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Abstract. We introduce the concept of weakly mixing sets of order n and show that,
in contrast to weak mixing of maps, a weakly mixing set of order n does not have to
be weakly mixing of order n + 1. Strictly speaking, we construct a minimal invertible
dynamical system which contains a non-trivial weakly mixing set of order 2, whereas it
does not contain any non-trivial weakly mixing set of order 3.

In dimension one this difference is not that much visible, since we prove that every
continuous map f from a topological graph into itself has positive topological entropy if
and only if it contains a non-trivial weakly mixing set of order 2 if and only if it contains
a non-trivial weakly mixing set of all orders.

1. Introduction. The following property of a continuous mapping f
acting on a compact metric space X is well known in topological dynamics.
We say that f is weakly mixing if for any non-empty open sets U1, U2, V1, V2

there is k > 0 such that fk(Ui) ∩ Vi 6= ∅ for i = 1, 2. It was proved more
than forty years ago by Furstenberg that if in the definition of weak mixing
we allow n pairs of sets U1, . . . , Un, V1, . . . , Vn instead of only two of them
then the property does not change (i.e. we obtain a definition equivalent to
weak mixing).

Blanchard and Huang introduced in [BH] a local version of weak mixing.
In [BH], a closed set A with at least two elements is said to be weakly mixing
if for any open sets U1, . . . , Un, V1, . . . , Vn intersecting A there is k > 0 such
that fk(Ui ∩A) ∩ Vi 6= ∅ for i = 1, . . . , n.

Throughout this paper, by a topological dynamical system (or simply
TDS ) we mean a pair (X, f), where (X, d) is a compact metric space and
f : X → X is a continuous map. If X is a singleton, then we say that (X, f)
is trivial ; if f is a homeomorphism or surjection then we say that (X, f) is
invertible or surjective.
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Denote by N, N0,Z and R the set of all positive integers, non-negative
integers, integers and real numbers, respectively. The approach in [BH] can
be extended as follows.

Definition 1.1. Let (X, f) be a TDS, ∅ 6= A ⊆ X and n ∈ N \ {1}.
Define A(n) = {(x1, . . . , xn) : x1, . . . , xn ∈ A}. We say that A is

(1.1.1) transitive if for each pair of open subsets (U, V ) of X with U ∩A 6= ∅
and V ∩A 6= ∅ there exists m ∈ N such that fm(V ∩A) ∩ U 6= ∅;

(1.1.2) weakly mixing of order n if A(n) is a transitive set of (X(n), f (n)),
where f (n) acts naturally on X(n) by

f (n)(x1, . . . , xn) = (f(x1), . . . , f(xn));

(1.1.3) weakly mixing of all orders or simply weakly mixing if A is weakly
mixing of order m for m = 2, 3, . . . .

In the above cases we say that A is non-trivial if it contains at least two
points.

It was proved in [BH] that an invertible TDS with positive topologi-
cal entropy always has a non-trivial weakly mixing set. We will prove that
in dimension one this characterization is to some extent full, that is, the
following result holds.

Theorem 1.2. Let (G, f) be a TDS acting on a topological graph G. In
that case the following statements are equivalent:

(1.2.1) (G, f) has positive topological entropy.
(1.2.2) (G, f) contains a non-trivial weakly mixing set.
(1.2.3) (G, f) contains a non-trivial weakly mixing set of order 2.

By a topological graph we mean here a compact, connected metric space
which is homeomorphic to a polyhedron (a geometric realization) of some
finite one-dimensional complex (see [Mo, Chapter 0])

On the unit interval we can say even more (see Theorem 4.3): if a TDS
acts on the unit interval then arbitrarily close (in the sense of Hausdorff
metric) to any given weakly mixing set of order 2 we can find a weakly
mixing set.

As mentioned before, there is a well-known theorem, first proved by
Furstenberg, which asserts that in the case of an abstract dynamical system
defined by an action of an abelian group, the property of weak mixing of
order 2 implies weak mixing of all orders. This result is no longer valid for
actions of non-abelian groups [G, W]. Thus, it is natural to ask whether a
weakly mixing set of order 2 is weakly mixing of all orders. We will answer
this question in the negative in the second part of this paper. Namely, we
will provide examples showing that the concepts of weakly mixing sets of
order 2 and weakly mixing sets are different.
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First, following the ideas used by Glasner in his proof of [G, Theorem
4.1.2] we provide a direct construction of the following system.

Example 1.3. There exists a TDS (X, f) such that

(1.3.1) X is a weakly mixing set,
(1.3.2) (X, f) contains a weakly mixing set of order 2 but not 3.

Next, using residual properties of a special group of homeomorphisms,
we apply results of [GW] to obtain another interesting example.

Example 1.4. There exists a minimal invertible TDS which

(1.4.1) has zero topological entropy,
(1.4.2) contains a non-trivial weakly mixing set of order 2,
(1.4.3) contains no non-trivial weakly mixing set of order 3.

This means that, there is no hope for obtaining results similar to Theo-
rem 1.2 (or Theorem 4.3) in a general setting (or even in dimension two).

The paper is organized as follows. In Section 2, we introduce the notion
of transitive sets and explore its basic properties. In Section 3, we investigate
basic properties of weakly mixing sets. Among other things, we show that
every non-trivial weakly mixing set of order 2 contains no isolated points;
each equicontinuous TDS contains no non-trivial weakly mixing sets of or-
der 2; a TDS with positive topological entropy contains many non-trivial
weakly mixing sets; and each TDS with a non-trivial weakly mixing set has
positive topological sequence entropy.

Section 4 contains the proof of Theorem 1.2 together with some other
properties of weakly mixing sets specific for dimension one. In Section 5, we
discuss relations between weak mixing of a factor map and weakly mixing
sets in its fibers. The last two sections (Sections 6 and 7) concern the ques-
tion whether a weakly mixing set of order 2 is weakly mixing of all orders
(that is, weakly mixing in the sense of [BH]). We show that these concepts
are different, i.e. the situation is much more complex than in the case of
global weak mixing implied by weak mixing of a TDS, by providing detailed
constructions of Examples 1.3 and 1.4.

2. Basic properties of transitive sets. Let (X, f) be a TDS and
∅ 6= K ⊆ X a compact subset. When f(K) ⊆ K, we say that (K, f) is
a subsystem of (X, f). Let ∅ 6= A ⊆ X and x ∈ X. Put Orb+(A, f) =⋃
n∈N0

fn(A), the positive orbit of A under f , and Orb(A, f) =
⋃
n∈Z f

n(A),
the orbit of A under f when (X, f) is invertible. To simplify notation, we
write Orb+(x, f) = Orb+({x}, f) and Orb(x, f) = Orb({x}, f). Obviously
(Orb+(A, f), f) (and also (Orb(A, f), f) when (X, f) is invertible) forms a
subsystem of (X, f).
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Let (X, f) be a TDS and x ∈ X. We say that x is a fixed point of (X, f) if
f(x) = x; a periodic point of (X, f) if fn(x) = x for some n ∈ N; a recurrent
point of (X, f) if there exists {k1 < k2 < · · · } ⊆ N such that fknx → x
as n → ∞ (if and only if there exists a sequence {kn}n∈N in N such that
fknx → x as n → ∞, if and only if x ∈ Orb+(f(x), f)); a non-wandering
point of (X, f) if fn(U)∩U 6= ∅ for some n ∈ N whenever U is a neighborhood
of x and a wandering point of (X, f) otherwise; a transitive point of (X, f)
if Orb+(x, f) is dense in X. Denote by Rec(X, f), Ω(X, f) and Tran(X, f)
the set of all recurrent points, non-wandering points and transitive points
of (X, f) respectively. Recall that (X, f) is transitive if f−n(U) ∩ V 6= ∅ for
some n ∈ N whenever U and V are both non-empty open subsets of X;
minimal if Tran(X, f) = X.

Bellow, we collect some well-known facts and easy observations.

Lemma 2.1. Let (X, f) be a TDS. Then

(2.1.1) Rec(X, f) = Rec(X, fn) for every n ∈ N \ {1}.
(2.1.2) If (X, f) is transitive then f(X) = X and X is either perfect (by a

perfect set we mean a non-empty compact set without isolated points)
or a periodic orbit (i.e. X = Orb+(x, f) for some periodic point x
of (X, f)).

(2.1.3) If (X, f) is invertible then (X, f) is transitive if and only if (X, f−1)
is transitive.

(2.1.4) Tran(X, f) 6= ∅ does not imply the transitivity of the TDS (X, f) in
general, as it may happen that Tran(X, f) 6= ∅ even if f(X) ( X.

(2.1.5) If f(X) = X or X is perfect, then Tran(X, f) ⊆ Rec(X, f) and
(X, f) is transitive if and only if Tran(X, f) is a dense Gδ subset of
X if and only if Tran(X, f) 6= ∅.

(2.1.6) (X, f) is minimal if and only if for each non-empty open U ⊆ X
there exists n ∈ N with

⋃n
i=0 f

−i(U) = X if and only if Tran(X, f) =
Rec(X, f) = X.

(2.1.7) If (X, f) is minimal then (X, f) is transitive.

The following result is a direct consequence of the definitions.

Proposition 2.2. Let (X, f) be a TDS and x ∈ X, ∅ 6= A ⊆ X0 ⊆ X.
Then

(2.2.1) x ∈ Rec(X, f) if and only if {x} is a transitive set.
(2.2.2) (X, f) is transitive if and only if X is a transitive set.
(2.2.3) If (X0, f) is a subsystem of (X, f), then A is a transitive set with

respect to (X, f) if and only if it is transitive with respect to (X0, f).
(2.2.4) If A is a transitive set then A ⊆ Ω(X, f).
(2.2.5) If {Xi}i∈I is a family of transitive sets, where I is a totally ordered

set and Xi ⊆ Xj if i ≤ j, then
⋃
i∈I Xi is also transitive.
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Let (X, f) be a TDS and ∅ 6= A, B ⊆ X. Define N(A,B) = {n ∈ N :
fn(A) ∩ B 6= ∅} or equivalently N(A,B) = {n ∈ N : A ∩ f−n(B) 6= ∅}. If
A = {x}, we will simply write N(x,B) instead of N({x}, B).

Proposition 2.3. Let (X, f) be a TDS and ∅ 6= A ⊆ X. Then

(2.3.1) A is a transitive set if and only if N(V ∩A,U) is an infinite set for
each pair of open sets U, V ⊆ X with U ∩A 6= ∅ and V ∩A 6= ∅.

(2.3.2) A is a transitive set if and only if A is a transitive set. Thus if A is
an invariant (i.e. f(A) ⊆ A) transitive set then (A, f) is a transitive
TDS.

(2.3.3) If A is a transitive set then (Orb+(A, f), f) is transitive.
(2.3.4) If A ⊆ Tran(X, f) ∩ Rec(X, f) then A is a transitive set.

Proof. (2.3.1) Assume that A is a transitive set. Fix any open sets
U, V ⊆ X with U ∩ A 6= ∅ and V ∩ A 6= ∅. Then N(V ∩ A,U) 6= ∅, as
A is a transitive set. For each n ∈ N(V ∩A,U), f−n(U) is an open subset of
X with f−n(U) ∩A 6= ∅ and so N(V ∩A, f−n(U)) 6= ∅. In particular, there
is m > 0 such that n,m+n ∈ N(V ∩A,U), which implies that N(V ∩A,U)
is an infinite set.

(2.3.2) First, assume that A is a transitive set. Let U, V ⊆ X be open
sets with U ∩A 6= ∅ and V ∩A 6= ∅. By the assumptions, there exists n ∈ N
with (V ∩ A) ∩ f−n(U) 6= ∅, which implies that (V ∩ A) ∩ f−n(U) 6= ∅ (as
V ∩ f−n(U) is an open subset of X), i.e. N(V ∩ A,U) 6= ∅. Thus, A is a
transitive set. A similar reasoning shows that if A is a transitive set then so
is A.

(2.3.3) Since we have already proved (2.3.2), it is sufficient to show
that Orb+(A, f) is a transitive set. Let U, V ⊆ X be open sets with
U ∩ Orb+(A, f) 6= ∅ and V ∩ Orb+(A, f) 6= ∅. There are integers
iU , iV ≥ 0 such that U ∩ f iU (A) 6= ∅ and V ∩ f iV (A) 6= ∅. Since A
is a transitive set, by (2.3.1) there exists n ∈ N such that n > iV and
fn(f−iV (V )∩A)∩f−iU (U) 6= ∅, which implies fn−iV +iU (V ∩f iV (A))∩U 6= ∅.
Thus N(V ∩Orb+(A, f), U) ⊇ N(V ∩ f iV (A), U) 6= ∅. That is, Orb+(A, f)
is a transitive set.

(2.3.4) Fix open sets U, V ⊆ X such that U∩A 6= ∅ and V ∩A 6= ∅ and let
x0 ∈ U ∩A ⊆ Tran(X, f)∩Rec(X, f). Observe that there exists n ∈ N with
fn(x0) ∈ V (if x0 /∈ V use x0 ∈ Tran(X, f); if x0 ∈ V use x0 ∈ Rec(X, f)),
in particular, N(U ∩A, V ) 6= ∅. Thus, A is a transitive set.

Remark 2.4. The implications converse to (2.3.3) or (2.3.4) do not
hold. To see this, let (X, f) be an invertible transitive TDS such that
X \ Rec(X, f) 6= ∅ (e.g. we can take the full two-sided shift over two sym-
bols). Choose x1 ∈ X \ Rec(X, f) and x2 ∈ Tran(X, f) (Tran(X, f) 6= ∅ by
(2.1.5)). Define A = {x1, x2}. Then (Orb+(A, f), f) = (X, f), in particular,
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it is a transitive TDS. However, as x1 /∈ Rec(X, f), there is an open set
U such that U ∩ A = {x1} and N(x1, U) = ∅. This shows that A is not a
transitive set. Additionally, since (X, f) is transitive, X is a transitive set
while X \ (Tran(X, f) ∪ Rec(X, f)) 6= ∅ (by (2.1.5) and (2.2.2)).

Remark 2.5. Let (X, f) be a TDS and ∅ 6= A ⊆ X. By (2.3.3), if B
is the maximal transitive set containing A (in the sense of set inclusion)
then (B, f) will be the maximal transitive subsystem containing A (in the
sense of set inclusion), whereas it may happen that if C ⊇ A then C is not a
transitive set. For example, let X be the one-point compactification Z∪{∞}
of Z and let f act on X by f : Z 3 z 7→ z + 1 ∈ Z, f(∞) =∞. It is easy to
verify that {∞} is the unique transitive set in X.

For the particular case A = {x} Proposition 2.3 gives the following:

Corollary 2.6. Let (X, f) be a TDS and x ∈ X. Then

(2.6.1) {x} is a transitive set if and only if (Orb+(x, f), f) is transitive if
and only if f is a surjection over Orb+(x, f) if and only if x ∈
Rec(X, f).

(2.6.2) If f is invertible then {x} is a transitive set if and only if Orb(x, f)
= Orb+(x, f) if and only if x ∈ Tran(Orb(x, f), f).

Proof. (2.6.1) By (2.1.2), (2.2.1) and (2.3.3), we only need to show that
x ∈ Rec(X, f) when f is surjective on Orb+(x, f). But the proof is straight-
forward, since if x0 ∈ Orb+(x, f) with f(x0) = x then x ∈ Orb+(f(x), f),
i.e. x ∈ Rec(X, f).

(2.6.2) Assume that f is invertible. Then by (2.2.1), {x} is a transitive
set if and only if x ∈ Orb+(f(x), f) if and only if f−1(x) ∈ Orb+(x, f)
(f is invertible) if and only if Orb(x, f) = Orb+(x, f) if and only if x ∈
Tran(Orb(x, f), f).

Remark 2.7. It may happen that (X, f) is an invertible transitive TDS
and x ∈ X satisfies X = Orb(x, f) and x /∈ Rec(X, f). For example, this is
the case for the full two-sided shift over two symbols.

For TDSs (X, f) and (Y, g), every continuous onto map π : X → Y such
that π ◦ f = g ◦ π is said to be a factor map between (X, f) and (Y, g).
To stress the fact that π is the factor map between these systems we write
π : (X, f)→ (Y, g). When such a map exists, (Y, g) is said to be a factor of
(X, f) and (X, f) an extension of (Y, g). In the special case of an invertible
factor map π we say that π is a conjugacy and that the systems (X, f), (Y, g)
are (topologically) conjugate.

Proposition 2.8. Let π : (X, f)→(Y, g) be a factor map between TDSs.
If ∅ 6= A ⊆ X is a transitive set then π(A) ⊆ Y is also a transitive set.
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Proof. Let (U, V ) be a pair of open subsets in Y with U ∩ π(A) 6= ∅
and V ∩ π(A) 6= ∅. Since A is a transitive set, there exists n ∈ N such that
fn(π−1(V ) ∩ A) ∩ π−1(U) 6= ∅, which implies gn(V ∩ π(A)) ∩ U 6= ∅. That
is, π(A) is a transitive set.

3. Basic properties of weakly mixing sets. Recall that a TDS (X, f)
is weakly mixing if (X(2), f (2)) is transitive, equivalently, (X(n), f (n)) is tran-
sitive for each n ∈ N \ {1}.

By Propositions 2.2, 2.3 and 2.8, we have the following.

Proposition 3.1. Let (X, f) be a TDS and ∅ 6= A ⊆ X, n ≥ k ≥ 2.
Then

(3.1.1) A is weakly mixing of order n if and only if
⋂n
i=1N(Vi ∩A,Ui) 6= ∅

whenever U1, V1, . . . , Un, Vn are open subsets of X with Ui ∩ A 6= ∅
and Vi ∩A 6= ∅, i = 1, . . . , n, if and only if

⋂n
i=1N(Vi ∩A,Ui) is an

infinite set whenever U1, V1, . . . , Un, Vn are open subsets of X with
Ui ∩ A 6= ∅ and Vi ∩ A 6= ∅, i = 1, . . . , n, if and only if A is weakly
mixing of order n.

(3.1.2) If A is a weakly mixing set of order n then A is a weakly mixing set
of order k and then A is a transitive set.

(3.1.3) If {Xi}i∈I is a family of weakly mixing sets of order n, where I is
a totally ordered set and Xi ⊆ Xj if i ≤ j, then

⋃
i∈I Xi is weakly

mixing of order n.
(3.1.4) (X, f) is weakly mixing if and only if X is weakly mixing of order 2

if and only if X is weakly mixing of order n if and only if X is weakly
mixing.

Proposition 3.2. Let π : (X, f) → (Y, S) be a factor map between
TDSs and ∅ 6= A ⊆ X, n ∈ N \ {1}. If A is a weakly mixing set of order n
then π(A) ⊆ Y is also a weakly mixing set of order n.

The following fact shows that weakly mixing sets require much more
complex topological structure than was allowed in the case of transitive
sets.

Proposition 3.3. Let (X, f) be a TDS and ∅ 6= A ⊆ X a non-trivial
weakly mixing set of order 2. Then A contains no isolated points.

Proof. Assume on the contrary that x ∈ A is an isolated point of A.
Then there exist non-empty open subsets U1, U2 of X such that U1∩U2 = ∅,
U1 ∩ A = {x} and U2 ∩ A 6= ∅. Since A is a weakly mixing set of order 2,
there exists n ∈ N such that

∅ 6= fn((U1 × U1) ∩A(2)) ∩ (U1 × U2) = ({fn(x)} ∩ U1)× ({fn(x)} ∩ U2),

which is impossible because U1 ∩ U2 = ∅.
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Remark 3.4. Let (X, f) be an invertible transitive TDS with x1, x2 ∈
Tran(X, f) ⊆ Rec(X, f) and x1 6= x2. By Proposition 3.3 the set {x1, x2}
cannot be weakly mixing of order 2, while by (2.3.4) it is a transitive set.

Before proceeding, we restate here a version of the well-known [My, The-
orem 1].

Lemma 3.5. Let X be a perfect metric space and Rn ⊆ X(rn) a subset of
first category for each n ∈ N. Then there exists a dense Mycielski subset K
such that (xi)rni=1 /∈ Rn whenever x1, . . . , xrn , n ∈ N, are rn distinct elements
of K.

Then we have

Proposition 3.6. Let (X, f) be a TDS and A ⊆ X a closed non-trivial
weakly mixing set of order n ∈ N \ {1}. Then there exist δ > 0 and a dense
Mycielski subset K of A such that if x1, . . . , xn are n distinct elements of K
then

(3.1)
lim inf
m→∞

max
1≤i<j≤n

d(fmxi, fmxj) = 0, lim sup
m→∞

min
1≤i<j≤n

d(fmxi, fmxj) ≥ δ.

Proof. Since A is a closed non-trivial weakly mixing set of order n,
by Proposition 3.3, A must be perfect and so there exist pairwise dis-
joint open subsets V1, . . . , Vn of X with Vi ∩ A 6= ∅, i = 1, . . . , n, and
δ
.= min1≤i<j≤n d(Vi, Vj) > 0. For any ε > 0 and N ∈ N define

Dε
N = {(xi)ni=1 ∈ A(n) : ∃m ≥ N such that min

1≤i<j≤n
d(fmxi, fmxj) > δ − ε},

Aε = {(xi)ni=1 ∈ A(n) : ∃m ∈ N such that max
1≤i<j≤n

d(fmxi, fmxj) < ε}.

It is easy to see that both Dε
N and Aε are open subsets of A(n), moreover, for

each k ∈ N both D
1/k
N and A1/k are dense open subsets of A(n) (by (3.1.1),

the selection of V1, . . . , Vn, δ and the assumption that A is a weakly mixing
set of order n). Now, denote by M the set of all (xi)ni=1 ∈ A(n) satisfying
(3.1). Then

R =
⋂
k∈N

( ⋂
N∈N

D
1/k
N ∩A1/k

)
,

and so R is a dense Gδ subset of A(n). Applying Lemma 3.5 to A(n) \ R,
we obtain a dense Mycielski subset K ⊆ A such that (xi)ni=1 ∈ R (i.e. (3.1)
holds) whenever x1, . . . , xn are n distinct elements of K.

Recall that a TDS (X, f) is equicontinuous if for every ε > 0 there
exists δ > 0 such that d(fn(x1), fn(x2)) < ε for n = 0, 1, . . . , provided that
d(x1, x2) < δ.
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Proposition 3.7. Every equicontinuous TDS contains no non-trivial
weakly mixing sets of order 2.

Proof. Take any non-trivial set A and fix distinct x, y ∈ A. Define ε =
d(x, y) and use equicontinuity to pick δ for ε/4. We may assume that δ < ε/4.
Now, if we denote by U1 = B(x, δ/2) the open ball with center x and radius
δ/2 and put U2 = B(y, δ/2) then for every n either fn(U1) ∩ U1 = ∅ or
fn(U1) ∩ U2 = ∅, as otherwise

d(x, y) ≤ diamU1 + diamU2 + diam fn(U1) ≤ 2δ + ε/4 < ε,

where diamV denotes the diameter of V . But U1 ∩ A 6= ∅ and U2 ∩ A 6= ∅,
so A is not weakly mixing of order 2.

Before proceeding, let us recall the concept of topological entropy of a
given TDS. Let (X, f) be a TDS and let C and D be any finite covers of X.
We define their refinement by C ∨D = {C∩D : C ∈ C , D ∈ D , C∩D 6= ∅}
and let f−n(C ) = {f−n(C) : C ∈ C } for each n ∈ N0. Fix a finite open
cover U of X. For any A ⊆ X let r(U , A) denote the minimum among the
cardinalities of subsets of U that cover A. We define the topological entropy
of U by

htop(f,U ) = lim
n→∞

1
n

log r
(n−1∨
i=0

f−i(U ), X
)

= inf
n∈N

1
n

log r
(n−1∨
i=0

f−i(U ), X
)
,

where the existence of the limit and the second identity follow from the fact
that {

log r
(n−1∨
i=0

f−i(U ), X
)}

n∈N

is a subadditive sequence. Then the topological entropy of (X, f) is given by
htop(f,X) = supU ∈CX

htop(f,U ), where CX denotes the set of all possible
finite open covers of X.

It was proved first in [BH] that systems (invertible or even only surjec-
tive) with positive topological entropy contain closed non-trivial weakly mix-
ing sets (see [BH, Theorem 4.5] and remarks after it, especially on page 292).
Here we sketch another proof of this fact.

Theorem 3.8. Let (X, f) be a TDS with positive topological entropy.
Then it contains a non-trivial weakly mixing set.

Proof. First, we assume that (X, f) is invertible. By the classical vari-
ational principle concerning topological and measure-theoretic entropy we
may select an ergodic f -invariant Borel probability measure µ over X with
hµ(f,X) > 0. Just as in [Z1, Lemma 4.1 and Theorem 4.4], we denote
by π1 : (X,BX , µ, f) → (Z,Z, ν, h) the Pinsker factor of (X,BX , µ, f) and
by µ =

	
Z µz dν(z) the disintegration of µ over ν, where BX is the Borel
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σ-algebra of X. For each given n ∈ N\{1}, put λπn(µ) =
	
Z µ

(n)
z dν(z), where

µ
(n)
z = µz × · · · × µz (n times). Then we have

(3.8.1) supp(µz), the support of µz, is not a singleton for ν-a.e. z ∈ Z,
(3.8.2) (supp(λπn(µ)), f (n)) is a transitive TDS.

Thus the proof of this case will be finished if we show that supp(µz) is a
weakly mixing set of order n for ν-a.e. z ∈ Z. In fact, as (supp(λπn(µ)), f (n)) is
a transitive TDS we see that Wn

.= Tran(supp(λπn(µ)), f (n)) 6= ∅. By (2.3.4),
for every z ∈ Z the set W z

n
.= Wn ∩ (supp(µz))(n) is a transitive set if it

is non-empty. Observe that 1 = λπn(µ)(Wn) =
	
Z(µz)(n)(Wn) dν(z), hence

(µz)(n)(W z
n) = (µz)(n)(Wn) = 1 and so by (2.3.2) the set (supp(µz))(n) = W z

n

is a transitive set for ν-a.e. z ∈ Z. In other words, supp(µz) is a weakly
mixing set of order n for ν-a.e. z ∈ Z.

Now, in general, by the well-known facts that (Ω(X, f), f |Ω(X,f)) is a
well-defined surjective TDS and htop(f,Ω(X, f)) = htop(f,X) (e.g. [K, The-
orem 2.90]), we may assume that f(X) = X. Let us consider the invertible
TDS (Xf , σf ), where Xf = {(x1, x2, . . . ) ∈

∏∞
1 X : f(xn+1) = xn, n ∈ N}

and σf (x1, x2, . . . ) = (f(x1), x1, . . . ). Then htop(σf ,Xf ) = htop(f,X) [B,
Proposition 5.2], and so, by the above discussions, there exists a closed non-
trivial weakly mixing set A of (Xf , σf ), thus π(A) is a non-trivial weakly
mixing set of (X, f) if it is not a singleton by Proposition 3.2, where the
factor map π : (Xf , σf ) → (X, f), (x1, x2, . . . ) 7→ x1, is the projection
onto the first coordinate. On the other hand, by Proposition 3.6 there
exist x′, x′′ ∈ A such that lim supn→∞ d(fnx′, fnx′′) > 0, which implies
π(x′) 6= π(x′′) (observe that if x′ and x′′ are contained in the same π-fiber
then limn→∞ d(fnx′, fnx′′) = 0), i.e. π(A) is not a singleton and hence a
non-trivial weakly mixing set.

Remark 3.9. By Theorem 3.8 we see that it may happen that a TDS
contains a non-trivial weakly mixing set without admitting any weakly mix-
ing subsystem. A particular example of such a situation is a minimal TDS
with positive topological entropy which is not weakly mixing (e.g. a Toeplitz
flow [Do]).

We finish this section with the following result.

Proposition 3.10. Let (X, f) be a TDS and A ⊆ X a non-trivial weakly
mixing set. Then A has positive topological sequence entropy, i.e. there exist
a finite open cover U of X and a sequence {t1 < t2 < · · · } ⊆ N0 such that

htop(f,U, {ti}i∈N) .= lim sup
n→∞

1
n

log r
( n∨
i=1

f−ti(U), A
)
> 0.

Proof. By the assumptions, there exist open sets V1, V2 intersecting A
with V1 ∩ V2 = ∅.
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First, we claim that there exists a sequence {0 = t1 < t2 < · · · } ⊆ N0

such that A ∩
⋂n
i=1 f

−ti(Vsi) 6= ∅ (say xs ∈ A ∩
⋂n
i=1 f

−ti(Vsi)) for each
n ∈ N and every s .= (s1, . . . , sn) ∈ {1, 2}n. In fact, we use induction on n. If
n = 1 this holds obviously. Now assume that it holds for some n = k, k ∈ N.
As A is a weakly mixing set, there exists tk+1 > tk such that

tk+1 ∈
⋂

s∈{1,2}k
N
(
A ∩

k⋂
i=1

f−ti(Vsi), V1

)
∩

⋂
s∈{1,2}k

N
(
A ∩

k⋂
i=1

f−ti(Vsi), V2

)
,

i.e. it also holds for n = k+1. This finishes the proof of the claimed property.
Now, if we put U = {V1

c
, V2

c}, then obviously U is an open cover of X,
since V1 ∩ V2 = ∅. For each n ∈ N let An = {xs : s ∈ {1, 2}n} ⊆ A. Then
#An = 2n and each element of

∨n
i=1 f

−ti(U) contains exactly one point
from An, which implies r(

∨n
i=1 f

−ti(U), A) = 2n. This ends the proof, as
htop(f,U , {ti}i∈N) = log 2.

Remark 3.11. We remark here that it is proved in [HLY] that any
non-trivial weakly mixing set has an IP-independent subset. As that subset
has positive topological sequence entropy, this can be regarded as another
proof of Proposition 3.10.

4. Weakly mixing sets in one-dimensional dynamics. In this sec-
tion, we shall discuss properties of dynamical systems with weakly mixing
sets in one-dimensional dynamics. In particular, by some combinatorial and
technical arguments, we shall give a new characterization of a dynamical
system over a topological graph with positive topological entropy using the
weakly mixing sets introduced.

Before proceeding, let us recall the definition of topological graph and
standard one-dimensional covering relation.

Let G be a topological graph. We may regard G as a subspace of the
Euclidean space R3 (that is, each graph is identified with some linear graph
in R3; see [Mo, p. 22]). Moreover, we may assume that G is endowed with
the taxicab metric, that is, the distance between any two points of G is
equal to the length of the shortest arc in G joining these points. We say
that I ⊆ G is a closed interval if there is a homeomorphism ϕ : [0, 1] → I
such that ϕ((0, 1)) is open in G. Let f : G → G be a continuous map, and
let I and J be closed intervals in G. We say that I f -covers J (denoted by

I
f

=⇒ J) if there exists a closed interval K ⊆ I such that f(K) = J .
Properties of standard one-dimensional covering relations are summa-

rized in the following lemma, which is adapted from [AdRR, p. 590].

Lemma 4.1. Let I, J,K,L ⊆ G be closed intervals and f, g : G → G be
continuous.
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(4.1.1) If I ⊆ K, L ⊆ J and I
f

=⇒ J , then K
f

=⇒ L.

(4.1.2) If I
f

=⇒ J and J
g

=⇒ K, then I
g◦f
=⇒ K.

(4.1.3) If J ⊆ f(I), and K1,K2 ⊆ J are closed intervals such that K1 ∩K2

is at most one point, then I
f

=⇒ K1 or I
f

=⇒ K2.

Now we are ready to prove the first main result in this paper. Before
we proceed, let us comment on recent results on aspects of dynamics simi-
lar to Theorem 1.2. In [TYZ] it is proved that intrinsic topological sequence
entropy tuple with length 3 implies positive topological entropy on the inter-
val and circle [TYZ, Theorem 3.5]. Furthermore, [TYZ] proves that intrinsic
topological sequence entropy tuple with length n implies positive topological
entropy on any topological graph, where n depends on the structure of the
graph under consideration. Finally, [TYZ] claims that n = 3 is enough for
any topological graph (the proof is postponed to [T]).

Proof of Theorem 1.2. By Theorem 3.8 it suffices to prove (1.2.3)⇒
(1.2.1). The proof uses some technical combinatorial arguments, and we
divide it into a few small steps.

Let A be a non-trivial weakly mixing set of order 2. By (3.1.1) and
Proposition 3.3 we may assume that A is perfect. Note that there is an
interval I ⊆ G with A ∩ int I 6= ∅, where int I denotes the interior of I. We
may identify I with [0, 1].

If a, b ∈ I, a < b, then [a, b] is the subinterval of I spanned by a and b,
that is, [a, b] = {x ∈ I : a ≤ x ≤ b}. We define the interval (a, b) similarly.
Fix any five points p0, . . . , p4 ∈ A ∩ int I, p0 < · · · < p4, such that each
connected component of the set int I \ {p0, . . . , p4} intersects A (as A is
perfect, by the selection of I, such points exist). For sufficiently small ε > 0
the following intervals are well defined: Ii = [pi − ε, pi + ε] and Ji+1 =
(pi+ε, pi+1−ε), and additionally, int Ii∩A 6= ∅, i = 0, . . . , 4, and Jj∩A 6= ∅,
j = 1, . . . , 4.

Claim 1. For every K ∈ {I1, I2, I3} there are p > 0 and L,M ∈
{I1, I2, I3}, L 6= M , such that K

fp

=⇒ L and K
fp

=⇒M .

We will show this for K = I1. The arguments for the other two cases
are identical. Define I ′ = I1 ∪ J2 ∪ I2 ∪ J3 ∪ I3 and Γ = N(A ∩ int I1, J1) ∩
N(A∩ int I1, J4). As A is weakly mixing of order 2, Γ 6= ∅. We consider the
following two cases.

(1a) Assume that for every l ∈ Γ , we have I ′ \ f l(I1) 6= ∅ and fix one
such l. Since f l(I1) is connected, I0, I4 ⊆ f l(I1), which by the mean value

theorem implies immediately that I1
f l

=⇒ I0 and I1
f l

=⇒ I4. Again, by weak
mixing of order 2 of A, there are k, s > 0 such that
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fk(A ∩ int I0) ∩ J2 6= ∅, fk(A ∩ int I0) ∩ J4 6= ∅,
fs(A ∩ int I4) ∩ J1 6= ∅, fk(A ∩ int I4) ∩ J3 6= ∅.

Now, it may happen that fk(I0) ⊇ I2 ∪ I3, fs(I4) ⊇ I1 ∪ I2 or none of these
situations happens (and so fk(I0) ⊇ I0 ∪ I1 ∪ I4 and fs(I4) ⊇ I0 ∪ I3 ∪ I4).
Additionally, I ′ \ fk(I0) 6= ∅ and I ′ \ f s(I4) 6= ∅ as otherwise fk+l(I1) ⊇ I ′

or fs+l(I1) ⊇ I ′, which we assumed cannot happen. Then we have the
implications

fk(I0) ⊇ I2 ∪ I3 ⇒ I0
fk

=⇒ I2 and I0
fk

=⇒ I3,

fs(I4) ⊇ I1 ∪ I2 ⇒ I4
fs

=⇒ I1 and I0
fs

=⇒ I2,

and so any of these cases ends the proof. If our setting is not covered by the
above, then fk(I0) ⊇ I0 ∪ I1 ∪ I4 and fs(I4) ⊇ I0 ∪ I3 ∪ I4, which implies

I0
fk

=⇒ I0, I0
fk

=⇒ I1, I0
fk

=⇒ I4,

I4
fs

=⇒ I0, I4
fs

=⇒ I3, I4
fs

=⇒ I4.

By I0
fk

=⇒ I0 and I4
fs

=⇒ I4 we can take p = l + ks, obtaining the desired
covering, since

I1
f l

=⇒ I0
fk(s−1)

=====⇒ I0
fk

=⇒ I1, I1
f l

=⇒ I4
f (k−1)s

=====⇒ I4
fs

=⇒ I3.

This shows that the claim holds in that case.

(1b) The remaining case is that for some l ∈ Γ we have I ′ ⊆ f l(I1). Put
K1 = I1 and K2 = J2∪ I2∪J3∪ I3 and note that by (4.1.3), I1 f l-covers K1

or K2. If it covers K2 we are done by (4.1.1), so assume that K1 is f l-covered

by I1. Next put K ′1 = I1 ∪ J2 ∪ I2 ∪ J3 and K ′2 = I3. Again, if I1
f l

=⇒ K ′1

then we are done, so assume that I1
f l

=⇒ K ′2. But combining both cases, we

see that I1
f l

=⇒ I1 and I1
f l

=⇒ I3 and so the proof of the claim is finished. �

Claim 2. There are K,L ∈ {I1, I2, I3}, K 6= L, and n > 0 such that

K
fn

=⇒ K and K
fn

=⇒ L.

Apply Claim 1 to the sets I1, I2, I3 and assume that the integers k,m, s
> 0 obtained are such that (in any other case the claim follows)

I1
fk

=⇒ I2, I1
fk

=⇒ I3, I2
fm

=⇒ I1, I2
fm

=⇒ I3, I3
fs

=⇒ I1, I3
fs

=⇒ I2.

But then

I1
fk

=⇒ I3
fs

=⇒ I2
fm

=⇒ I1 and I1
fk

=⇒ I2
fm

=⇒ I3
fs

=⇒ I2,

and so by (4.1.2) we see that I1
fk+m+s

=====⇒ I1 and I1
fk+m+s

=====⇒ I2. �
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Claim 3. There are L,M ∈ {I1, I2, I3}, L 6= M and l,m > 0 such that

L
f l

=⇒ L, L
f l

=⇒M and M
fm

=⇒ L.

By Claim 2 there are distinct K,K ′ ∈ {I1, I2, I3} and k > 0 such that

K
fk

=⇒ K and K
fk

=⇒ K ′. If there is m > 0 such that K ′
fm

=⇒ K then it
is enough to put L = K, M = K ′, l = k and we are done. Otherwise, by

Claim 1 there are k′ > 0 and M ∈ {I1, I2, I3}\{K,K ′} such that K ′
fk′

=⇒ K ′

and K ′
fk′

=⇒ M . Again by Claim 1 we see that there is m > 0 such that
M

fm

=⇒ K ′ or M
fm

=⇒ K. If the first possibility holds then we put L = K ′

and l = k′. For the second possibility observe that

K
fk

=⇒ K
fk

=⇒ K ′
fk′

=⇒ K ′
fk′

=⇒M
fm

=⇒ K,

K
fk

=⇒ K ′
fk′

=⇒M
fm

=⇒ K
fk

=⇒ K ′
fk′

=⇒M,

so the proof of the claim is finished by putting L = K and l = 2k+2k′+m. �

To finish the proof observe that by Claim 3 we have the covering relations

L
f l

=⇒ L
f l

=⇒M
fm

=⇒ L, L
f l

=⇒M
fm

=⇒ L
f l

=⇒M,

M
fm

=⇒ L
f l

=⇒ L
f l

=⇒ L, M
fm

=⇒ L
f l

=⇒ L
f l

=⇒M.

It is well known that topological entropy must be positive in that case (f2l+m

has the so-called strong horseshoe [LM]).

Remark 4.2. Theorem 1.2 implies that there are TDSs with positive
topological sequence entropy but without non-trivial weakly mixing sets of
order 2. Namely, there is a big class of Li–Yorke chaotic interval maps with
positive topological sequence entropy but zero topological entropy (e.g. a
subclass of the class of interval maps of type 2∞ in the Sharkovsky ordering;
for more details, e.g. see [FS, S]).

In fact, in the case of dynamical systems acting on the unit interval the
situation is even more complicated, that is, arbitrarily close (in the sense of
Hausdorff metric) to any given weakly mixing set of order 2 we can find a
weakly mixing set.

Theorem 4.3. Let ([0, 1], f) be a TDS with A a closed weakly mixing set
of order 2. Then for every ε > 0 there is a closed weakly mixing set D such
that Hd(A,D) < ε, where Hd(A,D) denotes the Hausdorff distance between
A and D.

Proof. Obviously, we only need to consider the case when A is not a
singleton.
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Fix any ε > 0 and take any m > 0 with 1/2m < min{ε/2, (1/4) diamA}.
Divide [0, 1] into 2m intervals of the form [j/2m, (j+1)/2m], j = 0, . . . , 2m−1.
Let I0, . . . , Ik+1 be intervals whose interiors intersect A, numbered with re-
spect to increasing values of j. Dividing I0, Ik+1 if necessary, we may assume
that I0∪I1 and Ik∪Ik+1 are connected. Additionally, note that k ≥ 2. Since
A is perfect, we may divide these intervals as much as we want and so with-
out loss of generality we may assume that k = 3k0 + 1 for some k0 > 0. For
i = 0, . . . , k− 1 fix any closed interval Ji ⊆ int Ii+1 such that int Ji ∩A 6= ∅.
Then for every i there is li such that f li(Ji)∩ I0 6= ∅ and f li(Ji)∩ Ik+1 6= ∅,
which in turn implies that

I1 ∪ · · · ∪ Ik ⊆ f li(Ji).

But then we see that Ji
f li

=⇒ Jj for any i, j and so

Ji
f li

=⇒ Ji+1 (mod k)
f

li+1 (mod k)

========⇒ · · · f
li+k−2 (mod k)

=========⇒ Ji+k−1 (mod k)

f
li+k−1 (mod k)

=========⇒ Jj .

By Lemma 4.1 for m = l1 + · · · + lk we have Ji
fm

=⇒ Jj for any i, j =
0, . . . , k − 1. By standard arguments (see e.g. [Du]) there is a closed set
Λ ⊆ J0 ∪ · · · ∪ Jk−1 invariant for fm (i.e. fm(Λ) ⊆ Λ) and a factor map
π : (Λ, fm)→ ({0, . . . , k− 1}N, σk) between TDSs, where σk is the standard
shift transformation over {0, . . . , k−1}N. Furthermore, we may assume that
π is at most 2-to-1 and there are at most countably many non-singleton
fibers. But there is an uncountable family of minimal weakly mixing sub-
shifts on exactly k symbols with positive topological entropy, say extensions
of the Chacón flow [BK, Theorem 2] (systems in [BK] are constructed over
the alphabet {1, 2, . . . , 3k0 , s}; see [BK, p. 125]). Then at least one of these
systems is covered exactly 1-to-1 by π and so there is a minimal subsystem
(Γ, fm) of (Λ, fm) conjugate to the above-mentioned symbolic system. But
then Γ is a weakly mixing set and additionally Γ ∩Ji 6= ∅ for i = 0, . . . , k−1
since by the construction π−1({x}) ⊆ Ji for any sequence x ∈ {0, . . . , k−1}N
such that x1 = i. Now, observe that the sets Ii have diameters smaller than
ε/2, they cover A and I0∪I1, Ik∪Ik+1 are connected; therefore B(Γ, ε) ⊇ A,
where B(Γ, ε) = {x ∈ [0, 1] : d(x, Γ ) < ε}. The inclusion Γ ⊆ B(A, ε) is
obvious by the choice of the sequence Ii and so Hd(Γ,A) < ε. This ends the
proof.

5. Fibers of weakly mixing extensions. In this section, we shall
discuss the weak mixing properties of fibers of weakly mixing extensions
between TDSs under some necessary assumptions.

Let π : (X, f) → (Y, g) be a factor map between TDSs. Recall that π is
weakly mixing of order n ∈ N\{1} if the TDS (R(n)

π , f (n)) is transitive, where
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R
(n)
π = {(x1, . . . , xn) ∈ X(n) : π(x1) = · · · = π(xn)}; and weakly mixing of

all orders if it is weakly mixing of order m for every m ∈ N \ {1}.
Recall that a map is open if the image of any open set is open; and

semiopen if the image of any open set has a non-empty interior. Examples of
semiopen but not open maps are piecewise linear maps on the unit interval.

The following result [O, Theorem 15.1] highlights a nice property of open
maps (see also [Z2, Lemma 3.6]).

Lemma 5.1. Let π : X → Y be an open continuous map between topo-
logical spaces, where X has a countable basis and Y is a complete metric
space. Suppose that E ⊆ X is a residual set. Then there exists a residual
(and so dense) subset V of Y such that E ∩π−1(y) is residual in π−1(y) for
each y ∈ V .

Let (X, f) be a TDS and ∅ 6= A ⊆ X. Given n ∈ N \ {1} define ∆n(A) =
{(x1, . . . , xn) ∈ A(n) : x1 = · · · = xn}. With the help of Lemma 5.1, we
obtain the following:

Theorem 5.2. Let π : (X, f) → (Y, g) be an open factor map between
TDSs which is weakly mixing of order n ∈ N\{1}. Then one of the following
holds:

(5.2.1) π is a homeomorphism.
(5.2.2) There is a residual set V ⊆ Y such that π−1(y) is a non-trivial

weakly mixing set of order n (and hence perfect) for every y ∈ V .

Proof. By assumptions, using (2.1.2) and (2.1.5) one deduces that
Tran(R(n)

π , f (n)) is residual in R
(n)
π . As π : X → Y is open, it is easy to

check that the map π(n) : R(n)
π → Y, (x1, . . . , xn) 7→ π(x1), is also open and

so by Lemma 5.1 there exists a residual set V ⊆ Y such that for each y ∈ V
the following set is residual in

∏n
j=1 π

−1(y):

(π(n))−1(y) ∩ Tran(R(n)
π , f (n)) =

( n∏
j=1

π−1(y)
)
∩ Tran(R(n)

π , f (n)).

If π is a homeomorphism then we are done. In the other case, none of the
fibers π−1(y) for y ∈ V is a singleton, since there is at least one non-singleton
fiber for π and so Tran(R(n)

π , f (n)) ∩ ∆n(X) = ∅. Now, fix any y ∈ V and
consider any non-empty open sets U1, . . . , Un, V1, . . . , Vn intersecting π−1(y).
Observe that (by the residual property of the subset) there is

(z1, . . . , zn) ∈
( n∏
j=1

Uj

)
∩
( n∏
j=1

π−1(y)
)
∩ Tran(R(n)

π , f (n))

and moreover, there is k ∈ N0 such that fk(zi) ∈ Vi for i = 1, . . . , n. This
just means that π−1(y) is a non-trivial weakly mixing set of order n (and so
is perfect by Proposition 3.3), thus the proof is finished.
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Another problem is what conditions are sufficient to imply weak mix-
ing of a factor map between TDSs. The following result provides a partial
answer.

Theorem 5.3. Let π : (X, f) → (Y, g) be an open factor map between
TDSs and n ∈ N \ {1}. Then (5.3.1)⇒(5.3.2)⇒(5.3.3), where

(5.3.1) π is weakly mixing of order n.
(5.3.2) The TDS (Y, g) is transitive and there exists a residual subset V ⊆ Y

such that π−1(y) is a weakly mixing set of order n for each y ∈ V .
(5.3.3) The TDS (Y, g) is transitive and π−1(y) is a weakly mixing set of

order n for some y ∈ Tran(Y, g).

Moreover, if f(X) = X and (Y, g) is invertible then (5.3.3)⇒(5.3.1).

Proof. First, we aim to prove (5.3.1)⇒(5.3.2). Obviously, when π is
weakly mixing of order n, then the TDS (Y, g), as a factor of (R(n)

π , f (n)),
is also transitive. If π is not a homeomorphism then the conclusion follows
from (5.2.2). Now if π is a homeomorphism then, by (2.1.5) and (2.2.1), it
is easy to check that, for V .= Tran(Y, g), V is residual in Y and for every
y ∈ V the fiber π−1(y) ⊆ π−1(V ) = Tran(X, f) ⊆ Rec(X, f) is a singleton
and hence a weakly mixing set of order n.

The direction of (5.3.2)⇒(5.3.3) is straightforward, since by (2.1.5) the
set V ∩ Tran(Y, g) is non-empty (in fact, it is dense in Y ).

Now it suffices to prove (5.3.3)⇒(5.3.1) under the assumptions that
f(X) = X and the TDS (Y, g) is invertible. Fix any y0 ∈ Tran(Y, g) such
that π−1(y0) is a weakly mixing set of order n. Consider any non-empty
open subsets U1, . . . , Un and V1, . . . , Vn of X with (

∏n
i=1 Ui) ∩ R

(n)
π 6= ∅

and (
∏n
i=1 Vi) ∩R

(n)
π 6= ∅; equivalently,

⋂n
i=1 π(Ui) and

⋂n
i=1 π(Vi) are both

non-empty open subsets of Y (by the assumption that π : X → Y is open).
As y0 ∈ Tran(Y, g), there exist kU , kV ∈ N0 such that gkU (y0) ∈

⋂n
i=1 π(Ui)

and gkV (y0) ∈
⋂n
i=1 π(Vi). Note that (by the assumption that f(X) = X

and g : Y → Y is invertible)

π(Ui) = π(fkU (f−kU (Ui))) = gkU (π(f−kU (Ui))),

and so y0 ∈ π(f−kU (Ui)). In other words π−1(y0) ∩ f−kU (Ui) 6= ∅, and by
the same arguments π−1(y0)∩f−kV (Vi) 6= ∅, i = 1, . . . , n. Since π−1(y0) is a
weakly mixing set of order n, by (3.1.1), there exists k ≥ kU +kV such that,
for each i = 1, . . . , n, fk(π−1(y0) ∩ f−kV (Vi)) ∩ f−kU (Ui) 6= ∅, and hence

(f (n))−kU−k+kV

(( n∏
i=1

Ui

)
∩R(n)

π

)
∩
( n∏
i=1

Vi

)
∩R(n)

π 6= ∅.

Thus the TDS (R(n)
π , f (n)) is transitive, i.e. π is weakly mixing of order n.
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Remark 5.4. Let π : (X, f) → (Y, g) be a factor map between TDSs.
Observe that both (X, f) and (Y, g) are factors of (R(n)

π , f (n)) by means
of R(n)

π → X, (x1, . . . , xn) 7→ x1, and R
(n)
π → Y , (x1, . . . , xn) 7→ π(x1),

respectively. In particular this implies that if π is weakly mixing of order
n for some n ∈ N \ {1} then both (X, f) and (Y, g) are transitive TDSs
and hence by (2.1.2) we have f(X) = X and g(Y ) = Y . In particular, the
implication (5.3.3)⇒(5.3.1) cannot be satisfied if f is not surjective.

The following result is just an easy observation.

Proposition 5.5. Let π : (X, f)→(Y, g) be a factor map between TDSs.
If the TDS (X, f) is weakly mixing then

(5.5.1) The TDS (Y, g) is weakly mixing.
(5.5.2) For any u, v ∈ Y and any non-empty open sets U,U ′, V, V ′ of X with

U ∩π−1(u) 6= ∅, U ′∩π−1(u) 6= ∅ and V ∩π−1(v) 6= ∅, V ′∩π−1(v) 6= ∅
there is k ∈ N0 such that fk(U) ∩ U ′ 6= ∅ and fk(V ) ∩ V ′ 6= ∅.

Generally speaking, condition (5.5.2) represents some kind of synchro-
nization over fibers. The next theorem shows that under some additional
assumptions about the factor map these necessary conditions become suffi-
cient.

Theorem 5.6. Let π : (X, f)→ (Y, g) be a semiopen factor map between
TDSs which satisfies (5.5.1) and (5.5.2). If there is a dense set V ⊆ Y such
that

(5.1) fk(π−1(z)) = π−1(gk(z))

for every z ∈ V and each k ∈ N0, then the TDS (X, f) is weakly mixing.

Proof. Fix any non-empty open sets U1, U2, V1, V2 ⊆ X. Denote by U ′i
and V ′i the interiors of π(Ui) and π(Vi), respectively, for i = 1, 2 and note
that all these sets are non-empty since f is semiopen. The map g is weakly
mixing, so there are u, v ∈ Y and s ∈ N0 such that u ∈ U ′1 ∩ g−s(V ′1) and
v ∈ U ′2 ∩ g−s(V ′2). We may also assume that u, v ∈ V , since V is dense and
g is continuous.

Take any z ∈ V1 such that π(z) = gs(u). Then by (5.1) it follows that

z ∈ π−1(gs(u)) = fs(π−1(u)),

so there is x′ ∈ π−1(u) such that f s(x′) ∈ V1. Additionally, there is x ∈
π−1(u) ∩ U1. By the same argument, there are y, y′ ∈ π−1(v) such that
y ∈ U2 and fs(y′) ∈ V2. There are open sets W1 3 x′, W2 3 y′ such
that fs(W1) ⊆ V1 and fs(W2) ⊆ V2. By (5.5.2) there is k ∈ N0 such that
fk(U1) ∩W1 6= ∅ and fk(U2) ∩W2 6= ∅. But then fk+s(U1) ∩ V1 6= ∅ and
fk+s(U2) ∩ V2 6= ∅, which ends the proof.
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Let (X, f) be a TDS. We say that (X, f) is mixing if N(U, V ) is co-finite
(i.e. N0 \N(U, V ) is a finite subset) whenever U and V are both non-empty
open subsets of X. Obviously, each mixing TDS is weakly mixing and the
product TDS of a mixing TDS with a transitive TDS is still transitive.

If X = A Z or X = A N, where A is a finite set, then we endow A with
discrete topology and X with product topology. The standard map on X is
the so-called shift map defined by σ(x)i = xi+1 for every i ∈ Z or i ∈ N,
respectively.

Example 5.7. Let (X, f) and (Y, g) be surjective TDSs. We have nat-
ural factorization of π : (Z,F ) → (Y, g), where (Z,F ) = (X × Y, f × g).
In this situation condition (5.1) is trivially fulfilled. Consider the following
particular cases of f, g:

(5.7.1) If (X, f) is weakly mixing and (Y, g) is an odometer, then (5.5.2)
holds but (5.5.1) does not. Obviously (Z,F ) is not weakly mixing.

(5.7.2) Consider thick sets P1, P2 ⊆ N such that P1 ∩ P2 = ∅ and let Σ2 =
{0, 1}Z with the shift map σ acting on it. For P ⊆ N define

ΛP = {x ∈ Σ2 : if xi = xj = 1 then |i− j| ∈ P ∪ {0}}
and put X = ΛP1 , Y = ΛP2 , f = σ|X , g = σ|Y . By [LZ] we see that
both (X, f) and (Y, g) are weakly mixing, and so (5.5.1) holds. But
(Z,F ) is not even transitive, since if we write sequences x ∈ ΛP1 ,
y ∈ ΛP2 one over the other then we can see the symbol 1 in the first
sequence over the symbol 1 in the second sequence at most once (in
other words, there is at most one i such that xi = yi = 1).

(5.7.3) If (X, f) is mixing and (Y, g) is weakly mixing then all assumptions
of Theorem 5.6 are satisfied and (Z,F ) is weakly mixing.

6. Construction of Example 1.3. In this section we show that it may
happen that there exists a weakly mixing set of order 2 but not order 3 (in
particular, the notion of weakly mixing set of order n is more general than
that of weakly mixing set and so essentially extends the approach introduced
in [BH]). The main technique used in our examples follows the ideas used
by Glasner in his proof of [G, Theorem 4.1.2].

In fact, in Example 6.1 we will show more than is stated in Example 1.3,
in particular the TDS (X,T ) will be not only weakly mixing but mixing, etc.
Before proceeding to the construction, let us recall some basic definitions
from symbolic dynamics.

Let A be a finite set (an alphabet). By a word (over A ), we mean any
finite sequence u = u0, . . . , un−1, n ≥ 1, where ui ∈ A . The length of u is
denoted by |u| = n and the set of all words is denoted by A + (note that
according to our definition, every word has a positive length). If x ∈ A N0
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and 0 ≤ i < j then by x[i,j] we mean the sequence xi, xi+1, . . . , xj . For
simplicity, we use the notation x[i,j) = x[i,j−1]. We will also write u1 . . . un
instead of u1, . . . , un to denote words. The same notation is also used for
x ∈ A Z. If a1 . . . am ∈ A + then we define the cylinder set

[a1 . . . am] = {x ∈ A N0 : x[0,m) = a1 . . . am}.
It is well known that the cylinder sets form a neighborhood basis for the
space A N0 .

Now we are ready to provide the example announced before.

Example 6.1 (Extended Example 1.3). There is a mixing TDS (X,T )
with the following properties:

(6.1.1) there is an open factor map π : (X,T ) → (Y,G) which is weakly
mixing of order 2 but not order 3,

(6.1.2) there is a set A ⊆ X which is weakly mixing of order 2 but not of
order 3.

Proof. Let S1 = {z ∈ C : |z| = 1} be the unit circle in the plane (endowed
with the metric induced by | · | from C), let R : S1 → S1 be an irrational
rotation and c : S1 → S1, z 7→ z, the conjugation map.

Let S : S1 → S1 be a homeomorphism such that it has two fixed points
(each of them has one side attracting, one side repelling) and S(−z) = −S(z)
for every z ∈ S1. For example, first we set S(x) = 1

2ϕ(2x) for x ∈
[
0, 1

2

]
and S(x) = 1

2 + 1
2ϕ(2x − 1) for x ∈

[
1
2 , 1
]
, where ϕ : [0, 1] → [0, 1] is a

homeomorphism with ϕ(x) < x whenever x ∈ (0, 1), say ϕ(x) = x2; next,
we identify S with its lift to S1 obtained by e2πix 7→ e2πiS(x).

Let F = {F0, F1, F2, F3, F4, F5} where F0 = idS1 , F1 = R, F2 = R−1,
F3 = S, F4 = S−1 and F5 = c. Let X = Σ6×S1 (endowed with the product
metric given by the maximum of the distance on each coordinate) where
Σ6 = A N0 , A = {0, . . . , 5}, and let T : X → X be defined by

T (ω, x) = (σ(ω), Fω0(x))

with σ the standard shift transformation over Σ6. Note that X is compact,
T is continuous and π : (X,T )→ (Σ6, σ), π(ω, x) = ω is an open factor map.

For any letter a ∈ A let ā be the replacement of a by the second element
of the respective pair (0, 0), (1, 2), (3, 4), (5, 5), for example 4̄ = 3. We extend
this definition to words, putting w0 . . . wn = wn . . . w0. Note that if Fw =
Fw|w|−1

◦ · · · ◦Fw1 ◦Fw0 is a composition of maps indexed by symbols of the
word w then Fww = Fw ◦ Fw = id.

First we show that (X,T ) is mixing. Fix non-empty basic sets of the
topology of X, that is, sets of the form [A] × U , [B] × V , where U, V ⊆ S1

are non-empty open sets, and A,B ∈ A + are any finite words over A . If we
fix any x ∈ U then there is N > 0 such that RN (x) ∈ V . But then, for any
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n > N + 2|A| (where |A| denotes the length of A), it is enough to define

τ = AA1N0n−N−2|A|B0∞

and then (τ, x) ∈ [A]× U , while

Tn(τ, x) = (σn(τ), RN (x)) = (B0∞, RN (x)) ∈ [B]× V,

that is, Tn([A]× U) ∩ ([B]× V ) 6= ∅, so indeed T is mixing.
Now, we are ready to show that (6.1.1) is satisfied. First observe that for

any open sets U1, U2, V1, V2 ⊆ S1 there is a word w such that Fw(U1)∩U2 6= ∅
and Fw(V1) ∩ V2 6= ∅. To see this, consider first two particular cases of
composition of some powers of R and S.

If we take any two distinct points y, z ∈ S1 with |y − z| < 2 (i.e. y, z are
not antipodal), then we can find a word v = 1k for some k (i.e. Fv = Rk),
so that both ŷ = Fv(y) and ẑ = Fv(z) lie in the same connected component
of S1 with fixed points of S removed, and then limn→∞ |Sn(ŷ)−Sn(ẑ)| = 0.

Furthermore, for any ε > 0 and any r < 2 there is δ > 0 such that
if y, z ∈ S1, y 6= z and |y − z| < δ then we can find a word v′ = 1s

such that r − ε < |Sn(ŷ) − Sn(ẑ)| < r + ε for some n > 0, where again
ŷ = Fv′(y), ẑ = Fv′(z) (it is enough to have exactly one fixed point between
ŷ and ẑ; then one point, say ŷ, will be attracted to the fixed point at distance
less than ε/2, while the other point, ẑ, will be repelled sufficiently close to the
position chosen by us, once ẑ lies in a good position close to the fixed point,
which is possible by the construction of ẑ). By the above remarks we see that
for any non-empty open sets U1, U2, V1, V2 ⊆ S1 there is a map F obtained as
a result of the composition of some sequence of the maps S, R and c (it may
happen that we must change the ordering of points of the pair on S1 and so
sometimes we need to apply also c) such that F (U1)∩U2 6= ∅, F (V1)∩V2 6= ∅.

Fix any two open sets U, V ⊆ X(2) intersecting R
(2)
π (recall that the

definition of R(n)
π as well as definition of weak mixing of factors were intro-

duced at the beginning of Section 5). If (p, q) ∈ R(2)
π then π(p) = π(q) and

so there are non-empty open sets U1, U2, V1, V2 and words A,B ∈ A + such
that [A]×U1×[A]×V1 ⊆ U and [B]×U2×[B]×V2 ⊆ V . Let F be the above-
mentioned composition of a sequence of S,R, c such that F (U1) ∩ U2 6= ∅,
F (V1)∩V2 6= ∅. Let w ∈ A + be a word such that Fw = Fw|w|−1

◦· · ·◦Fw0 = F

and let ς = AAwB0∞. If we fix any x ∈ U1 ∩ F−1(U2), y ∈ V1 ∩ F−1(V2)
and put m = |w| + 2|A| then σm(ς) ∈ [B] and Tm(ς, x) = (σm(ς), F (x)),
Tm(ς, y) = (σm(ς), F (y)), so

((ς, x), (ς, y)) ∈ U and (T (2))m((ς, x), (ς, y)) ∈ [B]× U2 × [B]× V2 ⊆ V.

This shows that the system (R(2)
π , T (2)) is transitive; in other words, π is

weakly mixing of order 2.
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To finish the proof of (6.1.1) we must show that π is not weakly mixing
of order 3. Set

W = {(x, y, z) ∈ (S1)(3) : x, y, z do not all lie in a closed semicircle}.

Observe that W is a non-empty open subset of (S1)(3) and S(3)(W ) = W ,
R(3)(W ) = W , c(3)(W ) = W . Furthermore, since

R(3)
π = {(q, x, q, y, q, z) : q ∈ Σ6, x, y, z ∈ S1},

we see that

Ŵ = {(q, x, q, y, q, z) : q ∈ Σ6, (x, y, z) ∈W}

is a non-empty open subset of R(3)
π and T (3)(Ŵ ) ⊆ Ŵ . But it is also clear

that R(3)
π \ Ŵ 6= ∅ and so (R(3)

π , T (3)) is not transitive. This ends the proof
of (6.1.1).

Condition (6.1.2) follows almost directly from previous observations. Let
u1, u2, . . . be all possible words over A and define the following sequence of
words:

w1 = u1, w2 = w1w1u2w1, wn+1 = wnwnun+1wn

and let ω be the limit of the sequence wn (note that wn is a prefix of wn+1

so ω is well defined). Define D = {ω} × S1. We see that D is not a weakly
mixing set of order 3 since, for the above-defined non-empty open subset Ŵ
of R(3)

π , both Ŵ ∩D(3) and D(3) \ Ŵ are non-empty and T (3)(Ŵ ) ⊆ Ŵ . We
are going to show that D is weakly mixing of order 2. To prove this, fix any
non-empty open sets U1, U2, V1, V2 ⊆ S1 and prefix B of ω. Then [B] × U1,
[B]×U2, [B]×V1, [B]×V2 are open sets intersecting D (and every open set
intersecting D contains a subset of that form). The same way as previously,
let v represent a map F (concatenation of a sequence of maps with elements
S,R, c) such that F (U1)∩U2 6= ∅ and F (V1)∩V2 6= ∅. Let n be such that B is
a prefix of wn and un+1 = v0k for some k ≥ 0. Then the word sB is a prefix
of ω, where s = wnwnv0k. Write m = |s| and fix any y ∈ F−1(U2) ∩ U1,
z ∈ F−1(V2)∩ V1. Then (ω, y) ∈ ([B]×U1)∩D, (ω, z) ∈ ([B]× V1)∩D and

Tm(ω, y) = (σm(ω), F (y)) = (B . . . , F (y)) ∈ [B]× U2,

Tm(ω, z) = (σm(ω), F (z)) = (B . . . , F (z)) ∈ [B]× V2.

Thus, D is weakly mixing of order 2 and so the proof is finished.

7. Construction of Example 1.4. In this section, we are going to
present an example of a minimal invertible TDS with zero topological en-
tropy which contains non-trivial weakly mixing sets of order 2 and does not
contain any non-trivial weakly mixing set of order 3. While it is in some
aspects stronger than Example 6.1, the construction is less transparent.
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Before going further, we must present some preliminary facts and defi-
nitions.

Let Y be a compact metric space with metric d. Denote by H(Y ) the
topological group of all homeomorphisms of Y equipped with the following
(complete) metric:

d(g, h) = sup
y∈Y

d(g(y), h(y)) + sup
y∈Y

d(g−1(y), h−1(y)).

Let g ⊆ H(Y ) be a subgroup. We say that (Y, g) is transitive if for any
non-empty open subsets U and V of Y there exists g ∈ g with U ∩ gV 6= ∅;
weakly mixing of order n ∈ N \ {1} if (Y (n), g) (defined naturally as the
action of the same element on each coordinate) is transitive; and minimal if
{gy : g ∈ g} is dense in Y for every y ∈ Y . It is easy to check that (Y, g) is
minimal if and only if for each non-empty open subset U of Y there exists
{g1, . . . , gn} ⊆ g, n ∈ N, such that

⋃n
i=1 giU = Y , and (Y, g) is transitive if

and only if {gy : g ∈ g} is dense in Y for some y ∈ Y .
The following fact must be known but we cannot provide any reference

(we present its proof for completeness).

Proposition 7.1. Let (Y, g) be an invertible TDS and set g = {gn :
n ∈ Z}. Then

(7.1.1) (Y, g) is minimal if and only if (Y, g) is minimal.
(7.1.2) If Y is perfect then (Y, g) is transitive if and only if (Y, g) is transi-

tive.

Proof. (7.1.1) (Y, g) is minimal if and only if for each non-empty open
subset U of Y there exists {g1, . . . , gn} ⊆ g, n ∈ N, such that

⋃n
i=1 giU = Y

if and only if for each non-empty open subset U of Y there exists m ∈ N
such that

⋃m
j=0 g

−jU = Y , if and only if (Y, g) is minimal (using (2.1.6)).
(7.1.2) Assume that (Y, g) is transitive, that is, there exists y ∈ Y such

that {y, g±1(y), g±2(y), . . . } is dense in Y . As Y is perfect, there exists a
sequence {ni}i∈N in Z such that |n1| < |n2| < · · · and gni(y) → g−1(y)
as i → ∞. By choosing a subsequence we may assume n1 < n2 < · · · or
n1 > n2 > · · · . If n1 < n2 < · · · then g−1(y) ∈ {y, g(y), g2(y), . . . } and
so {y, g±1(y), g±2(y), . . . } = {y, g(y), g2(y), . . . }. Thus (Y, g) is transitive
(using (2.1.5)). If n1 > n2 > · · · then, by a similar reasoning, (Y, g−1) is
transitive and so (Y, g) is transitive (using (2.1.3)).

The converse implication in (7.1.2) follows just by the definition.

Remark 7.2. It may happen that (Y, g) is an invertible TDS which is
not transitive, whereas (Y, {gn : n ∈ Z}) is transitive (thus Y must con-
tain isolated points by (7.1.2)). The TDS constructed in Remark 2.5 has
property.
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Now let (Z, σ) be an invertible TDS. Let X = Z × Y and define gσ ⊆
H(X) in the following way. An element of H(X) belongs to gσ if and only
if it is the form of g−1 ◦ (σ × id) ◦ g, where g is given by g(z, y) = (z, gz(y))
for some continuous map Z → g, z 7→ gz, and σ × id is given by (σ ×
id)(z, y) = (σ(z), y). Clearly, (X, f) → (Z, σ), (z, y) 7→ z, is an open factor
map between TDSs for each f ∈ gσ. Thus elements f ∈ gσ are homeo-
morphisms of the form f(z, y) = (σ(z), (g−1

σ(z) ◦ gz)(y)) and so fk(z, y) =

(σk(z), (g−1
σk(z)

◦ gz)(y)).
With the help of Proposition 7.1 we obtain directly the following result

which combines Theorems 1 and 4 of [GW].

Theorem 7.3. Let Y be a compact metric space, g ⊆ H(Y ) a pathwise
connected subgroup and (Z, σ) an invertible minimal TDS with infinitely
many points.

(7.3.1) If (Y, g) is minimal then there exists a residual subset R ⊆ gσ such
that if f ∈ R then (Z × Y, f) is minimal.

(7.3.2) If (Y, g) is weakly mixing of order 2 then there exists a residual subset
R ⊆ gσ such that the factor map π : (Z × Y, f) → (Z, σ) is weakly
mixing of order 2 for every f ∈ R.

Remark 7.4. If the assumptions of (7.3.2) are satisfied then Z (hence
R

(2)
π ) is perfect.

We also need the following simple fact.

Lemma 7.5. Let Y be a compact metric space, g ⊆ H(Y ) a subgroup and
(Z, σ) an invertible TDS. Put X = Z × Y . If (X, f) is transitive for some
f ∈ gσ then (Y, g) is also transitive.

Proof. Fix f ∈ gσ such that (X, f) is a transitive TDS. Now, let U1 and
U2 be non-empty open subsets of Y . There exists n ∈ N such that W .=
fn(Z×U1)∩ (Z×U2) 6= ∅ and W is also open, since f is a homeomorphism.
Now if we fix any x ∈ (Z × U1) ∩ f−n(Z × U2) then f̃n(x) ∈ W ⊆ Z × U2

provided that f̃ is sufficiently close to f . In particular, there is f̃ ∈ gσ such
that f̃n(Z ×U1)∩ (Z ×U2) 6= ∅. But by the definition f̃ = g−1 ◦ (σ× id) ◦ g,
where g is given by g(z, y) = (z, gz(y)) for some continuous map Z → g,
z 7→ gz. Then for some (z, y) ∈ Z × U1 we have (σn(z), (g−1

σn(z) ◦ gz)(y)) ∈
Z×U2. In particular, (g−1

σn(z) ◦gz)(U1)∩U2 6= ∅ for some z ∈ Z, which shows

that (Y, g) is transitive, because g−1
σn(z) ◦ gz ∈ g.

Before we go further we must construct a special group of homeomor-
phisms. It will be used later as an ingredient of more advanced constructions
(in particular, it satisfies the assumptions of Theorem 7.3).
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Example 7.6. There exist a perfect space Y and a pathwise connected
subgroup g ⊆ H(Y ) such that (Y, g) is minimal and weakly mixing of order 2
but not 3.

Proof. Let Y = S1 and let Ra, a ∈ [0, 1), be the family of all possible
rotations of Y . Let Ta be the map defined by Ta(x) = (1 − a)x + ax2

where a, x ∈ [0, 1]. We identify every Ta with its lift to S1 obtained by
identifying the endpoints of the interval. Then {Ta}a∈[0,1] forms a path in
H(S1). Observe that if we fix any three distinct points and enumerate them
in clockwise direction, then after application of Ra or Ta their order will be
preserved. Furthermore, Ta is a map with exactly one fixed point, which is
one side attracting, one side repelling. Let g ⊆ H(S1) be the group generated
by the above-defined maps Ra and Ta.

The minimality of (Y, g) is straightforward, as (Y,Ra) is minimal for
each irrational a. We also see that g is pathwise connected. Namely, if we
have a composition fn ◦ · · · ◦ f1 ∈ g (each fi belongs to the above-mentioned
two classes of homeomorphisms Ra, Ta) then we can construct a path to
fn−1 ◦ · · · ◦ f1 by flattening fn to the identity by going with a to zero. So
that way we can go to the identity and from the identity to anything we
want in g joining together a finite number of paths.

Now we finish our proof by showing that (Y, g) is weakly mixing of or-
der 2 but not 3. Weak mixing of order 2 is obvious since we can use Ta
and Ra to change the distance between two points to be close to an arbi-
trary (allowed) number and place these points anywhere we want on S1.
To show that (Y, g) is not weakly mixing of order 3, fix any three dis-
joint connected open sets U1, U2, U3 and fix one point in each of them, say
x1, x2, x3 respectively. Assume that if we start at x1 and move clockwise
on the circle, then we will first meet x2 and next x3 (call the described
situation the clockwise ordering of a sequence on S1). For any other points
from U1, U2, U3 the ordering is always clockwise, since these connected sets
are disjoint. Additionally, if we apply any f ∈ g to them then the or-
dering of g(x1), g(x2), g(x3) will remain clockwise. This means that when
g(x1) ∈ U1 and g(x3) ∈ U2 then g(x2) 6∈ U3 as otherwise we have a con-
tradiction with clockwise ordering. Thus, (Y, g) is not weakly mixing of
order 3.

Finally, we provide the last ingredient we will need in our construction.

Proposition 7.7. Let (Y, g) be constructed in Example 7.6 and (Z, σ)
an invertible minimal TDS with infinitely many points. Define X = Z × Y .
Then there exists a residual subset R ⊆ gσ such that for every f ∈ R the
system (X, f) is minimal and the factor map π : (X, f)→ (Z, σ), (z, y) 7→ z,
is open and weakly mixing of order 2 but not 3.
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Proof. Note that the group from Example 7.6 satisfies the assumptions
of Theorem 7.3, so there exists a residual subset R ⊆ gσ such that for every
f ∈ R, the TDS (X, f) is minimal and π is an open factor map which is
weakly mixing of order 2.

Now we shall finish our proof by showing that π is not weakly mixing of
order 3. Assume to the contrary that (R(3)

π , f (3)) is transitive. Then R
(3)
π is

perfect by (2.1.2) since it is infinite and may be homeomorphically identified
with Z ′ × Y ′ where Z ′ = {(z, z, z) : z ∈ Z} and Y ′ = Y (3). Using the same
identification, f (3) may be viewed as an element of the group g′σ′ , where
σ′ : Z ′ → Z ′, (z, z, z) 7→ (σz, σz, σz), and g′ = {g(3) : g ∈ g}. By Lemma 7.5
we see that (Y ′, g′) is transitive, which equivalently means that (Y, g) is
weakly mixing of order 3. But this is impossible by the construction of
(Y, g) in Example 7.6.

Now we are ready to present the construction of our second example.

Construction of Example 1.4. Let (Z, σ) be any invertible minimal TDS
with infinitely many points which contains no non-trivial weakly mixing sets
of order 2, for example, any irrational rotation over the circle. By Proposition
7.7 there exists an open factor map π : (X, f) → (Z, σ) between minimal
invertible TDSs such that π is weakly mixing of order 2 but not 3 (thus,
π is not a homeomorphism), where X = Z × Y and f ∈ gσ with (Y, g)
constructed in Example 7.6.

By Theorem 5.2, there exists z0 ∈ Z such that π−1(z0) is a non-trivial
weakly mixing set of order 2. Now we claim that (X, f) contains no non-
trivial weakly mixing set of order 3. This will finish the proof, since in that
case by Theorem 3.8, (X, f) has zero topological entropy.

Assume to the contrary that ∅ 6= A ⊆ X is a non-trivial weakly mixing
set of order 3 (by (3.1.1) we may assume that A is closed, hence perfect
by Proposition 3.3). Note that by Proposition 3.2, π(A) is singleton, be-
cause by the assumptions (Z, σ) does not have non-trivial weakly mixing
sets of order 3. Thus, there exist three distinct points (z, yi), i = 1, 2, 3,
from A such that y1, y2, y3 ∈ S1 are clockwise ordered. By the assumption
that A is weakly mixing of order 3, we can require that, for some n ∈ N,
fn(z, y1) is sufficiently close to (z, y1), fn(z, y2) is sufficiently close to (z, y3)
and fn(z, y3) is sufficiently close to (z, y2); in particular, by the ordering
of y1, y2 and y3 we may assume that, for fn(z, yi)

.= (σn(z), y∗i ), i = 1, 2, 3,
the sequence y∗1, y

∗
3, y
∗
2 is clockwise ordered. Recall that for the (Y, g) con-

structed, each element of g preserves the order of any given distinct three
points from Y , and so it is not hard to check that each element of gσ (and
hence each element of gσ, including f) preserves the order of any given
triple (x1, x2, x3) ∈ X(3) whenever the second coordinates of x1, x2, x3 are



Topological weak mixing 287

pairwise distinct. In particular, y∗1, y
∗
2, y
∗
3 and y1, y2, y3 must be in the same

(clockwise) ordering which is a contradiction.

Remark 7.8. Example 1.4 shows that in general, there is no chance to
obtain results similar to Theorem 1.2 (even in the class of dynamical systems
acting on two-dimensional compact manifolds).
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