On a theorem of Vesentini

by

GERD HERZOG and CHRISTOPH SCHMOEGER (Karlsruhe)

Abstract. Let \mathcal{A} be a Banach algebra over \mathbb{C} with unit $\mathbf{1}$ and $f:\mathbb{C}\to\mathbb{C}$ an entire function. Let $\mathbf{f}:\mathcal{A}\to\mathcal{A}$ be defined by

$$\mathbf{f}(a) = f(a) \quad (a \in \mathcal{A}),$$

where f(a) is given by the usual analytic calculus. The connections between the periods of f and the periods of \mathbf{f} are settled by a theorem of \mathbf{E} . Vesentini. We give a new proof of this theorem and investigate further properties of periods of \mathbf{f} , for example in C^* -algebras.

Throughout this paper \mathcal{A} denotes a complex unital Banach algebra with unit 1. For $a \in \mathcal{A}$ we write

$$\sigma(a) = \{ \lambda \in \mathbb{C} : a - \lambda \mathbf{1} \text{ is not invertible in } \mathcal{A} \}$$

for the *spectrum* of a. The center of \mathcal{A} is the subset \mathcal{A}^{c} of \mathcal{A} given by

$$\mathcal{A}^{c} = \{ x \in \mathcal{A} : xa = ax \text{ for all } a \in \mathcal{A} \}.$$

By $H(\mathbb{C})$ we denote the collection of all entire functions $f: \mathbb{C} \to \mathbb{C}$. If $f \in H(\mathbb{C})$ and $a \in \mathcal{A}$, then f(a) is defined by the well known analytic calculus (see [3]). If

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \quad (z \in \mathbb{C})$$

is the power series representation of f, then by [3],

$$f(a) = \sum_{n=0}^{\infty} a_n a^n = a_0 \mathbf{1} + a_1 a + a_2 a^2 + \dots$$

for $a \in \mathcal{A}$. Therefore, given $f \in H(\mathbb{C})$, we define the mapping $\mathbf{f} : \mathcal{A} \to \mathcal{A}$ by $\mathbf{f}(a) = f(a)$.

Hence $\mathbf{f}': \mathcal{A} \to \mathcal{A}$ is given by

$$\mathbf{f}'(a) = f'(a) = \sum_{n=1}^{\infty} n a_n a^{n-1}$$

(thus \mathbf{f}' does not denote the derivative of the mapping \mathbf{f}).

2000 Mathematics Subject Classification: Primary 46H30.

For $f \in H(\mathbb{C})$ put

$$P(f) = \{ \omega \in \mathbb{C} : f(z + \omega) = f(z) \text{ for all } z \in \mathbb{C} \},$$

$$P(\mathbf{f}) = \{ p \in \mathcal{A} : \mathbf{f}(a + p) = \mathbf{f}(a) \text{ for all } a \in \mathcal{A} \}.$$

Observe that $0 \in P(f)$ and $0 \in P(\mathbf{f})$.

Throughout this paper f will denote an element of $H(\mathbb{C})$ with power series representation

$$f(z) = \sum_{n=0}^{\infty} a_n z^n \quad (a_0, a_1, \dots \in \mathbb{C}).$$

PROPOSITION 1. Let $\omega \in \mathbb{C}$, $q \in \mathcal{A}$ and $q^2 = q$.

- (1) $\mathbf{f}(\omega q) = a_0 \mathbf{1} + (f(\omega) a_0)q$.
- (2) If $\omega \in P(f)$, then $\mathbf{f}(\omega q) = a_0 \mathbf{1}$.

Proof. (1) We have

$$\mathbf{f}(\omega q) = \sum_{n=0}^{\infty} a_n \omega^n q^n = a_0 \mathbf{1} + \Big(\sum_{n=1}^{\infty} a_n \omega^n\Big) q = a_0 \mathbf{1} + (f(\omega) - a_0) q.$$

(2) Since
$$f(\omega) = f(0) = a_0$$
, it follows from (1) that $\mathbf{f}(\omega q) = a_0 \mathbf{1}$.

PROPOSITION 2. Suppose that $a, b \in \mathcal{A}$, ab = ba and that $\phi : \mathbb{C} \to \mathcal{A}$ is defined by $\phi(z) = \mathbf{f}(za+b)$ ($z \in \mathbb{C}$). Then ϕ is an \mathcal{A} -valued analytic function and

$$\phi'(z) = \mathbf{f}'(za+b)a$$
 for all $z \in \mathbb{C}$.

Proof. We have

$$\phi(z) = \sum_{n=0}^{\infty} a_n (za+b)^n \quad (z \in \mathbb{C}).$$

It follows from [3, §59, §97] that ϕ is analytic and

$$\phi'(z) = \sum_{n=0}^{\infty} a_n \frac{d}{dz} (za+b)^n \quad (z \in \mathbb{C}).$$

Since ab = ba,

$$\frac{d}{dz}(za+b)^n = n(za+b)^{n-1}a \quad \text{ for } n \ge 1,$$

thus

$$\phi'(z) = \left(\sum_{n=1}^{\infty} na_n(za+b)^{n-1}\right)a = \mathbf{f}'(za+b)a$$

for $z \in \mathbb{C}$.

THEOREM 1. Let $\omega \in P(f)$, $q \in \mathcal{A}^c$ and $q^2 = q$. Then $\omega q \in P(\mathbf{f})$.

Proof. Fix $a \in \mathcal{A}$ and define $\phi, \psi : \mathbb{C} \to \mathcal{A}$ by

$$\phi(z) = \mathbf{f}(za + \omega q), \quad \psi(z) = \mathbf{f}(za).$$

Proposition 2 gives

$$\phi^{(k)}(z) = \mathbf{f}^{(k)}(za + \omega q)a^k, \quad \psi^{(k)}(z) = \mathbf{f}^{(k)}(za)a^k$$

for $z \in \mathbb{C}$ and $k = 0, 1, \dots$ Hence

$$\phi^{(k)}(0) = \mathbf{f}^{(k)}(\omega q)a^k, \quad \psi^{(k)}(0) = \mathbf{f}^{(k)}(0)a^k$$

for $k \geq 0$. Since $\omega \in P(f^{(k)})$ for $k \geq 0$, Proposition 1 shows that

$$\phi^{(k)}(0) = f^{(k)}(0)a^k = \mathbf{f}^{(k)}(0)a^k = \psi^{(k)}(0)$$

for k = 0, 1, ... Therefore $\phi = \psi$ on \mathbb{C} . Hence

$$\mathbf{f}(a + \omega q) = \phi(1) = \psi(1) = \mathbf{f}(a).$$

Since $a \in \mathcal{A}$ was arbitrary, $\omega q \in P(\mathbf{f})$.

Corollary 1. $\{\omega \mathbf{1} : \omega \in P(f)\} \subseteq P(\mathbf{f})$.

THEOREM 2. Let $p \in P(\mathbf{f})$ and suppose that f is non-constant. Then:

- (1) $\sigma(p) \subseteq P(f)$.
- (2) $p \in \mathcal{A}^{c}$.
- (3) $p \in P(\mathbf{f}')$.

Proof. (1) We have $f(p) = \mathbf{f}(p) = \mathbf{f}(0) = a_0 \mathbf{1}$. Put $g(z) = f(z) - a_0$. Then g(p) = 0. The spectral mapping theorem ([3, Satz 99.2]) gives

$$g(\sigma(p)) = \sigma(g(p)) = \{0\}.$$

Since $\sigma(p)$ is compact and g is non-constant, $\sigma(p)$ is finite, say $\sigma(p) = \{\omega_1, \ldots, \omega_n\}$, and $g(\omega_j) = 0$ $(j = 1, \ldots, n)$. Therefore $f(\omega_j) = f(0)$. Fix $z_0 \in \mathbb{C}$ and define $h \in H(\mathbb{C})$ by $h(z) = g(z + z_0)$. Then

$$\mathbf{h}(a+p) = \mathbf{g}(a+p+z_0\mathbf{1}) = \mathbf{f}((a+z_0\mathbf{1})+p) - a_0\mathbf{1}$$

= $\mathbf{f}(a+z_0\mathbf{1}) - a_0\mathbf{1} = \mathbf{g}(a+z_0\mathbf{1}) = \mathbf{h}(a)$

for all $a \in \mathcal{A}$. This shows that $p \in P(\mathbf{h})$. As above, $h(\omega_j) = h(0)$ $(j = 1, \ldots, n)$. Thus

$$f(z_0) - a_0 = g(z_0) = h(0) = h(\omega_j) = g(\omega_j + z_0) = f(\omega_j + z_0) - a_0$$

for $j = 1, ..., n$. Consequently, $\omega_j \in P(f) \ (j = 1, ..., n)$.

(2) Since f is non-constant, there is some $z_0 \in \mathbb{C}$ such that $f'(z_0) \neq 0$. Without loss of generality we can assume that $z_0 = 0$, so $a_1 \neq 0$. Now take $a \in \mathcal{A}$. Then

$$(a+p)\mathbf{f}(a) = (a+p)\mathbf{f}(a+p) = \mathbf{f}(a+p)(a+p) = \mathbf{f}(a)(a+p).$$

So $p\mathbf{f}(a) = \mathbf{f}(a)p$ for all $a \in \mathcal{A}$. Therefore

$$p\mathbf{f}(za) = \mathbf{f}(za)p$$
 for $a \in \mathcal{A}$ and $z \in \mathbb{C}$.

This gives

$$\sum_{n=0}^{\infty} a_n z^n p a^n = \sum_{n=0}^{\infty} a_n z^n a^n p$$

for $a \in \mathcal{A}$ and $z \in \mathbb{C}$. Comparing coefficients yields

$$a_n p a^n = a_n a^n p$$
 for $a \in \mathcal{A}$ and $n \ge 0$.

For n = 1 we get $a_1pa = a_1ap$ $(a \in \mathcal{A})$. Since $a_1 \neq 0$, $p \in \mathcal{A}^c$.

(3) We have $\mathbf{f}(za+p) = \mathbf{f}(za)$ for $z \in \mathbb{C}$ and $a \in \mathcal{A}$. According to Proposition 2,

$$\mathbf{f}'(za+p)a = \mathbf{f}'(za)a \quad (z \in \mathbb{C}, \ a \in \mathcal{A}).$$

Thus for z=1,

(*)
$$\mathbf{f}'(a+p)a = \mathbf{f}'(a)a \quad \text{for each } a \in \mathcal{A}.$$

Now fix $a \in \mathcal{A}$ and define $\phi : \mathbb{C} \to \mathcal{A}$ by

$$\phi(z) = \mathbf{f}'(a - z\mathbf{1} + p) - \mathbf{f}'(a - z\mathbf{1}).$$

By (*), $\phi(z)(a-z\mathbf{1})=0$ for every $z\in\mathbb{C}$. If |z|>||a||, then $z\not\in\sigma(a)$, thus $a-z\mathbf{1}$ is invertible in \mathcal{A} . Therefore $\phi(z)=0$ for $z\in\mathbb{C}$ with |z|>||a||. Since ϕ is analytic on \mathbb{C} , we get $\phi(z)=0$ for each $z\in\mathbb{C}$. Consequently,

$$\mathbf{f}'(a-z\mathbf{1}+p) = \mathbf{f}'(a-z\mathbf{1}) \quad (z \in \mathbb{C}).$$

Thus, for z = 0, $\mathbf{f}'(a + p) = \mathbf{f}'(a)$. Since $a \in \mathcal{A}$ was arbitrary, $p \in P(\mathbf{f}')$.

PROPOSITION 3. Suppose that f is non-constant. Then there exists $z_0 \in \mathbb{C}$ such that the function $h \in H(\mathbb{C})$ given by $h(z) = f(z + z_0) - f(z_0)$ has only simple zeros.

Proof. First we show that there is some $c \in f(\mathbb{C})$ such that f - c has only simple zeros. To this end assume to the contrary that for each $c \in f(\mathbb{C})$ the function f - c has a zero of order ≥ 2 . Therefore for each $c \in f(\mathbb{C})$ there is $z_c \in \mathbb{C}$ with

$$f(z_c) = c, \quad f'(z_c) = 0.$$

It follows that $z_{c_1} \neq z_{c_2}$ if $c_1 \neq c_2$. Since f is non-constant, $f(\mathbb{C})$ is a region in \mathbb{C} , hence $f(\mathbb{C})$ is uncountable. This shows that the set $\{z_c : c \in f(\mathbb{C})\}$ is uncountable. Hence the set of zeros of f' is uncountable, a contradiction. Thus we have shown that there is some $z_0 \in \mathbb{C}$ such that $f - f(z_0)$ has only simple zeros. If $h \in H(\mathbb{C})$ is defined by $h(z) = f(z + z_0) - f(z_0)$, then h has the desired property. \blacksquare

The following theorem contains a characterization of the periods of \mathbf{f} , and is due to E. Vesentini [5]. Vesentini's proof makes extensive use of the Dunford functional calculus and is essentially different from the proof given here.

Theorem 3 (Vesentini). Suppose that f is non-constant. Then the following assertions are equivalent:

(1) $p \in P(\mathbf{f})$.

(2) There are $\omega_1, \ldots, \omega_n \in P(f)$ and $q_1, \ldots, q_n \in \mathcal{A}^c$ such that

$$\mathbf{1} = q_1 + \ldots + q_n, \quad 0 \neq q_j^2 = q_j \quad (j = 1, \ldots, n), \quad q_j q_k = 0 \quad (j \neq k)$$
and

$$p = \omega_1 q_1 + \ldots + \omega_n q_n.$$

Proof. (1) \Rightarrow (2). By Proposition 3 there is $z_0 \in \mathbb{C}$ such that the entire function $h(z) = f(z + z_0) - f(z_0)$ has only simple zeros. It is clear that P(h) = P(f). As in the proof of Theorem 2, $p \in P(\mathbf{h})$. By Theorem 2(1) we derive $\sigma(p) = \{\omega_1, \ldots, \omega_n\} \subseteq P(h) = P(f)$. Since $h(p) = \mathbf{h}(p) = \mathbf{h}(0) = h(0)\mathbf{1} = 0$ and h has only simple zeros, Proposition 8.11 in [2] shows that there are idempotents $q_1, \ldots, q_n \in \mathcal{A} \setminus \{0\}$ with

$$q_j q_k = 0 \quad (j \neq k), \quad q_1 + \ldots + q_n = 1, \quad pq_j = \omega_j q_j \quad (j = 1, \ldots, n).$$

Thus $p = p(q_1 + \ldots + q_n) = \omega_1 q_1 + \ldots \omega_n q_n$. From [2, Remark (2), p. 37] it follows that

$$q_j b = bq_j$$
 for each $b \in \mathcal{A}$ with $pb = bp$

 $(j=1,\ldots,n)$. By Theorem 2(2) we derive $q_j \in \mathcal{A}^c$ $(j=1,\ldots,n)$.

(2)⇒(1). Use Theorem 1 to get $\omega_j q_j \in P(\mathbf{f})$ for $j=1,\ldots,n$. Thus $p \in P(\mathbf{f})$. ■

Examples. (1) If

$$f(z) = \exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!},$$

then $p \in P(\mathbf{exp})$ if and only if there are $k_1, \ldots, k_n \in \mathbb{Z}$ and $q_1, \ldots, q_n \in \mathcal{A}^c$ with $q_j^2 = q_j \ (j = 1, \ldots, n)$ and $p = 2k_1\pi iq_1 + \ldots + 2k_n\pi iq_n$.

(2) If

$$f(z) = \cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!},$$

then $p \in P(\mathbf{cos})$ if and only if there are $k_1, \ldots, k_n \in \mathbb{Z}$ and $q_1, \ldots, q_n \in \mathcal{A}^c$ with $q_j^2 = q_j \ (j = 1, \ldots, n)$ and $p = 2k_1\pi q_1 + \ldots + 2k_n\pi q_n$.

(3) Let $w \in \mathbb{C}^m$ denote the vector $(1, \dots, 1)$, and consider the Banach algebra

$$\mathcal{A} = \{ A \in \mathbb{C}^{m \times m} : \exists \lambda \in \mathbb{C} : A^{\mathrm{T}} w = A w = \lambda w \}.$$

Put

$$Q = \frac{1}{m} \left(\begin{array}{ccc} 1 & \dots & 1 \\ \vdots & \vdots & \vdots \\ 1 & \dots & 1 \end{array} \right).$$

Then $\mathbf{1} \neq Q = Q^2$ and $Q \in \mathcal{A}^c$. Therefore $2\pi i Q \in P(\mathbf{exp})$ and $2\pi Q \in P(\mathbf{cos})$.

(4) Let X be a complex Banach space and let $\mathcal{B}(X)$ be the Banach algebra of all bounded linear operators on X. Assume that $P_0 \in \mathcal{B}(X)$ and $x \in X$, $x \neq 0$ are such that $\exp(P_0)x = x$. We consider the following P_0 -invariant closed subspace of X:

$$Y = \overline{[P_0^k x : k \in \mathbb{N}_0]}.$$

Let $P: Y \to Y$ be the restriction of P_0 to Y, and consider the commutative subalgebra of $\mathcal{B}(Y)$ defined by

$$\mathcal{A} = \overline{[P^k : k \in \mathbb{N}_0]}.$$

Obviously $\exp(A + P) = \exp(A)$ for all $A \in \mathcal{A}$, that is, $P \in P(\mathbf{exp})$. Hence there exist $k_1, \ldots, k_n \in \mathbb{Z}$ and $Q_1, \ldots, Q_n \in \mathcal{A}^c$ with $Q_j^2 = Q_j$ $(j = 1, \ldots, n)$ and

$$P = 2k_1\pi iQ_1 + \ldots + 2k_n\pi iQ_n.$$

Moreover $v_j := Q_j x$ satisfies $Pv_j = 2k_j \pi i v_j \ (j = 1, ..., n)$, and

$$x = v_1 + \ldots + v_n.$$

Therefore, the eigenvector x of $\exp(P_0)$ can be written as a finite sum of eigenvectors of P_0 .

In this context, let X be a normable complete topological subspace of the Fréchet space $H(\mathbb{C})$ with $f' \in X$ for each $f \in X$. Let $D: X \to X$ denote the differential operator Df = f', and let $g \in X$ with $\omega \in P(g)$, $\omega \neq 0$. Then

$$(\exp(\omega D)g)(z) = g(z+\omega) = g(z) \quad (z \in \mathbb{C}).$$

Thus $g = f_1 + \ldots + f_n$ with $f_1, \ldots, f_n \in X$ satisfying $\omega Df_j = 2k_j\pi i f_j$. Therefore g has the form

$$g(z) = \sum_{j=1}^{n} \gamma_j \exp\left(\frac{2k_j \pi i}{\omega} z\right)$$

with $k_1, \ldots, k_n \in \mathbb{Z}$ and $\gamma_1, \ldots, \gamma_n \in \mathbb{C}$.

In particular, there is no normable complete topological subspace X of $H(\mathbb{C})$ such that $f' \in X$ for all $f \in X$, containing the function

$$\sum_{k=0}^{\infty} \frac{1}{k!} \exp(2k\pi i z),$$

for example.

The next result contains further characterizations of periods of f.

Theorem 4. If f is non-constant and $p \in A$ then the following assertions are equivalent:

(1) $p \in P(\mathbf{f})$.

- (2) $p \in \mathcal{A}^c$, $\sigma(p) \subseteq P(f)$ and each $\omega \in \sigma(p)$ is a simple pole of the resolvent $r(\lambda, p) = (\lambda \mathbf{1} p)^{-1}$.
- (3) $p \in \mathcal{A}^{c}$ and there are $\omega_{1}, \ldots, \omega_{n} \in P(f)$ such that $\omega_{j} \neq \omega_{k}$ $(j \neq k)$ and

$$(p - \omega_1 \mathbf{1}) \dots (p - \omega_n \mathbf{1}) = 0.$$

Proof. (1) \Rightarrow (2). By Theorems 2 and 3, $p \in \mathcal{A}^{c}$, $\sigma(p) = \{\omega_{1}, \ldots, \omega_{n}\} \subseteq P(f)$ and there are $q_{1}, \ldots, q_{n} \in \mathcal{A}^{c}$ such that

$$1 = q_1 + \ldots + q_n, \quad 0 \neq q_i^2 = q_j, \quad q_i q_k = 0 \quad (j \neq k)$$

and

$$p = \omega_1 q_1 + \ldots + \omega_n q_n.$$

We can assume that $\omega_j \neq \omega_k$ for $j \neq k$. Define the analytic function $\phi : \mathbb{C} \setminus \sigma(p) \to \mathcal{A}$ by

$$\phi(\lambda) = \sum_{j=1}^{n} \frac{q_j}{\lambda - \omega_j}.$$

Since $p \in \mathcal{A}^{c}$ and $pq_{j} = \omega_{j}q_{j} \ (j = 1, \dots, n),$

$$(\lambda \mathbf{1} - p)\phi(\lambda) = \phi(\lambda)(\lambda \mathbf{1} - p) = \sum_{i=1}^{n} \frac{\lambda q_i - pq_i}{\lambda - \omega_i} = \sum_{i=1}^{n} q_i = \mathbf{1}.$$

This shows that $\phi(\lambda) = r(\lambda, p)$ $(\lambda \in \mathbb{C} \setminus \sigma(p))$. Since $q_j \neq 0$, it follows that each ω_j is a simple pole of $r(\lambda, p)$.

 $(2)\Rightarrow(1)$. We have $\sigma(p)=\{\omega_1,\ldots,\omega_n\}\subseteq P(f)$ with $\omega_j\neq\omega_k$ for $j\neq k$. By [2, Proposition 7.9] there exist $q_1,\ldots,q_n\in\mathcal{A}$ such that

$$\mathbf{1} = q_1 + \ldots + q_n, \quad q_j q_k = 0 \quad (j \neq k), \quad 0 \neq q_j^2 = q_j \quad (j = 1, \ldots, n),$$
 and

$$\sigma(pq_j) = \{0, \omega_j\} \quad (j = 1, \dots, n) \quad \text{if } n > 1.$$

Furthermore (see [2, Remark (2), p. 37]), $q_j a = aq_j$ for each $a \in \mathcal{A}$ with pa = ap. Since $p \in \mathcal{A}^c$, we derive $q_j \in \mathcal{A}^c$ (j = 1, ..., n). Next we show that $pq_1 = \omega_1 q_1$. Let r > 0 be so small that $\omega_2, ..., \omega_n \notin U = \{\lambda \in \mathbb{C} : |\lambda - \omega_1| < r\}$. Put $\gamma(t) = \omega_1 + re^{it}$ $(t \in [0, 2\pi])$. Then (see [2, Remark (1), p. 37])

$$q_1 = \frac{1}{2\pi i} \int_{\gamma} r(z, p) \, dz.$$

Since ω_1 is a simple pole of $r(\lambda, p)$, the Laurent expansion of $r(\lambda, p)$ on $U \setminus \{\omega_1\}$ has the form

$$r(\lambda, p) = \frac{q_1}{\lambda - \omega_1} + g(\lambda),$$

where $g: U \to \mathcal{A}$ is analytic (see [3, Satz 97.4]). For $\lambda \in U \setminus \{\omega_1\}$ it follows that

$$\mathbf{1} = (\lambda \mathbf{1} - p)r(\lambda, p) = \frac{(\lambda \mathbf{1} - p)q_1}{\lambda - \omega_1} + (\lambda \mathbf{1} - p)g(\lambda),$$

thus

$$(\lambda - \omega_1)\mathbf{1} = (\lambda \mathbf{1} - p)q_1 + (\lambda - \omega_1)(\lambda \mathbf{1} - p)g(\lambda).$$

If $\lambda \to \omega_1$ it follows that $pq_1 = \omega_1 q_1$. A similar proof shows that $pq_j = \omega_j q_j$ for $j = 2, \ldots, n$. Then we have

$$p = p(q_1 + \ldots + q_n) = \omega_1 q_1 + \ldots + \omega_n q_n.$$

Theorem 3 shows now that $p \in P(\mathbf{f})$.

 $(1)\Rightarrow(3)$. Let $h\in H(\mathbb{C})$ be as in the proof of Theorem 3. Then $P(h)=P(f)=\sigma(p)=\{\omega_1,\ldots,\omega_n\}$ and h(p)=0. Since h has only simple zeros, Proposition 8.11 in [2] shows that

$$(p - \omega_1 \mathbf{1}) \dots (p - \omega_n \mathbf{1}) = 0.$$

From $p \in P(\mathbf{f})$, we get $p \in \mathcal{A}^{c}$ (Theorem 2).

(3) \Rightarrow (1). Let $\varphi(z) = (z - \omega_1) \dots (z - \omega_n)$ ($z \in \mathbb{C}$). Then $\varphi \in H(\mathbb{C})$, φ has only simple zeros and $\varphi(p) = 0$. Again by [2, Proposition 8.11], there exist non-zero idempotents $q_1, \dots, q_n \in \mathcal{A}$ such that

$$1 = q_1 + \ldots + q_n, \quad q_j q_k = 0 \quad (j \neq k), \quad pq_j = \omega_j q_j \quad (j = 1, \ldots, n).$$

It follows from [2, Remark (2), p. 37] that $q_j a = aq_j$ for each $a \in \mathcal{A}$ with ap = pa. Since $p \in \mathcal{A}^c$, also $q_j \in \mathcal{A}^c$ (j = 1, ..., n). From $p = p(q_1 + ... + q_n) = \omega_1 q_1 + ... + \omega_n q_n$ we see now that $p \in P(\mathbf{f})$ (Theorem 3).

Now we consider special types of Banach algebras.

A representation of \mathcal{A} on a normed linear space X is a homomorphism of \mathcal{A} into the algebra $\mathcal{B}(X)$ of all bounded linear operators on X. A representation T is said to be *strictly irreducible* if $T \neq 0$ and if $\{0\}$ and X are the only invariant subspaces of X for T (i.e. Y with $T(a)Y \subseteq Y$ for all $a \in \mathcal{A}$). We call \mathcal{A} primitive if there is an injective strictly irreducible representation of \mathcal{A} on a Banach space.

EXAMPLE. If X is a complex Banach space, then $\mathcal{B}(X)$ is a primitive Banach algebra (see [1, F.2.2]).

PROPOSITION 4. If \mathcal{A} is primitive, then $\mathcal{A}^{c} = \{\alpha \mathbf{1} : \alpha \in \mathbb{C}\}.$

Proof. [4, Corollary 2.4.5]. ■

Theorem 5. Let \mathcal{A} be a primitive Banach algebra and suppose that $f \in H(\mathbb{C})$ is non-constant. Then

$$P(\mathbf{f}) = \{\omega \mathbf{1} : \omega \in P(f)\}.$$

Proof. That $\{\omega \mathbf{1} : \omega \in P(f)\} \subseteq P(\mathbf{f})$ follows from Corollary 1. Now take $p \in P(\mathbf{f})$. By Theorem 2(2) and Proposition 4, $p = \omega \mathbf{1}$ for some $\omega \in \mathbb{C}$. Theorem 2(1) gives

$$\{\omega\} = \sigma(p) \subseteq P(f).$$

Thus $\omega \in P(f)$.

REMARK. There is an elementary proof of Theorem 5 if \mathcal{A} is the Banach algebra $\mathcal{B}(X)$ (X a complex Banach space): Because of Theorem 3 it suffices to show that if $0 \neq Q^2 = Q \in \mathcal{B}(X)^c$, then Q = I (where I denotes the identity on X). Therefore let $0 \neq Q^2 = Q \in \mathcal{B}(X)^c$. Then

$$X = Q(X) \oplus N(Q),$$

where $Q(X) = \{Qx : x \in X\} = \{x \in X : Qx = x\}$ and $N(Q) = \{x \in X : Qx = 0\}$. We have to show that $N(Q) = \{0\}$. Assume to the contrary that there is $z_0 \in N(Q)$ with $z_0 \neq 0$. Since $Q \neq 0$ there exists $y_0 \in Q(X)$ such that $y_0 \neq 0$. Now put $x_0 = y_0 + z_0$. Since $z_0 \neq 0$, $z_0 \notin Q(X)$. Furthermore, Q(X) is a closed subspace of X, thus, by the Hahn–Banach Theorem, there is a bounded linear functional φ on X with

$$\varphi(x_0) \neq 0$$
, $\varphi(Qx) = 0$ for all $x \in X$.

Now define the operator $A \in \mathcal{B}(X)$ by

$$Ax = \varphi(x)x_0 \quad (x \in X).$$

Then $AQx_0 = \varphi(Qx_0) x_0 = 0$ and $QAx_0 = \varphi(x_0) Qx_0$. Since $Q \in \mathcal{B}(X)^c$ and $\varphi(x_0) \neq 0$, we get $Qx_0 = 0$. From $x_0 = y_0 + z_0$ and $z_0 \in N(Q)$ it follows that $Qy_0 = 0$, thus $y_0 = Qy_0 = 0$, a contradiction.

Proposition 5. Let \mathcal{A} be a C^* -algebra and let $q \in \mathcal{A}^c$ and $q^2 = q$. Then $q^* = q$.

Proof. By [1, BA.4.3] there exists $e = e^2 = e^* \in \mathcal{A}$ such that qe = e and eq = q. Since $q \in \mathcal{A}^c$, we have qe = eq, thus q = e and therefore $q^* = q$.

For the next result observe that by Corollary 1 and Theorem 2, we have $P(f) = \{0\} \Leftrightarrow P(\mathbf{f}) = \{0\}.$

COROLLARY 2. Let A be a C^* -algebra and suppose that f is non-constant and that $P(f) \neq \{0\}$. Then:

- (1) Each $p \in P(\mathbf{f})$ is normal.
- (2) $P(f) \subseteq \mathbb{R} \Leftrightarrow p = p^* \text{ for each } p \in P(\mathbf{f}).$
- (3) $P(f) \subseteq i\mathbb{R} \Leftrightarrow p = -p^* \text{ for each } p \in P(\mathbf{f}).$

Proof. For (1), notice that since $p \in \mathcal{A}^c$ (Theorem 2), $pp^* = p^*p$. For (2) and (3) let $\omega_0 \in P(f) \setminus \{0\}$ with $|\omega_0|$ minimal. If $p \in P(\mathbf{f})$ then, by

Theorem 3, there are $k_1, \ldots, k_n \in \mathbb{Z}$ and $q_1, \ldots, q_n \in \mathcal{A}^c$ with $q_j^2 = q_j$ $(j = 1, \ldots, n)$ and

$$p = \omega_0(k_1q_1 + \ldots + k_nq_n).$$

Proposition 5 gives $p^* = \overline{\omega}_0(k_1q_1 + \ldots + k_nq_n)$, thus

$$p - p^* = (\omega_0 - \overline{\omega}_0)(k_1q_1 + \ldots + k_nq_n),$$

$$p + p^* = (\omega_0 + \overline{\omega}_0)(k_1q_1 + \ldots + k_nq_n).$$

This shows that (2) and (3) hold.

COROLLARY 3. Let A and f be as in Corollary 2. Then the following assertions are equivalent:

- (1) $P(\mathbf{f})$ is a *-subset (i.e., $p \in P(\mathbf{f})$ implies $p^* \in P(\mathbf{f})$).
- (2) $P(f) \subseteq \mathbb{R}$ or $P(f) \subseteq i\mathbb{R}$.

Proof. (1) \Rightarrow (2). Take $\omega_0 \in P(f) \setminus \{0\}$. By Corollary 1, $\omega_0 \mathbf{1} \in P(\mathbf{f})$, hence $\overline{\omega}_0 \mathbf{1} \in P(\mathbf{f})$. Theorem 2(1) gives

$$\sigma(\overline{\omega}_0 \mathbf{1}) \subseteq P(f)$$
;

thus $\overline{\omega}_0 \in P(f)$. It follows that $\overline{\omega}_0 = \omega_0$ or $\overline{\omega}_0 = -\omega_0$.

 $(2)\Rightarrow(1)$. Use Corollary 2. \blacksquare

COROLLARY 4. Assume that A and f are as in Corollary 2. If the coefficients a_0, a_1, \ldots of f are real, then $P(\mathbf{f})$ is a *-subset.

Proof. For $a \in \mathcal{A}$ we have $\mathbf{f}(a^*) = \sum_{n=0}^{\infty} a_n(a^*)^n$, thus $\mathbf{f}(a^*)^* = \mathbf{f}(a)$. Now take $p \in P(\mathbf{f})$. Then, for each $a \in \mathcal{A}$,

$$\mathbf{f}(a+p^*) = \mathbf{f}((a^*)^* + p^*) = \mathbf{f}((a^*+p)^*) = \mathbf{f}(a^*+p)^* = \mathbf{f}(a^*)^* = \mathbf{f}(a);$$
thus $p^* \in P(\mathbf{f})$.

In C^* -algebras each $p \in P(\mathbf{f})$ is normal. The following corollary shows that in a general Banach algebra, elements in $P(\mathbf{f})$ share some properties of normal operators (on complex Hilbert spaces) with closed range.

COROLLARY 5. For $p \in P(\mathbf{f})$ we have:

- (1) There is $q \in A$ with pqp = p and qpq = q (hence p has a pseudo-inverse).
 - (2) $pA = \{pa : a \in A\}$ is closed.
 - (3) $\mathcal{A} = p\mathcal{A} \oplus \{a \in \mathcal{A} : pa = 0\}.$
 - (4) If $a \in \mathcal{A}$ and $p^2a = 0$, then pa = 0 (hence the ascent of p is ≤ 1).
 - (5) $p^2 \mathcal{A} = p \mathcal{A}$ (hence the descent of p is ≤ 1).

Proof. By Theorems 2 and 3, $p \in \mathcal{A}^{c}$, $\sigma(p) = \{\omega_{1}, \ldots, \omega_{n}\} \subseteq P(f)$ $(\omega_{j} \neq \omega_{k} \text{ for } j \neq k)$ and there are $q_{1}, \ldots, q_{n} \in \mathcal{A}^{c}$ with

$$1 = q_1 + \ldots + q_n, \quad 0 \neq q_j = q_j^2 \quad (j = 1, \ldots, n),$$

 $q_j q_k = 0 \quad (j \neq k), \quad p = \omega_1 q_1 + \ldots + \omega_n q_n.$

If $0 \notin \sigma(p)$, then we are done. Hence let $0 \in \sigma(p)$. We can assume that $\omega_1 = 0$. Thus $p = \omega_2 q_2 + \ldots + \omega_n q_n$.

(1) Put $q = \omega_2^{-1}q_2 + \ldots + \omega_n^{-1}q_n$. Then $pq = q_2 + \ldots + q_n = \mathbf{1} - q_1$. Thus $pqp = (\mathbf{1} - q_1)p = p - pq_1 = p - \omega_1q_1 = p$ and $qpq = q(\mathbf{1} - q_1) = q - qq_1 = q$.

(2) Put r = pq. Then $r^2 = pqpq = pq = r$, thus $r\mathcal{A}$ is closed. But

$$r\mathcal{A} = pq\mathcal{A} \subseteq p\mathcal{A} = pqp\mathcal{A} \subseteq pq\mathcal{A} = r\mathcal{A},$$

hence pA = rA.

- (3) Since $r^2 = r$, we have $\mathcal{A} = r\mathcal{A} \oplus (\mathbf{1} r)\mathcal{A} = p\mathcal{A} \oplus (\mathbf{1} r)\mathcal{A}$. It is easy to see that $(\mathbf{1} r)\mathcal{A} = \{a \in \mathcal{A} : pa = 0\}$.
 - (4) Let $a \in \mathcal{A}$ and $p^2a = 0$. Then $pa \in p\mathcal{A} \cap (\mathbf{1} r)\mathcal{A} = \{0\}$.
- (5) It is clear that $p^2 \mathcal{A} \subseteq p \mathcal{A}$. Since pqp = p and $p \in \mathcal{A}^c$, it follows that $p\mathcal{A} = p^2 q \mathcal{A} \subseteq p^2 \mathcal{A}$.

References

- B. A. Barnes, G. J. Murphy, M. R. F. Smyth and T. T. West, Riesz and Fredholm Theory in Banach Algebras, Pitman, 1982.
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973.
- [3] H. Heuser, Funktionalanalysis, Teubner, 1986.
- [4] C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, 1960.
- [5] E. Vesentini, *Periodic entire functions and reducible Banach algebras*, in: Several Complex Variables I (College Park, MD, 1970), Springer, 1970, 203–211.

Mathematisches Institut I

Universität Karlsruhe

D-76128 Karlsruhe, Germany

 $\hbox{E-mail: gerd.herzog@math.uni-karlsruhe.de}\\$

christoph.schmoeger@math.uni-karlsruhe.de