
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and the technique of the proof of the Cotlar–Stein lemma (see [24]) are
the key to the proof of Theorem 1. The main result of this section is the
Calderón-type reproducing formulae in the distribution space (Ḟsp,q(µ))∗ (see
Theorem 2). In Section 3, we introduce the Triebel–Lizorkin spaces Ḟ spq(µ)
and give some of their applications. Specifically, we study the boundedness
of Riesz potential operators on these spaces, and using them, we prove that
these spaces have lifting properties. Finally, we consider their dual spaces.
We point out that using the Littlewood–Paley theory of Tolsa [29], together
with our result, it is easy to see that Ḟ 0

p2(µ) = Lp(µ) if 1 < p < ∞. Thus,
our Triebel–Lizorkin spaces Ḟ spq(µ) generalize Lp(µ) spaces.

Throughout the paper, the letter C is used for non-negative constants
that may change from one occurrence to another. Constants with subscripts,
such as C0, do not change in different occurrences. The notation A ∼ B
means that there is some constant C > 0 such that C−1A ≤ B ≤ CA.
For any index q ∈ [1,∞], we denote by q′ the conjugate index, that is,
1/q + 1/q′ = 1. We also denote N ∪ {0} by Z+.

2. Calderón-type reproducing formulae. Throughout this section,
all definitions and notation are as in Tolsa [29]; see also [30]. To introduce
an approximation to the identity for non-doubling measures, we need the
following lemma.

Lemma 1. There exist a sequence {Sk}∞k=−∞ of operators with kernels
Sk(x, y) defined on Rd×Rd such that for each k ∈ Z the following properties
hold :

(a) Sk(x, y) = Sk(y, x).
(b) � Rd Sk(x, y) dµ(y) = 1 for x ∈ supp(µ).
(c) If Qx,k is a transit cube (see Definition 3.4 in [29, p. 67]), then

supp(Sk(x, ·)) ⊂ Qx,k−1.
(d) If Qx,k and Qy,k are transit cubes, then

0 ≤ Sk(x, y) ≤ C

(`(Qx,k) + `(Qy,k) + |x− y|)n .

(e) If Qx,k, Qx′,k, Qy,k are transit cubes, and x, x′ ∈ Qx0,k for some
x0 ∈ supp(µ), then

|Sk(x, y)− Sk(x′, y)| ≤ C |x− x
′|

`(Qx0,k)
1

(`(Qx,k) + `(Qy,k) + |x− y|)n .

(f) If Qx,k, Qx′,k, Qy,k and Qy′,k are transit cubes, x, x′ ∈ Qx0,k and
y, y′ ∈ Qy0,k for some x0, y0 ∈ supp(µ), then
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|[Sk(x, y)− Sk(x′, y)]− [Sk(x, y′)− Sk(x′, y′)]|

≤ C |x− x
′|

`(Qx0,k)
|y − y′|
`(Qy0,k)

1
(`(Qx,k) + `(Qy,k) + |x− y|)n .

This lemma basically belongs to Tolsa who constructed {Sk}∞k=−∞ and
proved they satisfy (a)–(e) in [29]. The fact that they satisfy (f) was proved
in [4].

Definition 1. A sequence of operators, {Sk}k∈Z, is said to be an ap-
proximation to the identity associated to a non-doubling measure µ if the
kernels of {Sk}k∈Z, {Sk(x, y)}k∈Z, satisfy conditions (a)–(f) of Lemma 1.

Now, let {Sk}k∈Z be an approximation to the identity as in Definition 1
and set Dk = Sk−Sk−1 for k ∈ Z. Following [3] and [29], based on Coifman’s
idea, we can write

(2.1) I = TN +RN ,

where TN =
∑
|k−j|≤N DkDj and RN =

∑
|k−j|>N DkDj.

If we set DN
k =

∑
|j|≤N Dk for k ∈ Z, then we can also write

TN =
∑

k∈Z
DN
k Dk.

In what follows, unless explicitly stated otherwise, the following nota-
tions and assumptions will be used throughout the paper:

• {Sk}k∈Z, {Ak}k∈Z and {Pk}k∈Z are approximations to the identity as
in Definition 1.
• Dk = Sk − Sk−1, Gk = Ak − Ak−1 and Ek = Pk − Pk−1 for k ∈ Z.
• 1 < p <∞, 1 ≤ q ≤ ∞.
• θ is half the maximum η such that Lemma 3.4 in [29] (see also Lemma

6.3 in [30]) holds. It is easy to see that θ depends on C0, µ, n and d.
• |s| < θ.
• TN and RN are as in (2.1).

As mentioned in the introduction, the following result is a crucial obser-
vation of this paper.

Theorem 1. For all f ∈ L2(µ) and ν ∈ (0, 1/2) such that |s| < 2νθ,

(2.2)
∥∥∥
{ ∞∑

j=−∞
2jsq|EjRNf |q

}1/q∥∥∥
Lp(µ)

≤ C1(2−N(s+2νθ) + 2−N(2νθ−s))
∥∥∥
{ ∞∑

k=−∞
2ksq|Gkf |q

}1/q∥∥∥
Lp(µ)

with C1 independent of N , f , and ν; moreover , if we choose N ∈ N such
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that

(2.3) C1(2−N(s+2νθ) + 2−N(2νθ−s)) < 1,

then for all f ∈ L2(µ),

(2.4)
∥∥∥
{ ∞∑

j=−∞
2jsq|EjT−1

N f |q
}1/q∥∥∥

Lp(µ)
≤ C

∥∥∥
{ ∞∑

k=−∞
2ksq|Gkf |q

}1/q∥∥∥
Lp(µ)

,

where C is independent of f .

To show Theorem 1, we recall that if % > 1, then M(%) is bounded on
Lp(µ), 1 < p < ∞, and of weak type (1, 1); see [28, pp. 126–127]. The
following lemma states the basic properties of the composition of two ap-
proximations to the identity.

Lemma 2. The following assertions are true.

(i) supp(EjDk)(x, ·)⊂Qx,min(j,k)−3 and supp(EjDk)(·, y)⊂Qy,min(j,k)−3
for all j, k ∈ Z and all x, y ∈ supp(µ).

(ii) For all x, y ∈ supp(µ) and all j, k ∈ Z,

|(EjDk)(x, y)| ≤ C2−2|j−k|θ 1
(`(Qx,min(j,k)+1) + `(Qy,min(j,k)+1) + |x− y|)n .

(iii) For p ∈ [1,∞], j, k ∈ Z, and all x ∈ X,

‖EjDk‖Lp(µ)→Lp(µ) ≤ C22−2|j−k|θ, ‖(EjDk)(x, ·)‖L1(µ) ≤ C22−2|j−k|θ,

and
‖(EjDk)(·, x)‖L1(µ) ≤ C22−2|j−k|θ,

where C2 > 0 is a constant depending on p, but not on j and k.
(iv) For all f ∈ L2

c(µ) and all x ∈ supp(µ),

|(EjDk)f(x)| ≤ C32−2|j−k|θM(2)f(x),

where C3 > 0 is independent of j, k, f and x.

Proof. The proof is essentially contained in the proof of Lemma 6.1 in
[29]; see also [4] for some details. For the reader’s convenience, let us show
(iv), whose proof is similar to that of Remark 8.1 in [29].

Let N0 be the smallest integer such that Qx,min(j,k)−3 ⊂ 2N0Qx,min(j,k)+1.
Then Lemma 3.1 in [29] and the definition of Qx,k in [29] tell us that

δ(Qx,min(j,k)+1, 2
N0+1Qx,min(j,k)+1)

= δ(Qx,min(j,k)+1, Qx,min(j,k)−3) + δ(Qx,min(j,k)−3, 2
N0+1Qx,min(j,k)+1)

= 4A± ε1 + δ(Qx,k−3, 2N0+1Qx,k) ≤ C.
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This fact and (ii) imply that for all f ∈ L2
c(µ) and all x ∈ supp(µ), if we

write Q1 = Qx,min(j,k)+1 for brevity, then

|(EjDk)f(x)| =
∣∣∣

�

Qx,min(j,k)−3

(EjDk)(x, y)f(y) dµ(y)
∣∣∣

≤ C2−2|j−k|θ
[ �

Q1

1
`(Q1)n

|f(y)| dµ(y)

+
N0∑

j=1

�

2jQ1\2j−1Q1

1
|x− y|n |f(y)| dµ(y)

]

≤ C2−2|j−k|θ
[
µ(2Q1)
`(Q1)n

1
µ(2Q1)

�

Q1

|f(y)| dµ(y)

+
N0∑

j=1

µ(2j+1Q1)
`(2j+1Q1)n

1
µ(2j+1Q1)

�

2jQ1

|f(y)| dµ(y)
]

≤ C2−2|j−k|θ[1 + δ(Q1, 2N0+1Q1)]M(2)f(x)

≤ C32−2|j−k|θM(2)f(x),

where, in the third-to-last inequality, we used some equivalent definition of
δ(Q,P ); see [28]. This is the desired estimate.

Before we return to the proof of Theorem 1, we observe that by a result
of Tolsa [29], if N is large enough, then for all f ∈ L2(µ), we have

(2.5) f =
∑

k∈Z
T−1
N DN

k Dk(f) =
∑

k∈Z
DN
k DkT

−1
N (f)

in the norm of L2(µ). In fact, T−1
N is bounded on Lp(µ) with 1 < p < ∞.

The formula (2.5) is called the Calderón-type reproducing formula. See [29]
for more details.

We now write T−1
N as

(2.6) T−1
N =

∞∑

l=0

(RN )l

in the operator norm of L2(µ), and for l ∈ N,

(2.7) (RN )l =
∑

|k1−j1|>N
Dk1Dj1

∑

|k2−j2|>N
Dk2Dj2 . . .

∑

|kl−jl|>N
DklDjl

also in the operator norm of L2(µ).
Using Lemma 2, we can verify the following lemma.
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Lemma 3. Let {fk}k∈Z be a sequence of measurable functions. For j ∈ Z
and N,N1 ∈ N, let

(2.8) Hj({fk}∞k=−∞)(x)

=
∞∑

l=0

∞∑

k=−∞

∞∑

i=−∞

∑

|m|>N

∞∑

k1=−∞

∑

|m1|>N1

. . .

∞∑

kl=−∞

×
∑

|ml|>N1

EjDiDi+mGk1Gk1+m1 . . .GklGkl+mlG
N1
k fk(x)

for x ∈ supp(µ). Let 1 ≤ q < p <∞ and ν ∈ (0, 1/2) be such that |s| < 2νθ.
Then there is a constant C1 > 0 such that for all {fk}k∈Z, all N ∈ N and
all N1 ∈ N large enough (depending on C2, C3, s, ν and θ),

(2.9)
∥∥∥
{ ∞∑

j=−∞
2jsq|Hj({fk}∞k=−∞)|q

}1/q∥∥∥
Lp(µ)

≤ C1(2−N(s+2νθ) + 2−N(2νθ−s))
∥∥∥
{ ∞∑

k=−∞
2ksq|fk|q

}1/q∥∥∥
Lp(µ)

.

Proof. For j ∈ Z and l ∈ Z+, let

H l
j({fk}∞k=−∞)(x)

=
∑

k,i,m,{kt,mt}l1

EjDiDi+mGk1Gk1+m1 . . . GklGkl+mlG
N1
k fk(x),

where

∑

k,i,m,{kt,mt}l1

=
∞∑

k=−∞

∞∑

i=−∞

∑

|m|>N

∞∑

k1=−∞

∑

|m1|>N1

. . .

∞∑

kl=−∞

∑

|ml|>N1

(we also use similar abbreviations for multiple sums below). Then the Min-
kowski inequality tells us that

(2.10)
∥∥∥
{ ∞∑

j=−∞
2jsq|Hj({fk}∞k=−∞)|q

}1/q∥∥∥
Lp(µ)

≤
∞∑

l=0

∥∥∥
{ ∞∑

j=−∞
2jsq|H l

j({fk}∞k=−∞)|q
}1/q∥∥∥

Lp(µ)
.

Let r = p/q. Then r > 1. For g ∈ Lr
′
(µ) with g ≥ 0, the Hölder and

Minkowski inequalities yield
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�

Rd

∞∑

j=−∞
2jsq|H l

j({fk}∞k=−∞)(x)|qg(x) dµ(x)

≤
∞∑

j=−∞
2jsq

�

Rd

{ ∑

k,i,m,{kt,mt}l1

×
[ �

Rd
|EjDiDi+mGk1Gk1+m1 . . . GklGkl+mlG

N1
k (x, y)| dµ(y)

]1/q′

×
[ �

Rd
|EjDiDi+mGk1Gk1+m1 . . . Gkl

×Gkl+mlGN1
k (x, y)| |fk(y)|q dµ(y)

]1/q}q
g(x) dµ(x)

≤
∞∑

j=−∞
2jsq

�

Rd

[ ∑

k,i,m,{kt,mt}l1

2−ks
�

Rd
|EjDiDi+mGk1Gk1+m1 . . .Gkl

×Gkl+mlGN1
k (x, y)| dµ(y)

]q/q′

×
[ ∑

k,i,m,{kt,mt}l1

2−ks
�

Rd
|EjDiDi+mGk1Gk1+m1 . . . GklGkl+mlG

N1
k (x, y)|

× 2ksq|fk(y)|q dµ(y)
]
g(x) dµ(x).

By using a technique used in the proof of the Cotlar–Stein lemma (see [24])
and Lemma 2, we find that there is a constant C2 > 0 such that

(2.11) ‖EjDiDi+mGk1Gk1+m1 . . . GklGkl+mlG
N1
k (x, ·)‖L1(µ)

= ‖(EjDi)(Di+mGk1)(Gk1+m1Gk2) . . . (Gkl+mlG
N1
k (x, ·))‖L1(µ)

≤ CN1C
l
22−2θ[|j−i|+|i+m−k1|+...+|kl+ml−k|]

and

(2.12) ‖EjDiDi+mGk1Gk1+m1 . . . GklGkl+mlG
N1
k (x, ·)‖L1(µ)

= ‖Ej(DiDi+m)(Gk1Gk1+m1) . . . (GklGkl+ml)G
N1
k (x, ·)‖L1(µ)

≤ CN1C
l
22−2θ[|m|+|m1|+...+|ml|],

where we also used the fact that ‖Ej(x, ·)‖L1(µ) ≤ C uniformly in j and

‖GN1
k (z, ·)‖L1(µ) ≤ CN1

uniformly in k with C independent of N1. The geometric mean of (2.11) and



Triebel–Lizorkin spaces 115

(2.12) yields

(2.13) ‖EjDiDi+mGk1Gk1+m1 . . . GklGkl+mlG
N1
k Gkf(x, ·)‖L1(µ)

≤ CN1C
l
22−2θ(1−ν)[|j−i|+|i+m−k1|+...+|kl+ml−k|]

× 2−2θν[|m|+|m1|+...+|ml|].

From (2.13), it follows that
∑

k,i,m,{kt,mt}l1

2−ks
�

Rd
|EjDiDi+mGk1Gk1+m1 . . .GklGkl+mlG

N1
k (x, y)| dµ(y)

≤ CN1C
l
2

∑

k,i,m,{kt,mt}l1

2−2θ(1−ν)[|j−i|+|i+m−k1|+...+|kl+ml−k|]

× 2−2θν[|m|+|m1|+...+|ml|].

We now first sum over k and next over ml; then we can estimate the last
quantity in the above inequality by

≤ CN1C
l
2

∑

i,m,{kt,mt}l−1
1 ,kl

2−kls

×
∑

|ml|>N1

2−mls
∞∑

k=−∞
2−2θ(1−ν)[|j−i|+|i+m−k1|+...+|kl+ml−k|]2(ml+kl−k)s

× 2−2θν[|m|+|m1|+...+|ml|]

≤ CN1C
l
2(2−N1(s+2νθ) + 2−N1(2νθ−s))

×
∑

i,m,{kt,mt}l−1
1 ,kl

2−2θ(1−ν)[|j−i|+|i+m−k1|+...+|kl−1+ml−1−kl|]

× 2−2θν[|m|+|m1|+...+|ml−1|].

Repeating this process l + 1 times, we finally obtain

(2.14)
∑

k,i,m,{kt,mt}l1

2−ks

×
�

Rd
|EjDiDi+mGk1Gk1+m1 . . .GklGkl+mlG

N1
k (x, y)| dµ(y)

≤ CN1(2−N(s+2νθ) + 2−N(2νθ−s))

× (CC2)l(2−N1(s+2νθ) + 2−N1(2νθ−s))l2−js.

From (2.14), it follows that
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(2.15)
�

Rd

∞∑

j=−∞
2jsq|H l

j({fk}∞k=−∞)(x)|qg(x) dµ(x)

≤ [CN1(2−N(s+2νθ) + 2−N(2νθ−s))

× (CC2)l(2−N1(s+2νθ) + 2−N1(2νθ−s))l]q/q
′

×
∑

j,k,i,m,{kt,mt}l1

2(j−k)s

×
�

Rd

[ �

Rd
|EjDiDi+mGk1Gk1+m1 . . . GklGkl+mlG

N1
k (x, y)|

× g(x) dµ(x)
]
2ksq|fk(y)|q dµ(y).

Lemma 2 and the trivial estimate

(2.16) |f(x)| ≤ CM(2)f(x)

yield

(2.17)
�

Rd
|EjDiDi+mGk1Gk1+m1 . . .GklGkl+mlG

N1
k (x, y)|g(x) dµ(x)

=
�

Rd
|(EjDi)(Di+mGk1)(Gk1+m1Gk2) . . . (Gkl+mlG

N1
k )(x, y)|g(x) dµ(x)

≤ CN1C
l
32−2θ[|j−i|+|i+m−k1|+|k1+m1−k2|+...+|kl−1+ml−1−kl|+|kl+ml−k|]

×M l+3
(2) (g)(y)

and

(2.18)
�

Rd
|EjDiDi+mGk1Gk1+m1 . . .GklGkl+mlG

N1
k (x, y)|g(x) dµ(x)

=
�

Rd
|Ej(DiDi+m)(Gk1Gk1+m1) . . . (GklGkl+ml)G

N1
k (x, y)|g(x) dµ(x)

≤ CN1C
l
32−2θ[|m|+|m1|+...+|ml−1|+|ml|]M l+3

(2) (g)(y),

where M l+3
(2) = M(2) ◦ . . . ◦M(2)︸ ︷︷ ︸

l+3 times

for l ∈ N, and we have also used the estimate

|Ejf(x)| ≤ CM(2)f(x)

and
|[|GN1

k |]∗f(x)| ≤ CN1M(2)f(x),

which can be proved similarly to Lemma 2(iv); see also Remark 8.1 in [29].
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Let ν be as in the theorem. The geometric mean of (2.17) and (2.18)
yields

(2.19)
�

Rd
|EjDiDi+mGk1Gk1+m1 . . .GklGkl+mlG

N1
k (x, y)|g(x) dµ(x)

≤ CN1C
l
32−2θ(1−ν)[|j−i|+|i+m−k1|+|k1+m1−k2|+...+|kl−1+ml−1−kl|]

× 2−2θ(1−ν)|kl+ml−k|2−2θν[|m|+|m1|+...+|ml−1|+|ml|]M l+3
(2) (g)(y).

Inserting (2.19) into (2.15) leads to

�

Rd

∞∑

j=−∞
2jsq|H l

j({fk}∞k=−∞)(x)|qg(x) dµ(x)

≤ [CN1(2−N(s+2νθ) + 2−N(2νθ−s))

× (CC2)l(2−N1(s+2νθ) + 2−N1(2νθ−s))l]q/q
′

× CN1C
l
3

∑

k,j,i,m,{kt,mt}l1

2(j−k)s

× 2−2θ(1−ν)[|j−i|+|i+m−k1|+|k1+m1−k2|+...+|kl−1+ml−1−kl|+|kl+ml−k|]

× 2−2θν[|m|+|m1|+...+|ml−1|+|ml|]
�

Rd
M l+3

(2) (g)(y)2ksq|fk(y)|q dµ(y).

If we sum first over j, then over i and finally over m, then the last term is
dominated by

≤ [CN1(2−N(s+2νθ) + 2−N(2νθ−s))(CC2)l(2−N1(s+2νθ) + 2−N1(2νθ−s))l]q/q
′

× CN1C
l
3(2−N(s+2νθ) + 2−N(2νθ−s))

∑

k,{kt,mt}l1

2(k1−k)s

× 2−2θ(1−ν)[|k1+m1−k2|+...+|kl−1+ml−1−kl|+|kl+ml−k|]

× 2−2θν[|m1|+...+|ml−1|+|ml|]
�

Rd
M l+3

(2) (g)(y)2ksq|fk(y)|q dµ(y).

Repeating this procedure l times by the Hölder inequality we obtain

�

Rd

∞∑

j=−∞
2jsq|H l

j({fk}∞k=−∞)(x)|qg(x) dµ(x)

≤ [CN1(2−N(s+2νθ) + 2−N(2νθ−s))

× (CC2)l(2−N1(s+2νθ) + 2−N1(2νθ−s))l]q/q
′
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× CN1(2−N(s+2νθ) + 2−N(2νθ−s))(CC3)l(2−N1(s+2νθ) + 2−N1(2νθ−s))l

×
�

Rd
M l+3

(2) (g)(y)
{ ∞∑

k=−∞
2ksq|fk(y)|q

}
dµ(y)

≤ CN1(2−N(s+2νθ) + 2−N(2νθ−s))qC lq1 (2−N1(s+2νθ) + 2−N1(2νθ−s))lq

× ‖M l+3
(2) (g)‖Lr′(µ)

∥∥∥
{ ∞∑

k=−∞
2ksq|fk|q

}1/q∥∥∥
q

Lp(µ)

≤ CN1(2−N(s+2νθ) + 2−N(2νθ−s))qC lq1 (2−N1(s+2νθ) + 2−N1(2νθ−s))lq

× ‖g‖Lr′(µ)

∥∥∥
{ ∞∑

k=−∞
2ksq|fk|q

}1/q∥∥∥
q

Lp(µ)
,

where, in the second-to-last inequality, we used the Lr
′
(µ)-boundedness of

M(2) and we let C1 = C max{C2, C3}; see [28]. Taking the infimum over
g ∈ Lr′(µ) with ‖g‖Lr′(µ) ≤ 1 yields

∥∥∥
{ ∞∑

j=−∞
2jsq|H l

j({fk}∞k=−∞)|q
}1/q∥∥∥

Lp(µ)

≤ CN1(2−N(s+2νθ) + 2−N(2νθ−s))C l1(2−N1(s+2νθ) + 2−N1(2νθ−s))l

×
∥∥∥
{ ∞∑

k=−∞
2ksq|fk|q

}1/q∥∥∥
Lp(µ)

.

Combining this with (2.10), we finally obtain
∥∥∥
{ ∞∑

j=−∞
2jsq|Hj({fk}∞k=−∞)|q

}1/q∥∥∥
Lp(µ)

≤ CN1(2−N(s+2νθ) + 2−N(2νθ−s))
{ ∞∑

l=0

C l1(2−N1(s+2νθ) + 2−N1(2νθ−s))l
}

×
∥∥∥
{ ∞∑

k=−∞
2ksq|fk|q

}1/q∥∥∥
Lp(µ)

≤ C1(2−N(s+2νθ) + 2−N(2νθ−s))
∥∥∥
{ ∞∑

k=−∞
2ksq|fk|q

}1/q∥∥∥
Lp(µ)

,

where C1 is a constant independent of N and {fk}k∈Z, and we chose N1 ∈ N
large enough such that

C1(2−N1(s+2νθ) + 2−N1(2νθ−s)) < 1.

This completes the proof of Lemma 3.
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Proof of Theorem 1. We first verify (2.2). If 1 ≤ p = q ≤ ∞, then (2.2)
was proved in [4]. If 1 ≤ q < p < ∞, then Lemma 3 tells us that (2.2) in
this case is also true.

We now suppose 1 < p < q ≤ ∞. Recall that if 1 < p ≤ ∞ and
0 < q ≤ ∞, then

(2.20) (Lp
′
(lq
′
)(µ))∗ = Lp(lq)(µ)

(see Proposition 2.11.1 in [33, p. 177]; the proof there is also valid for
any non-doubling measure). Moreover, Lp(lq)(µ) is the set of all sequences
{fk}∞k=−∞ of measurable functions such that

‖{fk}∞k=−∞‖Lp(lq)(µ) =
∥∥∥
{ ∞∑

k=−∞
|fk|q

}1/q∥∥∥
Lp(µ)

<∞.

Let {gk}∞k=−∞ ∈ Lp
′
(lq
′
)(µ) with ‖{gk}∞k=−∞‖Lp′ (lq′)(µ) ≤ 1. Then

(2.21)
∥∥∥
{ ∞∑

j=−∞
2jsq|EjRNf |q

}1/q∥∥∥
Lp(µ)

= sup
∣∣∣
∞∑

j=−∞
2js

�

Rd
(EjRNf)(x)gj(x) dµ(x)

∣∣∣,

where the supremum is taken over all {gk}∞k=−∞ ∈ Lp
′
(lq
′
)(µ) as above.

The formulae (2.5)–(2.7) tell us that

(EjRNf)(x)

=
∑

l,k,i,m,{kt,mt}l1

EjDiDi+mGk1Gk1+m1 . . . GklGkl+mlG
N1
k Gk(f)(x)

(the sum over l is from 0 to ∞). Thus,

∞∑

j=−∞
2js

�

Rd
(EjRNf)(x)gj(x) dµ(x)

=
∑

k,j,l,i,m,{kt,mt}l1

�

Rd
Gk(f)(x)

× 2jsGN1
k Gkl+mlGkl . . .Gk1+m1Gk1Di+mDiEj(gj)(x) dµ(x).

Noting that 1 < p < q ≤ ∞ implies 1 ≤ q′ < p′ < ∞, by Lemma 3 (and its
proof), (2.20) and the Hölder inequality, we obtain
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∣∣∣
∞∑

j=−∞
2js

�

Rd
(EjRNf)(x)gj(x) dµ(x)

∣∣∣

≤
∥∥∥
{ ∞∑

k=−∞
2ksq|Gk(f)

∣∣∣
q}1/q∥∥∥

Lp(µ)

×
∥∥∥
{ ∞∑

k=−∞
2−ksq

′
∣∣∣

∑

l,j,i,m,{kt,mt}l1

2js

×GN1
k Gkl+mlGkl . . .Gk1+m1Gk1Di+mDiEj(gj)

∣∣∣
q′}1/q′∥∥∥

Lp
′ (µ)

≤ C1(2−N(s+2νθ) + 2−N(2νθ−s))
∥∥∥
{ ∞∑

k=−∞
2ksq|Gk(f)|q

}1/q∥∥∥
Lp(µ)

×
∥∥∥
{ ∞∑

k=−∞
|gk|q

′
}1/q′∥∥∥

Lp
′ (µ)

≤ C1(2−N(s+2νθ) + 2−N(2νθ−s))
∥∥∥
{ ∞∑

k=−∞
2ksq|Gk(f)|q

}1/q∥∥∥
Lp(µ)

.

Combining this with (2.21) finally yields (2.2) in the case 1 < p < q ≤ ∞,
and so we have completed the proof of (2.2).

To verify (2.4) under the assumption (2.3), in fact, we only need to
note that in this case, we have (2.6). Thus, using (2.2) and the Minkowski
inequality, we further obtain
∥∥∥
{ ∞∑

j=−∞
2jsq|EjT−1

N f |q
}1/q∥∥∥

Lp(µ)

≤
∞∑

l=0

∥∥∥
{ ∞∑

j=−∞
2jsq|Ej(RN )lf |q

}1/q∥∥∥
Lp(µ)

≤
∞∑

l=0

C l1(2−N(s+2νθ) + 2−N(2νθ−s))l
∥∥∥
{ ∞∑

k=−∞
2ksq|Gk(f)|q

}1/q∥∥∥
Lp(µ)

≤ C
∥∥∥
{ ∞∑

k=−∞
2ksq|Gk(f)|q

}1/q∥∥∥
Lp(µ)

,

where C is independent of f . This proves (2.4) and finishes the proof of
Theorem 1.

We now use the approximation to the identity in Definition 1 to introduce
the “test function space”.
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Definition 2. For all f ∈ L2(µ), we define

‖f‖Ḟ spq(µ) =
∥∥∥
{ ∞∑

k=−∞
2ksq|Dkf |q

}1/q∥∥∥
Lp(µ)

,

Ḟspq(µ) = {f ∈ L2(µ) : ‖f‖Ḟ spq(µ) <∞}.

To show that Definition 2 is independent of the chosen approximations
to the identity, we first establish the following lemma.

Lemma 4. For all f ∈ L2(µ) and N so large that (2.3) holds,

∥∥∥
{ ∞∑

j=−∞
2jsq|

∞∑

k=−∞
EjD

N
k Dk(f)|q

}1/q∥∥∥
Lp(µ)

≤ C
∥∥∥
{ ∞∑

k=−∞
2ksq|Dk(f)|q

}1/q∥∥∥
Lp(µ)

,

where C is independent of f .

Proof. The essence of the proof is the same as in the proof of (2.2). We
sketch it for the reader’s convenience.

If 1 ≤ p = q ≤ ∞, then Lemma 2 and the Hölder inequality tell us that
∥∥∥
{ ∞∑

j=−∞
2jsq

∣∣∣
∞∑

k=−∞
EjD

N
k Dk(f)

∣∣∣
q}1/q∥∥∥

Lp(µ)

=
{ ∞∑

j=−∞
2jsq

∥∥∥
∞∑

k=−∞
EjD

N
k Dk(f)

∥∥∥
q

Lp(µ)

}1/q

≤ C
{ ∞∑

j=−∞
2jsq

[ ∞∑

k=−∞
2−2|j−k|θ‖Dk(f)

∥∥∥
Lp(µ)

]q}1/q

≤ C
{ ∞∑

j=−∞

[ ∞∑

k=−∞
2(j−k)s−2|j−k|θ2ksq‖Dk(f)‖qLp(µ)

]}1/q

≤ C
{ ∞∑

k=−∞
2ksq‖Dk(f)‖q

Lp(µ)

}1/q

= C
∥∥∥
{ ∞∑

k=−∞
2ksq|Dk(f)|q

}1/q∥∥∥
Lp(µ)

.

If 1 ≤ q < p < ∞, let r = p/q. Then r > 1. For g ∈ Lr′(µ) with g ≥ 0 and
‖g‖Lr′(µ) ≤ 1, the Hölder inequality, the Minkowski inequality, Lemma 2
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and the Lp(µ)-boundedness of M(2) yield
∞∑

j=−∞
2jsq

�

Rd

∣∣∣
∞∑

k=−∞
EjD

N
k Dk(f)(x)

∣∣∣
q
g(x) dµ(x)

≤
∞∑

j=−∞
2jsq

�

Rd

[ ∞∑

k=−∞

�

Rd
|(EjDN

k )(x, y)| dµ(y)
]q/q′

×
[ ∞∑

k=−∞

�

Rd
|(EjDN

k )(x, y)||Dk(f)(y)|q dµ(y)
]
g(x) dµ(x)

≤ C
∞∑

j=−∞

[ ∞∑

k=−∞
2(j−k)s−2|j−k|θ

]q/q′{ ∞∑

k=−∞
2(j−k)s

×
�

Rd

[ �

Rd
|(EjDN

k )(x, y)|g(x) dµ(x)
]
2ksq|Dk(f)(y)|q dµ(y)

}

≤ C
∞∑

j=−∞

{ ∞∑

k=−∞
2(j−k)s−2|j−k|θ �

Rd
M(2)g(y)2ksq|Dk(f)(y)|q dµ(y)

}

≤ C‖M(2)g‖Lr′(µ)

∥∥∥
{ ∞∑

k=−∞
2ksq|Dk(f)|q

}1/q∥∥∥
Lp(µ)

≤ C
∥∥∥
{ ∞∑

k=−∞
2ksq|Dk(f)|q

}1/q∥∥∥
Lp(µ)

.

We obtain the desired inequality by taking the supremum over the above g.
Finally, using (2.20) and the case 1 ≤ q < p <∞, we can also verify the

assertion for 1 < p < q ≤ ∞; this finishes the proof of Lemma 4.

Applying Theorem 1 and Lemma 4, we can now verify that the test
function space Ḟspq(µ) in Definition 2 is independent of the chosen approxi-
mations to the identity.

Proposition 1. For all f ∈ L2(µ),
∥∥∥
{ ∞∑

k=−∞
2ksq|Dkf |q

}1/q∥∥∥
Lp(µ)

∼
∥∥∥
{ ∞∑

k=−∞
2ksq|Ekf |q

}1/q∥∥∥
Lp(µ)

.

Proof. For given |s| < θ, we choose ν ∈ (0, 1/2) such that |s| < 2νθ. By
(2.5), for any j ∈ Z, we can write

Ejf(x) =
∞∑

k=−∞
EjD

N
k DkT

−1
N (f)(x),
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where N ∈ N is large enough such that (2.3) holds. Then Lemma 4 and
Theorem 1 yield
∥∥∥
{ ∞∑

j=−∞
2jsq|Ejf |q

}1/q∥∥∥
Lp(µ)

=
∥∥∥
{ ∞∑

j=−∞
2jsq

∣∣∣
∞∑

k=−∞
EjD

N
k DkT

−1
N (f)

∣∣∣
q}1/q∥∥∥

Lp(µ)

≤ C
∥∥∥
{ ∞∑

k=−∞
2ksq|DkT

−1
N (f)|q

}1/q∥∥∥
Lp(µ)

≤ C
∥∥∥
{ ∞∑

k=−∞
2ksq|Dk(f)|q

}1/q∥∥∥
Lp(µ)

.

By symmetry, the proof of Proposition 1 is finished.

The following theorem is one of the main results of this paper.

Theorem 2. If 1 < p <∞ and 1 ≤ q <∞, then for all f ∈ Ḟspq(µ),

(2.22) f =
∑

k∈Z
DN
k DkT

−1
N (f) =

∑

k∈Z
T−1
N DN

k Dk(f)

in both the norm ‖ · ‖Ḟ spq(µ) and the norm ‖ · ‖Ḟ sp∞(µ). Moreover , for all

g ∈ Ḟspq(µ) with 1 < p <∞ and 1 ≤ q <∞,

〈f, g〉 =
∑

k∈Z
〈DkD

N
k T
−1
N (f), g〉(2.23)

=
∑

k∈Z
〈T−1
N DkD

N
k (f), g〉

for all f ∈ (Ḟspq(µ))∗ with 1 < p <∞ and 1 ≤ q ≤ ∞.

Proof. We only show the first equality in (2.22). The proof for the second
equality in (2.22) is similar. The proof that (2.22) holds in the norm ‖·‖Ḟ sp∞(µ)

is easy by noting that Ḟspq(µ) ⊂ Ḟsp∞(µ) for 1 ≤ q < ∞, which is a simple
consequence of the monotonicity of lq; see the proof of Proposition 2.3.2/2
in [33, p. 47].

Let f ∈ Ḟspq(µ), 1 < p <∞ and 1 ≤ q <∞. It suffices to show that

(2.24) lim
L→∞

∥∥∥
∑

|k|>L
DN
k DkT

−1
N (f)

∥∥∥
Ḟ spq(µ)

= 0.

Lemma 4 and Theorem 1 lead to
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∥∥∥
∑

|k|>L
DN
k DkT

−1
N (f)

∥∥∥
Ḟ spq(µ)

=
∥∥∥
{ ∞∑

j=−∞
2jsq

∣∣∣Dj

( ∑

|k|>L
DN
k DkT

−1
N (f)

)∣∣∣
q}1/q∥∥∥

Lp(µ)

≤ C
∥∥∥
{ ∑

|k|>L
2ksq|DkT

−1
N (f)|q

}1/q∥∥∥
Lp(µ)

→ 0 as L→∞,

since T−1
N (f) ∈ Ḟspq(µ). Thus, (2.24) holds, and therefore the first equality

in (2.22) holds.
From (2.22) we can deduce the second equality in (2.23). In fact, for all

g ∈ Ḟspq(µ) with 1 < p <∞ and 1 ≤ q <∞, we have

〈f, g〉 =
〈
f,
∑

k∈Z
DN
k DkT

−1
N (g)

〉
=
∑

k∈Z
〈f,DN

k DkT
−1
N (g)〉,

where f ∈ (Ḟspq(µ))∗.
To finish the proof, we only need to verify that for any k ∈ Z,

(2.25) 〈f,DN
k DkT

−1
N (g)〉 = 〈DkD

N
k T
−1
N (f), g〉.

To this end, for any M > 0, let Q0,M be the cube centered at the origin
with side length 2M . Define

gk,M (x) =
�

Q0,M

DN
k (x, y)(DkT

−1
N )(g)(y) dµ(y).

We claim that

(2.26) lim
M→∞

‖DN
k DkT

−1
N (g)− gk,M‖Ḟ spq(µ) = 0.

In fact, Theorem 1 tells us that T−1
N g ∈ Ḟ spq(µ), and Lemma 2 and the

boundedness of M(2) in Lp(µ) further yield

‖DN
k DkT

−1
N (g)− gk,M‖Ḟ spq(µ)

=
∥∥∥
{ ∞∑

l=−∞
2lsq
∣∣∣Dl

[ �

Rd\Q0,M

DN
k (·, y)(DkT

−1
N )(g)(y) dµ(y)

]∣∣∣
q}1/q∥∥∥

Lp(µ)

≤ CN
∥∥∥
{ ∞∑

l=−∞
2(l−k)sq−2|l−k|θq

}1/q
2ksM(2)[χRd\Q0,M

DkT
−1
N (g)]

∥∥∥
Lp(µ)

≤ CN2ks
[ �

Rd\Q0,M

|(DkT
−1
N )(g)(y)|p dµ(y)

]1/p
→ 0

as M → ∞, where we used the facts that |s| < θ and 1 < p < ∞. Thus,
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(2.26) holds. Therefore,

(2.27) 〈f,DN
k DkT

−1
N (g)〉 = lim

M→∞
〈f, gk,M 〉.

Let S = Q0,M ∩ supp(µ). For any z ∈ S, there is a cube Qz,k+N centered
at z. Thus, {Qz,k+N}z∈S is a covering of S. By the compactness of S, we
can find a finite number of cubes, {Qzi,k+N}νi=1 ⊂ {Qz,k+N}z∈S, such that⋃ν
i=1Qzi,k+N ⊃ S. We now decompose S into the union of a finite number of

cubes with disjoint interiors, {Qj}N0
j=1, such that each Qj for j ∈ {1, . . . , N0}

is contained in some Qzi,k+N for some i ∈ {1, . . . , ν}. We then divide each Qj

into a union of cubes, {Qi
j}
Nj
i=1, such that `(Qi

j) ∼ 2−J , where Nj ∼ 2J`(Qj)
for j = 1, . . . , N0. Now we write

gk,M (x) =
N0∑

j=1

�

Qj

DN
k (x, y)(DkT

−1
N )(g)(y) dµ(y)

=
N0∑

j=1

Nj∑

i=1

�

Qij

[DN
k (x, y)−DN

k (x, yQij )](DkT
−1
N )(g)(y) dµ(y)

+
N0∑

j=1

Nj∑

i=1

DN
k (x, yQij )

�

Qij

(DkT
−1
N )(g)(y) dµ(y)

= g1
k,M (x) + g2

k,M (x),

where yQij is any point in the cube Qi
j. We now claim that for any fixed k

and M ,

(2.28) lim
J→∞

‖g1
k,M‖Ḟ spq(µ) = 0.

To prove this claim, let

Fk,i,j(z, y) = [DN
k (z, y)−DN

k (z, yQij )]χQij(y).

Lemmas 2.4 and 2.5 in [29] tell us that

suppFk,i,j(·, y) ⊂ Qy,k−N−3, suppFk,i,j(z, ·) ⊂ Qz,k−N−3;(2.29)
�

Rd
Fk,i,j(z, y) dµ(z) = 0;(2.30)

|Fk,i,j(z, y)| ≤ C42−J`(Qzi0 ,k+N )−1(2.31)

× 1
(`(Qz,k+N ) + `(Qy,k+N ) + |z − y|)n

if Qij ⊂ Qzi0 ,k+N for some i0 ∈ {1, . . . , ν}; and
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(2.32) |Fk,i,j(z, y)− Fk,i,j(z′, y)|

≤ C42−J`(Qzi0 ,k+N )−1 |z − z′|
`(Qx0,k+N )

1
(`(Qz,k+N ) + `(Qy,k+N ) + |z − y|)n

if z, z′ ∈ Qx0,k+N for some x0 ∈ supp(µ) and Qi
j ⊂ Qzi0 ,k+N for some

i0 ∈ {1, . . . , ν}. Here C4 depends on N . From (2.29)–(2.32), Lemma 2 and
its proof, it follows that for all l, k ∈ Z and x, y ∈ supp(µ),

supp (DlFk,i,j)(·, y) ⊂ Qy,min(l,k−N−1)−3,(2.33)

supp (DlFk,i,j)(x, ·) ⊂ Qx,min(l,k−N−1)−3,(2.34)

and for all x ∈ supp(µ) and y ∈ Qi
j ⊂ Qzi0 ,k+N for some i0 ∈ {1, . . . , ν},

(2.35) |(DlFk,i,j)(x, y)|
≤ C42−J2−2|l−k|θ`(Qzi0 ,k+N )−1

× 1
(`(Qx,min(l,k+N)+1) + `(Qy,min(l,k+N)+1) + |x− y|)n .

Let

C5 = max
{
C4,

1
`(Qzi,k+N )

: i = 1, . . . , ν
}
.

Then C5 depends on N , k, but not on J and l. Set

K(x, y) =
N0∑

j=1

Nj∑

i=1

(DlFk,i,j)(x, y).

Then, by (2.34) and (2.35), we have

(2.36)
∣∣∣

�

Rd
K(x, y)(DkT

−1
N )(g)(y) dµ(y)

∣∣∣

≤ CC52−J2−2|l−k|θ

×
N0∑

j=1

Nj∑

i=1

�

Qij∩Qx,min(l,k−N−1)−3

|(DkT
−1
N )(g)(y)|

(`(Qx,min(l,k+N)+1) + |x− y|)n dµ(y)

= CC52−J2−2|l−k|θ

×
N0∑

j=1

�

Qj∩Qx,min(l,k−N−1)−3

|(DkT
−1
N )(g)(y)|

(`(Qx,min(l,k+N)+1) + |x− y|)n dµ(y)

≤ CC5N02−J2−2|l−k|θ[1 + δ(Qx,min(l,k−N−1)−3, Qx,min(l,k+N)+1)]

×M(2)[(DkT
−1
N )(g)](x)

≤ C62−J2−2|l−k|θM(2)[(DkT
−1
N )(g)](x),
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where C6 is independent of J and l, but it may depend on M , N and k.
Therefore, from (2.36) and the Lp(µ)-boundedness of M(2), it follows that

(2.37) ‖g1
k,M‖Ḟ spq(µ) =

∥∥∥
{ ∞∑

l=−∞
2lsq
∣∣∣Dl

( N0∑

j=1

Nj∑

i=1

�

Qij

[DN
k (·, y)−DN

k (·, yQij )]

× (DkT
−1
N )(g)(y) dµ(y)

)∣∣∣
q}1/q∥∥∥

Lp(µ)

≤ C62−J
{ ∞∑

l=−∞
2lsq2−2|l−k|θq

}1/q
‖(DkT

−1
N )(g)‖Lp(µ)

≤ CC62−J2ks‖(DkT
−1
N )(g)‖Lp(µ) → 0

as J →∞. Obviously, (2.37) implies (2.28). By (2.27) and (2.28), we have

(2.38) 〈f,DN
k DkT

−1
N (g)〉 = lim

M→∞
〈f, gk,M 〉 = lim

M→∞
lim
J→∞

〈f, g2
k,M 〉

= lim
M→∞

lim
J→∞

N0∑

j=1

Nj∑

i=1

DN
k (f)(yQij)

�

Qij

(DkT
−1
N )(g)(y) dµ(y).

We now write
Nj∑

i=1

DN
k (f)(yQij)

�

Qij

(DkT
−1
N )(g)(y) dµ(y)

=
Nj∑

i=1

�

Qij

DN
k (f)(y)(DkT

−1
N )(g)(y) dµ(y)

+
�

Rd

{ Nj∑

i=1

[DN
k (f)(yQij )−D

N
k (f)(y)]χQij(y)

}
(DkT

−1
N )(g)(y) dµ(y).

Using the second difference property of the approximation to the identity
in Lemma 1(f), by a proof similar to that for (2.37), we can show that

∥∥∥
Nj∑

i=1

[DN
k (yQij , ·)−D

N
k (y, ·)]χQij(·)

∥∥∥
Ḟ spq(µ)

≤ C72−J ,

where C7 is independent of J . It follows that

∣∣∣
Nj∑

i=1

[DN
k (f)(yQij)−D

N
k (f)(y)]χQij(y)

∣∣∣ ≤ C72−J‖f‖(Ḟspq(µ))∗

for all y ∈ supp(µ). Noting that (DkT
−1
N )(g) ∈ Lq(µ) by Theorem 1 and

the construction of {Qi
j} for j ∈ {1, . . . , N0} and i ∈ {1, . . . , Nj}, by the
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Lebesgue dominated convergence theorem we have

lim
J→∞

�

Rd

{ Nj∑

i=1

[DN
k (f)(yQij)−D

N
k (f)(y)]χQij(y)

}
(DkT

−1
N )(g)(y) dµ(y) = 0.

Thus, together with (2.38), we further have

〈f,DN
k DkT

−1
N (g)〉 = lim

M→∞
lim
J→∞

N0∑

j=1

Nj∑

i=1

�

Qij

DN
k (f)(y)(DkT

−1
N )(g)(y) dµ(y)

=
�

Rd
DN
k (f)(y)(DkT

−1
N )(g)(y) dµ(y)

= 〈T−1
N DkD

N
k (f), g〉.

That is, (2.25) holds and we have completed the proof of Theorem 2.

3. Triebel–Lizorkin spaces. It is easy to see that Dk(x, ·) ∈ L2(µ)
with compact support for all x ∈ supp(µ) and all k ∈ Z. We will show that
Dk(x, ·) ∈ Ḟspq(µ) for all x ∈ supp(µ). We first recall the definition of the
space Ḃspq(µ) in [4].

Definition 3. For all 1 ≤ p, q ≤ ∞ and f ∈ L2(µ), we define

‖f‖Ḃspq(µ) =
{ ∞∑

k=−∞
2ksq‖Dkf‖qLp(µ)

}1/q
,

Ḃspq(µ) = {f ∈ L2(µ) : ‖f‖Ḃspq(µ) <∞}.

Lemma 5. The following assertions are true.

(i) Ḃsp,min(p,q)(µ) ⊂ Ḟspq(µ) ⊂ Ḟsp,max(p,q)(µ);
(ii) Let {Dk}∞k=−∞ be as in Theorem 1. Then Dk(x, ·) and Dk(·, x) are

in Ḟspq(µ) for all x ∈ supp(µ) and all k ∈ Z.

Proof. (i) is obvious by the Minkowski inequality and the monotonicity
of lq for q ∈ (0,∞]; see the proof of Proposition 2.3.2/2 in [33, p. 47].

It was proved in [4] that for all |s| < θ, 1 ≤ p, q ≤ ∞, all x ∈ supp(µ)
and all k ∈ Z, Dk(x, ·) and Dk(·, x) are in Ḃspq(µ). From this and (i), it is
easy to deduce (ii). This proves the lemma.

We can now introduce the Triebel–Lizorkin spaces Ḟ spq(µ).

Definition 4. Let p′ and q′ be the conjugate indices of p and q, respec-
tively. We define

Ḟ spq(µ) = {f ∈ (Ḟ−sp′,q′(µ))∗ : ‖f‖Ḟ spq(µ) <∞},
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where

‖f‖Ḟ spq(µ) =
∥∥∥
{ ∞∑

k=−∞
2ksq|Dkf |q

}1/q∥∥∥
Lp(µ)

.

Based on Lemma 5 and Theorem 2, for all f ∈ (Ḟ−sp′,q′(µ))∗, we have

Ejf(x) =
∞∑

k=−∞
EjD

N
k DkT

−1
N (f)(x),

where N ∈ N is large enough such that (2.22) holds. The above equality and
the same proof of Proposition 1 show that the spaces Ḟ spq(µ) are independent
of the choice of approximations to the identity in Definition 1. We leave these
details to the reader.

It is well known that the Schwartz test function space is dense in Triebel–
Lizorkin spaces on Rd. The following result shows that our test function
space Ḟsp,q(µ) is also dense in the Triebel–Lizorkin space Ḟ spq(µ). More pre-
cisely, we have

Proposition 2. Let Ḟspq(µ) be the closure of Ḟspq(µ) with respect to the
norm ‖f‖Ḟ spq(µ). Then

(3.1) Ḟspq(µ) = Ḟ spq(µ).

Proof. We first claim that if f ∈ Ḟspq(µ), then f ∈ (Ḟ−sp′,q′(µ))∗ and

(3.2) ‖f‖(Ḟ−s
p′,q′(µ))∗ ≤ C‖f‖Ḟ spq(µ).

To show this claim, let f ∈ Ḟspq(µ) and g ∈ Ḟ−sp′,q′(µ). Let {Dk}k∈Z be
as before. It is easy to see that DN

k has the same properties as Dk with a
constant depending on N , namely CN , if C is the constant appearing in the
properties satisfied by Dk for k ∈ Z.

Noting that (DN
k )∗ = DN

k , by (2.5), the Hölder inequality, Theorem 1
and Proposition 1, we obtain

|f(g)| = |〈f, g〉| (in the sense of (L2(µ))∗ = L2(µ))

=
∣∣∣

�

Rd

∞∑

k=−∞
DN
k DkT

−1
N (f)g dµ

∣∣∣

=
∣∣∣
∞∑

k=−∞

�

Rd
DkT

−1
N (f)DN

k (g) dµ
∣∣∣

≤
�

Rd

{ ∞∑

k=−∞
2ksq|DkT

−1
N (f)|q

}1/q{ ∞∑

k=−∞
2−ksq

′ |DN
k (g)|q′

}1/q′

dµ



130 Y. S. Han and D. C. Yang

≤
∥∥∥
{ ∞∑

k=−∞
2ksq|DkT

−1
N (f)|q

}1/q∥∥∥
Lp(µ)

×
∥∥∥
{ ∞∑

k=−∞
2−ksq

′ |DN
k (g)|q′

}1/q′∥∥∥
Lp
′ (µ)

≤ C‖T−1
N (f)‖Ḟ spq(µ)‖g‖Ḟ−s

p′,q′(µ) ≤ C‖f‖Ḟ spq(µ)‖g‖Ḟ−s
p′,q′(µ).

Thus, f ∈ (Ḟ−sp′,q′(µ))∗ and

‖f‖(Ḟ−s
p′,q′(µ))∗ ≤ C‖f‖Ḟ spq(µ).

That is, (3.2) holds.

Now to show that Ḟspq(µ) ⊂ Ḟ spq(µ), let {fk}k∈N be a Cauchy sequence in
Ḟspq(µ) in the norm ‖ · ‖Ḟ spq(µ). Then, by (3.2), it is also a Cauchy sequence

in the norm ‖ · ‖(Ḟ−s
p′,q′ (µ))∗. Since (Ḟ−sp′,q′(µ))∗ is a Banach space (see [35]),

there is an f ∈ (Ḟ−sp′,q′(µ))∗ such that fk → f in (Ḟ−sp′,q′(µ))∗ as k → ∞. We
still need to verify that ‖f‖Ḟ spq(µ) <∞. From Lemma 5 and

|Dk(fn − f)(x)| ≤ ‖Dk(x, ·)‖Ḟ spq(µ)‖fn − f‖(Ḟ−s
p′,q′(µ))∗ ,

it follows that for all x ∈ supp(µ) and all k ∈ Z,

(3.3) lim
n→∞

Dkfn(x) = Dkf(x).

Thus, the fact that ‖fn‖Ḟ spq(µ) ≤ C with C independent of n, Definition 4,

the Fatou lemma and (3.3) tell us that

‖f‖Ḟ spq(µ) ≤ C,

which shows f ∈ Ḟ spq(µ) and fk → f in Ḟ spq(µ) as k →∞.
We now prove the other direction: Ḟ spq(µ) ⊂ Ḟspq(µ). This comes from

Theorem 2 and its proof. More precisely, if f ∈ Ḟ spq(µ), then by Theorem 2
and its proof, we can write (2.23) as

f =
∑

k∈Z
DkD

N
k T
−1
N (f),

where the series converges in the norm of Ḟ spq(µ). As in the proof of Theo-
rem 2, if we define gk,M (x) by

gk,M (x) =
�

Q0,M

DN
k (x, y)(DkT

−1
N )(f)(y) dµ(y),

it is easy to check that gk,M (x) belongs to Ḟspq(µ) and f can be approximated
by a finite sum of gk,M (x). We leave the details to the reader. This shows

that Ḟ spq(µ) ⊂ Ḟspq(µ) and completes the proof of Proposition 2.
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We remark that, in particular, Proposition 2 shows that Ḟ spq(µ) is a
Banach space.

We now establish the boundedness of Riesz operators defined via the
approximation to the identity in the spaces Ḟ spq(µ); then we show that the
spaces Ḟ spq(µ) have the lifting property by using these operators.

Definition 5. For α ∈ R, f ∈ L2(µ) and all x ∈ supp(µ), we define the
Riesz potential operator Iα by

Iαf(x) =
∞∑

k=−∞
2−kαDkf(x).

Theorem 3. Let |s| < θ and |s+α| < θ. Then Iα is bounded from Ḟ spq(µ)
to Ḟ s+αpq (µ), that is, there is a constant C > 0 such that for all f ∈ Ḟ spq(µ),

‖Iαf‖Ḟ s+αpq (µ) ≤ C‖f‖Ḟ spq(µ).

Proof. If p = q, then Ḃs
pq(µ) = Ḟ spq(µ) and the conclusion of the theorem

was proved in [4].
If 1 ≤ q < p < ∞, let r = p/q and g ∈ Lr′(µ) with g ≥ 0 and ‖g‖Lr′(µ)

≤ 1. By Theorem 2 and the Hölder inequality, we then have

(3.4)
∞∑

j=−∞
2j(s+α)q

�

Rd
|DjIαf(x)|qg(x) dµ(x)

=
∞∑

j=−∞

�

Rd
2j(s+α)q

∣∣∣
∞∑

k=−∞
DjIαD

N
k DkT

−1
N f(x)

∣∣∣
q
g(x) dµ(x)

=
∞∑

j=−∞
2j(s+α)q

�

Rd

∣∣∣
∞∑

k=−∞

∞∑

i=−∞
2−iαDjDiD

N
k DkT

−1
N f(x)

∣∣∣
q
g(x) dµ(x)

=
∞∑

j=−∞
2j(s+α)q

�

Rd

∣∣∣
∞∑

k=−∞

∞∑

i=−∞
2−iα

�

Rd
(DjDiD

N
k )(x, y)

× (DkT
−1
N f)(y) dµ(y)

∣∣∣
q
g(x) dµ(x)

≤
∞∑

j=−∞
2j(s+α)q

�

Rd

{ ∞∑

k=−∞

∞∑

i=−∞
2−iα−ks

�

Rd
|(DjDiD

N
k )(x, y)| dµ(y)

}q/q′

×
{ ∞∑

k=−∞

∞∑

i=−∞
2−iα−ks

�

Rd
|(DjDiD

N
k )(x, y)|

× 2ksq|(DkT
−1
N f)(y)|q dµ(y)

}
g(x) dµ(x),

where we assume that N satisfies (2.3).
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Since |s| < θ and |s + α| < θ, we can choose ν ∈ (0, 1/2) such that
|s+ α| < 2νθ, |s| < 2νθ and |s| < 2(1− ν)θ. Similarly to (2.11) and (2.12),
by Lemma 2, we have

‖DjDiD
N
k (x, ·)‖L1(µ) ≤ C2−2θ|j−i|,(3.5)

‖DjDiD
N
k (x, ·)‖L1(µ) ≤ C2−2θ|i−k|.(3.6)

The geometric mean of (3.5) and (3.6) tells us that

(3.7) ‖DjDiD
N
k (x, ·)‖L1(µ) ≤ C2−2θν|j−i|2−2θ(1−ν)|i−k|.

Inserting (3.7) into (3.4) leads to

(3.8)
∞∑

j=−∞
2j(s+α)q

�

Rd
|DjIαf(x)|qg(x) dµ(x)

≤ C
∞∑

j=−∞
2j(s+α)q

×
�

Rd

{ ∞∑

k=−∞

∞∑

i=−∞
2−iα−ks2−2θν|j−i|2−2θ(1−ν)|i−k|

}q/q′

×
{ ∞∑

k=−∞

∞∑

i=−∞
2−iα−ks

×
�

Rd
|(DjDiD

N
k )(x, y)|2ksq|(DkT

−1
N f)(y)|q dµ(y)

}
g(x) dµ(x)

≤ C
∞∑

j=−∞
2j(s+α)

∞∑

k=−∞

∞∑

i=−∞
2−iα−ks

×
�

Rd

{ �

Rd
|(DjDiD

N
k )(x, y)|g(x) dµ(x)

}
2ksq|(DkT

−1
N f)(y)|q dµ(y).

Some arguments similar to those for (2.17) and (2.18) tell us that
�

Rd
|(DjDiD

N
k )(x, y)|g(x) dµ(x) ≤ C2−2θ|j−i|M2

(2)g(y),(3.9)

�

Rd
|(DjDiD

N
k )(x, y)|g(x) dµ(x) ≤ C2−2θ|i−k|M2

(2)g(y).(3.10)

The geometric mean of (3.9) and (3.10) yields

(3.11)
�

Rd
|(DjDiD

N
k )(x, y)|g(x) dµ(x)

≤ C2−2θν|j−i|2−2θ(1−ν)|i−k|M2
(2)g(y).
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By inserting (3.11) into (3.8) and applying the Lp(µ)-boundedness of M(2),
we obtain

(3.12)
∞∑

j=−∞
2j(s+α)q

�

Rd
|DjIαf(x)|qg(x) dµ(x)

≤ C
∞∑

j=−∞
2j(s+α)

∞∑

k=−∞

∞∑

i=−∞
2−iα−ks2−2θν|j−i|2−2θ(1−ν)|i−k|

×
�

Rd
M2

(2)g(y)2ksq|(DkT
−1
N f)(y)|q dµ(y)

≤ C
�

Rd
M2

(2)g(y)
∞∑

k=−∞
2ksq|(DkT

−1
N f)(y)|q dµ(y)

≤ C‖M2
(2)g‖Lr(µ)

∥∥∥
{ ∞∑

k=−∞
2ksq|(DkT

−1
N f)(y)|q

}1/q∥∥∥
q

Lp(µ)

≤ C‖g‖Lr(µ)

∥∥∥
{ ∞∑

k=−∞
2ksq|(DkT

−1
N f)(y)|q

}1/q∥∥∥
q

Lp(µ)

≤ C
∥∥∥
{ ∞∑

k=−∞
2ksq|(DkT

−1
N f)(y)|q

}1/q∥∥∥
q

Lp(µ)
.

Taking the supremum in (3.12) over g leads to

(3.13) ‖Iαf‖F s+αpq (µ) ≤ C‖f‖Ḟ spq(µ)

if 1 ≤ q < p <∞.
Let now 1 < p < q ≤ ∞. Note that then 1 ≤ q′ < p′ <∞. If {gi}∞i=−∞ ∈

Lp
′
(lq
′
)(µ) and

‖{gi}∞i=−∞‖Lp′ (lq′)(µ) ≤ 1,

then an argument similar to that for (3.13) can be used to show

(3.14)
∥∥∥
{ ∞∑

k=−∞
2−ksq

′
∣∣∣
∞∑

j=−∞

∞∑

i=−∞
2j(s+α)2−iαDN

k DiDjgj

∣∣∣
q′}1/q′∥∥∥

Lp
′ (µ)

≤ C‖{gi}∞i=−∞‖Lp′ (lq′)(µ) ≤ C.

The Hölder inequality, Theorem 1 and the estimate (3.14) then yield

‖Iαf‖F s+αpq (µ) =
∥∥∥
{ ∞∑

j=−∞
2j(s+α)q|DjIαf |q

}1/q∥∥∥
Lp(µ)
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= sup
‖{gi}∞i=−∞‖Lp′ (lq′ )(µ)

≤1

∣∣∣
∞∑

j=−∞
2j(s+α)

�

Rd
(DjIαf)(x)gj(x) dµ(x)

∣∣∣

= sup
‖{gi}∞i=−∞‖Lp′ (lq′ )(µ)

≤1

∣∣∣
∞∑

j=−∞
2j(s+α)

∞∑

i=−∞

∞∑

k=−∞
2−iα

×
�

Rd
DjDiD

N
k DkT

−1
N (f)(x)gj(x) dµ(x)

∣∣∣

= sup
‖{gi}∞i=−∞‖Lp′ (lq′ )(µ)

≤1

∣∣∣
∞∑

j=−∞
2j(s+α)

×
∞∑

i=−∞

∞∑

k=−∞
2−iα

�

Rd
DkT

−1
N (f)(x)DN

k DiDjgj(x) dµ(x)
∣∣∣

≤ sup
‖{gi}∞i=−∞‖Lp′ (lq′ )(µ)

≤1

�

Rd

{ ∞∑

k=−∞
2ksq|DkT

−1
N (f)(x)|q

}1/q

×
{ ∞∑

k=−∞
2−ksq

′
∣∣∣
∞∑

j=−∞
2j(s+α)

∞∑

i=−∞
2−iαDN

k DiDjgj(x)
∣∣∣
q′}1/q′

dµ(x)

≤ ‖T−1
N (f)‖Ḟ spq(µ) sup

‖{gi}∞i=−∞‖Lp′ (lq′ )(µ)
≤1

×
∥∥∥
{ ∞∑

k=−∞
2−ksq

′
∣∣∣
∞∑

j=−∞
2j(s+α)

∞∑

i=−∞
2−iαDN

k DiDjgj

∣∣∣
q′}1/q′∥∥∥

Lp
′ (µ)

≤ C‖f‖Ḟ spq(µ).

This proves that Iα is bounded from Ḟ spq(µ) to Ḟ s+αpq (µ) and completes the
proof of Theorem 3.

We now establish the converse of Theorem 3. To this end, we first show
that when α is very small, the composition IαI−α is invertible in the spaces
Ḟ spq(µ). To do so, for any given N1 ∈ N, we decompose I − IαI−α into

I − IαI−α =
∞∑

i=−∞

∑

|m|≤N1

(1− 2mα)DiDi+m +
∞∑

i=−∞

∑

|m|>N1

(1− 2mα)DiDi+m

= L1
N1

+ L2
N1
.

We will show that if N1 is large enough and if α is small enough, then the
operator norms of LiN1

in Ḟ spq(µ) will be very small for i = 1, 2. Thus, IαI−α
is invertible in Ḟ spq(µ).
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The same procedure as in the proof of Theorem 3 can be used to verify
the following theorem. We leave the details to the reader.

Theorem 4. Let |s| < θ and |s−α| < θ. Then for any ν ∈ (0, 1/2) such
that |s| < 2νθ and |s− α| < 2νθ,

‖L1
N1
‖Ḟ spq(µ)→Ḟ spq(µ) ≤ C8

∑

|m|≤N1

|1− 2mα|2−2θν|m|−ms,

‖L2
N1
‖Ḟ spq(µ)→Ḟ spq(µ) ≤ C8

∑

|m|>N1

|1− 2mα|2−2θν|m|−ms,

where C8 is independent of N1 and α.

From Theorem 4, it is easy to deduce the following result.

Corollary 1. Let |s| < θ and |s−α| < θ. Then there is α0(s) > 0 such
that if |α| < α0(s), ν ∈ (0, 1/2), |s| < 2νθ and |s− α| < 2νθ, then

C8

{ ∑

|m|≤N1

|1− 2mα|2−2θν|m|−ms +
∑

|m|>N1

|1− 2mα|2−2θν|m|−ms
}
< 1.

Thus, if |α| < α0(s), then (IαI−α)−1 exists in Ḟ spq(µ) and

‖(IαI−α)−1‖Ḟ spq(µ)→Ḟ spq(µ) ≤ C.
If we change the order of Iα and I−α, we have a similar result which is

a simple corollary of the above Corollary 1.

Corollary 2. Let |s| < θ and |s+α| < θ. Then there is α0(s) > 0 such
that if |α| < α0(s), ν ∈ (0, 1/2), |s| < 2νθ and |s+ α| < 2νθ, then

C8

{ ∑

|m|≤N1

|1− 2−mα|2−2θν|m|−ms +
∑

|m|>N1

|1− 2−mα|2−2θν|m|−ms
}
< 1.

Thus, if |α| < α0(s), then (I−αIα)−1 exists in Ḟ spq(µ) and

‖(I−αIα)−1‖Ḟ spq(µ)→Ḟ spq(µ) ≤ C.
Theorem 3 and Corollary 2 imply the following lifting theorem for the

spaces Ḟ spq(µ).

Theorem 5. Let |s| < θ and |s+ α| < θ. Let α0(s) be as in Corollary 2
and |α| < α0(s). Then there is a constant C > 0 such that for all f ∈ Ḟ spq(µ),

C−1‖f‖Ḟ spq(µ) ≤ ‖Iαf‖Ḟ s+αpq (µ) ≤ C‖f‖Ḟ spq(µ).

Proof. We only need to verify the left-hand inequality. In fact, by Corol-
lary 2, we have

‖f‖Ḟ spq(µ) = ‖(I−αIα)−1I−αIα‖Ḟ spq(µ) ≤ C‖I−αIα‖Ḟ spq(µ) ≤ C‖Iαf‖Ḟ s+αpq (µ).

This completes the proof of Theorem 5.
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Finally, we study the dual spaces of the spaces Ḟ spq(µ). To begin with,
we establish the following lemma.

Lemma 6. Suppose that {gk}k∈Z is a sequence of functions on Rd. If
1 < p <∞, 1 ≤ q <∞ and

∥∥∥
{ ∞∑

k=−∞
2ksq|gk|q

}1/q∥∥∥
Lp(µ)

<∞,

then g(x) =
∑

k∈ZDkgk(x) ∈ Ḟ spq(µ) and

‖g‖Ḟ spq(µ) ≤ C
∥∥∥
{ ∞∑

k=−∞
2ksq|gk|q

}1/q∥∥∥
Lp(µ)

,

where C > 0 is a constant.

Proof. For L1, L2 ∈ Z and L1 < L2, we define

gL2
L1

(x) =
L2∑

k=L1

Dkgk(x).

Then for f ∈ Ḟ−sp′,q′(µ), noting that Dk(x, y) = Dk(y, x) and by the Hölder
inequality, we have

|〈gL2
L1
, f〉| =

∣∣∣
L2∑

k=L1

〈Dkgk, f〉
∣∣∣ ≤

L2∑

k=L1

|〈gk,Dkf〉|

≤
∥∥∥
{ L2∑

k=L1

2ksq|gk|q
}1/q∥∥∥

Lp(µ)

∥∥∥
{ L2∑

k=L1

2−ksq
′ |Dkf |q

′
}1/q′∥∥∥

Lp
′ (µ)

≤
∥∥∥
{ L2∑

k=L1

2ksq|gk|q
}1/q∥∥∥

Lp(µ)
‖f‖Ḟ−s

p′,q′(µ).

Thus, gL2
L1
∈ (Ḟ−sp′,q′(µ))∗ and

‖gL2
L1
‖(Ḟ−s

p′,q′ (µ))∗ ≤
∥∥∥
{ L2∑

k=L1

2ksq|gk|q
}1/q∥∥∥

Lp(µ)
.

It follows that g ∈ (Ḟ−sp′,q′(µ))∗; and Lemma 4 tells us that

‖g‖Ḟ spq(µ) ≤ C
∥∥∥
{ ∞∑

k=−∞
2ksq|gk|q

}1/q∥∥∥
Lp(µ)

.

That is, f ∈ Ḟ spq(µ), which finishes the proof of Lemma 6.

We can now establish the dual theorem for the spaces Ḟ spq(µ).
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Theorem 6. If 1 ≤ p, q ≤ ∞ and g ∈ Ḟ spq(µ), then

Lg(f) = 〈g, f〉
defines a linear functional on Ḟ−sp′,q′(µ) and

(3.15) ‖Lg‖(Ḟ−s
p′,q′ (µ))∗ ≤ C‖g‖Ḟ spq(µ).

Conversely , if 1 < p, q < ∞ and L is a linear functional on Ḟ spq(µ), then
there exists a unique g ∈ Ḟ−sp′,q′(µ) such that

L(f) = 〈g, f〉
on Ḟspq(µ) and

(3.16) ‖g‖Ḟ−s
p′,q′ (µ) ≤ C‖L‖(Ḟ spq(µ))∗ .

Proof. (3.15) is just (3.1) in Proposition 2.
Conversely, suppose that L is a linear functional on Ḟ spq(µ). By Propo-

sition 2, it is easy to see that L is also a linear functional on Ḟspq(µ), and
therefore, for all f ∈ Ḟspq(µ),

|L(f)| ≤ ‖L‖(Ḟ spq(µ))∗‖f‖Ḟ spq(µ).

Let {Dk}k∈Z be as before. If f ∈ Ḟspq(µ), then the sequence {Dkf}k∈Z is in
the sequence space

Lp(lqs)(µ) =
{
{fk}k∈Z :

‖{fk}k∈Z‖Lp(lqs)(µ) =
∥∥∥
{ ∞∑

k=−∞
2ksq|fk|q

}1/q∥∥∥
Lp(µ)

<∞
}
.

Define L̃ on this subset of Lp(lqs)(µ) by

L̃[{Dkf}k∈Z] = L(f).

Then, if f ∈ Ḟspq(µ), we have

|L̃[{Dkf}k∈Z]| = |L(f)| ≤ ‖L‖(Ḟ spq(µ))∗‖f‖Ḟ spq(µ)

= ‖L‖(Ḟ spq(µ))∗‖{Dkf}k∈Z‖Lp(lqs)(µ).

Thus, L̃ is bounded on this subset. The Hahn–Banach theorem tells us that
L̃ can be extended to a functional on Lp(lqs)(µ). Since it is well known that
Lp(lqs)(µ)∗ = Lp

′
(lq
′
−s)(µ) for 1 < p < ∞ and 1 ≤ q < ∞ (see [32]), there

exists a unique sequence {gk}k∈Z ∈ Lp
′
(lq
′
−s)(µ) such that

‖{gk}k∈Z‖Lp′ (lq′−s)(µ)
≤ C‖L̃‖(Lp(lqs)(µ))∗ ≤ C‖L‖(Ḟ spq(µ))∗
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and

L̃[{fk}k∈Z] =
∞∑

k=−∞
〈gk, fk〉

for all {fk}k∈Z ∈ Lp(lqs)(µ). Thus, if f ∈ Ḟspq(µ), then Lemma 6 yields

L(f) = L̃({Dkf}k∈Z) =
∞∑

k=−∞
〈gk,Dk(f)〉

=
∞∑

k=−∞
〈Dk(gk), f〉 =

〈 ∞∑

k=−∞
Dk(gk), f

〉
,

since D∗k = Dk. Let

g =
∞∑

k=−∞
Dk(gk).

Then Lemma 6 tells us that g ∈ Ḟ−sp′,q′(µ) and

‖g‖Ḟ−s
p′,q′(µ) ≤ C‖{gk}k∈Z‖Lp′ (lq′−s)(µ)

≤ C‖L‖(Ḟ spq(µ))∗ .

Thus, (3.16) holds.
This finishes the proof of Theorem 6.
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[34] —, Theory of function spaces, II, Birkhäuser, Basel, 1992.
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