Subalgebras generated by extreme points in Fourier-Stieltjes algebras of locally compact groups

by
Michael Yin-hei Cheng (Waterloo)

Abstract

Let G be a locally compact group, G^{*} be the set of all extreme points of the set of normalized continuous positive definite functions of G, and $a(G)$ be the closed subalgebra generated by G^{*} in $B(G)$. When G is abelian, G^{*} is the set of Dirac measures of the dual group \hat{G}, and $a(G)$ can be identified as $l^{1}(\hat{G})$. We study the properties of $a(G)$, particularly its spectrum and its dual von Neumann algebra.

1. Introduction. Let G be a locally compact group, and let $A(G), B(G)$ and $V N(G)$ be the Fourier algebra, the Fourier-Stieltjes algebra and the group von Neumann algebra of G, respectively, as defined by Eymard [8]. If G is abelian, then $A(G)$ can be identified as $L^{1}(\hat{G})$ via the Fourier transform, $V N(G)$ can be identified as $L^{\infty}(\hat{G})$ via the adjoint of Fourier transform, and $B(G)$ can be identified as $M(\hat{G})$ via the Fourier-Stieltjes transform, where \hat{G} is the dual group of G.

Akemann and Walter [1] first studied G^{*}, the set of all extreme points in the set of all continuous positive definite functions on G with norm one. See [6] for references on positive definite functions of G. This object is also studied by A. T.-M. Lau in [11]. If G is amenable (see [17), it is proved that the convex hull of G^{*} is weak*-dense in the set of means on $\operatorname{UCB}(\hat{G})(=$ norm closure of $A(G) \cdot V N(G))$. In [16], P. F. Mah and T. Miao showed that for a [SIN]-group G, G^{*} and $A(G)$ are disjoint if and only if G is non-compact. This object was later studied by the author (see [4], [5]).

The main purpose of this paper is to study G^{*} from other points of view. For a locally compact abelian group G, G^{*} can be viewed as the set of all Dirac measures on \hat{G}. We define $a(G)$, the algebra generated by G^{*} in $B(G)$, as a non-commutative analogue of $l^{1}(\hat{G})$ and prove that $\sigma(a(G))$ has a natural semigroup structure. The main results are as follows:

[^0]We show that if G_{1} and G_{2} are locally compact groups and $a\left(G_{1}\right)$ and $a\left(G_{2}\right)$ are isometrically isomorphic, then the unitary parts of their spectra are either topologically isomorphic or anti-isomorphic. It is a natural question to ask when $\sigma(a(G))$ is a group. If G is a [Moore]-group, then $a(G)$ is the Fourier algebra of G^{ap}, where G^{ap} is the almost periodic compactification of G. In this case, $\sigma(a(G))$ is just $G^{\text {ap }}$. We show that $\sigma(a(G))$ is a group only if G is a [Moore]-group. Finally, we observe that if G is a discrete abelian group, then $l^{1}(\hat{G})$ characterizes G. We prove a non-commutative analogue of this phenomenon: if G is an [AR]-group, then $a(G)$ characterizes G.
2. Some preliminaries. Let E be a Banach space. Throughout this paper, S_{E} will denote the boundary of the unit ball of E respectively. Let K be a subset of E. We denote by $\mathcal{E}(K)$ the set of all extreme points of K, and by $\operatorname{co}(K)$ the algebraic convex hull of K. Let E^{\prime} be the Banach dual space of E, which consists of all bounded linear functionals on E.

In this paper, all groups will be assumed to be locally compact, and G will denote a locally compact group. Let f be a function on G and $y \in G$. We define the left and right translates of f through y by

$$
L_{y} f(x)=f\left(y^{-1} x\right), \quad R_{y} f(x)=f(x y)
$$

We also write ${ }_{x} f$ and f_{x} for the functions $f(x \cdot)$ and $f(\cdot x)$, respectively.
Let Σ_{G} be the class of all unitary equivalence classes of unitary representations of G, and let $\lambda_{2}: G \rightarrow B\left(L^{2}(G)\right),\left[\lambda_{2}(x)(f)\right](y):=f\left(x^{-1} y\right)$ $\left(x, y \in G, f \in L^{2}(G)\right)$, be the left regular representation of G. We will also denote by \hat{G} the set of all unitary equivalence classes of irreducible unitary representations of G. If G is abelian, \hat{G} is just the dual group of G.

For any $f \in L^{1}(G)$, define

$$
\|f\|_{C^{*}(G)}:=\sup _{\pi \in \hat{G}}\|\pi(f)\|
$$

It is easily seen that $\|\cdot\|_{C^{*}(G)}$ is a C^{*}-norm on $L^{1}(G)$. Let $C^{*}(G)$ be the completion of $L^{1}(G)$ under $\|\cdot\|_{C^{*}(G)}$. Then $C^{*}(G)$ is called the full group C^{*} algebra or simply the group C^{*}-algebra of G. Let $B(G):=\{x \mapsto\langle\pi(x) \xi, \eta\rangle$: $\left.\pi \in \Sigma_{G}, \xi, \eta \in \mathcal{H}_{\pi}\right\}$ be the Fourier-Stieltjes algebra of $G . B(G)$ is a commutative Banach algebra with pointwise multiplication and its norm is given by

$$
\|u\|_{B(G)}=\sup \left\{\left|\int u f\right|: f \in L^{1}(G),\|f\|_{C^{*}(G)} \leq 1\right\}
$$

Let $A(G):=\left\{x \mapsto\left\langle\lambda_{2}(x) \xi, \eta\right\rangle: \xi, \eta \in L^{2}(G)\right\}$ be the Fourier algebra of G. It is well-known that $A(G)$ is a closed ideal of $B(G)$.

Recall that the involution on $L^{1}(G)$ is given by the following formula:

$$
f^{*}(x)=\Delta\left(x^{-1}\right) \overline{f\left(x^{-1}\right)} \quad \text { a.e. } \quad\left(f \in L^{1}(G)\right)
$$

Let $P(G)$ be the set of all continuous positive definite functions on G, i.e.,

$$
P(G):=\left\{\phi \in B(G): \int\left(f^{*} * f\right) \phi \geq 0 \text { for any } f \in L^{1}(G)\right\}
$$

It can be shown that $P(G)=\left\{\langle\pi(\cdot) \xi, \xi\rangle: \pi \in \Sigma_{G}, \xi \in \mathcal{H}_{\pi}\right\}$ and $\phi(e)=$ $\|\phi\|_{B(G)}$. See [6] for details.

Let $V N(G)$ be the von Neumann algebra generated by the image of λ_{2} in $B\left(L^{2}(G)\right)$. It is called the group von Neumann algebra of G. For any $f \in L^{1}(G)$, define

$$
\|f\|_{C_{r}^{*}(G)}:=\left\|\lambda_{2}(f)\right\| .
$$

It is easily seen that $\|\cdot\|_{C_{r}^{*}(G)}$ is a C^{*}-norm on $L^{1}(G)$. Let $C_{r}^{*}(G)$ be the completion of $L^{1}(G)$ under $\|\cdot\|_{C_{r}^{*}(G)}$. Then $C_{r}^{*}(G)$ is called the reduced group C^{*}-algebra of G. It is proved by Eymard [8] that $A(G)^{\prime}=V N(G)$. For $u \in A(G)$ and $T \in V N(G)$, define $u \cdot T \in V N(G)$ by $\langle u \cdot T, v\rangle=\langle T, u v\rangle$, $v \in A(G)$.

Suppose that π is a unitary representation of G. Let $F_{\pi}(G)=\operatorname{span}\{x \mapsto$ $\left.\langle\pi(x) \xi, \eta\rangle: \xi, \eta \in \mathcal{H}_{\pi}\right\}$. Then $A_{\pi}(G)$, the Fourier space associated to π, is defined to be the closure of $F_{\pi}(G)$ in the Banach space $B(G)$. For any representation π of G, define $V N_{\pi}(G)$ to be the von Neumann algebra generated by $\pi(G)$ (or $\pi\left(L^{1}(G)\right)$) in $\mathcal{L}\left(\mathcal{H}_{\pi}\right)$. We have $A_{\pi}(G)^{\prime}=V N_{\pi}(G)$. If $\pi=\lambda_{2}$, then $A_{\pi}(G)=A(G)=F_{\pi}(G)$ and $V N_{\pi}(G)=V N(G)$. For each $u \in A_{\pi}(G)$, there exist nets $\left(\xi_{n}\right)$ and $\left(\eta_{n}\right)$ in \mathcal{H}_{π} such that

$$
u(x)=\sum_{n=1}^{\infty}\left\langle\pi(x) \xi_{n}, \eta_{n}\right\rangle \quad \text { and } \quad\|u\|=\sum_{n=1}^{\infty}\left\|\xi_{n}\right\|\left\|\eta_{n}\right\|
$$

See [2] and [8] for more details.
3. Semigroup structure of the spectrum of $a(G)$. In this section, we will study the semigroup structure of the spectrum of $a(G)$. We start with the definition of G^{*}, which will play an important role throughout this paper. Let $P_{1}(G)=S_{B(G)} \cap P(G)$. In other words,

$$
P_{1}(G)=\left\{\langle\pi(\cdot) \xi, \xi\rangle: \pi \in \Sigma_{G}, \xi \in \mathcal{H}_{\pi},\|\xi\|=1\right\}
$$

Let $G^{*}=\mathcal{E}\left(P_{1}(G)\right)$, and let \widetilde{G} be the semigroup generated by G^{*} in $B(G)$. The sets G^{*} and \widetilde{G} are equipped with the relative weak* topology inherited from $B(G)$. We shall denote the elements in G^{*} by g^{*}, h^{*} or k^{*}.

Remarks 3.1.
(a) If G is abelian, then $G^{*}=\widetilde{G}=\hat{G}$.
(b) We have $G^{*}=\left\{x \mapsto\langle\pi(x) \xi, \xi\rangle: \pi \in \hat{G}, \xi \in \mathcal{H}_{\pi},\|\xi\|=1\right\}$. Hence, G^{*} is non-empty as \hat{G} is non-empty.
(c) G^{*} separates the points of G. That is, if x and y are distinct points of G, there is an element $g^{*} \in G^{*}$ such that $g^{*}(x) \neq g^{*}(y)$ (see 9, Theorem 3.34]).
(d) Actually, it is proved in [1] that the following statements are equivalent:

- G is abelian.
- For every $g^{*} \in G^{*}$, we have $1 / g^{*}(\cdot) \in P_{1}(G)$.
- G^{*}, equipped with pointwise multiplication, is a group.

Let $a_{0}(G)$ be the closure of the span of G^{*} in $B(G)$, and let $a(G)$ be the closed subalgebra generated by $a_{0}(G)$ in $B(G)$. We call $a(G)$ the little Fourier algebra of G. Denote by $v n_{0}(G)$ and $v n(G)$ the dual Banach spaces of $a_{0}(G)$ and $a(G)$, respectively. We call $v n(G)$ the little von Neumann algebra of G. Then the norm closure of the span of \widetilde{G} in $B(G)$ is $a(G)$. Recall that $\bar{\pi}$ is the contragredient of π (for details, see [9, Chapter 3]). Note that $\bar{\pi}$ is irreducible for any irreducible representation π of G. It follows that $a(G)$ is a Banach *-algebra where the involution is given by complex conjugation. Furthermore, we can show that $a(G)$ is semisimple as G^{*} separates the points of G.

Proposition 3.2. Let $\pi_{a}=\bigoplus_{\pi \in \hat{G}} \pi$. Then $a_{0}(G)=A_{\pi_{a}}(G)$. Hence, $v n_{0}(G)=V N_{\pi_{a}}(G)$. In particular, $v n_{0}(G)$ is a von Neumann algebra.

Proof. Let \mathfrak{F} be the set of all unitary equivalence classes of finite direct sums of irreducible representations of G. It is clear that $\operatorname{span}\left(G^{*}\right)=\{x \mapsto$ $\left.\langle\pi(x) \xi, \eta\rangle: \pi \in \mathfrak{F}, \xi, \eta \in \mathcal{H}_{\pi}\right\}$. Suppose that $\phi \in A_{\pi_{a}}(G)$ is such that $\phi(x)=\left\langle\pi_{a}(x) \xi, \xi\right\rangle$ for some $\xi \in \mathcal{H}_{\pi_{a}}$. For any $\epsilon>0$, there exists $\xi_{0} \in \mathcal{H}_{\pi}$ for some $\pi \in \mathfrak{F}$ such that $\left\|\xi-\xi_{0}\right\|<\epsilon$. For any $f \in C^{*}(G)$,

$$
\begin{aligned}
\mid\left\langle\pi_{a}(f) \xi, \xi\right\rangle & -\left\langle\pi(f) \xi_{0}, \xi_{0}\right\rangle\left|=\left|\left\langle\pi_{a}(f) \xi, \xi\right\rangle-\left\langle\pi_{a}(f) \xi_{0}, \xi_{0}\right\rangle\right|\right. \\
& \leq\left|\left\langle\pi_{a}(f) \xi, \xi-\xi_{0}\right\rangle\right|+\left|\left\langle\pi_{a}(f)\left(\xi-\xi_{0}\right), \xi_{0}\right\rangle\right| \leq 2\|f\|_{C^{*}}\|\xi\| \epsilon .
\end{aligned}
$$

Therefore, $\left\|\left\langle\pi_{a}(\cdot) \xi, \xi\right\rangle-\left\langle\pi(\cdot) \xi_{0}, \xi_{0}\right\rangle\right\|_{B(G)} \leq \epsilon$. The result follows.
For the definitions of direct sums and internal tensor products of unitary representations of G, we refer the reader to [9, Chapters 3 and 7].

Let $\pi_{a}^{(n)}=\bigotimes_{i=1}^{n} \pi_{a}$ and $\sigma=\bigoplus_{n=1}^{\infty} \pi_{a}^{(n)}$. It is straightforward to show that $a(G)=A_{\sigma}(G)$ and $v n(G)=V N_{\sigma}(G)$. Hence, $v n(G)$ is a von Neumann algebra.

A Banach space X has the Radon-Nikodym property (RNP) if, for every bounded subset C of X and $\epsilon>0$, there is some $x \in C$ such that x does not lie in the norm closure of $\operatorname{co}[C \backslash(x+\{y \in X:\|y\| \leq \epsilon\})]$.

Remark 3.3. If G is a compact group, then $B(G)$ has RNP. In fact, $B(G)$ has RNP if and only if $B(G)=a_{0}(G)$ (see [3, Theorem 5], 19, Theorem 4.2], [13, Theorem 4.5] and [14]).

Let $A_{\mathcal{F}}(G)$ be the $\|\cdot\|_{B(G)}$-closure of $\{x \mapsto\langle\pi(x) \xi, \eta\rangle: \pi$ is a finitedimensional representation of $\left.G, \xi, \eta \in \mathcal{H}_{\pi}\right\}$. Let $\hat{G}_{\mathcal{F}}$ be the set of all finitedimensional irreducible representations of G, and $\pi_{F}=\bigoplus_{\pi \in \hat{G}_{\mathcal{F}}} \pi$. Then $A_{\mathcal{F}}(G)=A_{\pi_{F}}(G) \subseteq a_{0}(G)$.

A [Moore]-group is a locally compact group such that all its irreducible unitary representations are finite-dimensional.

Remarks 3.4.
(1) If G is abelian, then $a_{0}(G)=a(G) \cong l^{1}(\hat{G})$ and $v n_{0}(G)=v n(G) \cong$ $l^{\infty}(\hat{G})$.
(2) If G is compact, then every representation of G is a direct sum of copies of irreducible representations, hence $a_{0}(G)=B(G)=a(G)$.
(3) If G is a [Moore]-group, it is clear that $a_{0}(G)=a(G)=A_{\mathcal{F}}(G)$.
(4) More generally, if $B(G)$ has RNP, then $a_{0}(G)=B(G)=a(G)$.
(5) If G is the " $a x+b$ "-group, then $a_{0}(G)=A_{\mathcal{F}}(G) \oplus A(G)$, which is an algebra since $A(G)$ is an ideal in $a_{0}(G)$. Thus $a_{0}(G)=a(G)$.
Let A be a commutative Banach algebra. The spectrum of A, written as $\sigma(A)$, is the set of all non-zero multiplicative linear functionals on A.

From now on, π will be a unitary representation of G such that $A_{\pi}(G)$ is an algebra.

If $A_{\pi}(G)$ is a unital algebra, then it is easy to see that

$$
A_{\pi}(G)=A_{\pi}(G) \cdot A_{\pi}(G)=\operatorname{norm}-\mathrm{cl}\left(\operatorname{span}\left(A_{\pi}(G) \cdot A_{\pi}(G)\right)\right) .
$$

Therefore, $A_{\pi}(G)=A_{\pi \otimes \pi}(G)$, and hence π and $\pi \otimes \pi$ are quasi-equivalent (see [2]). By a result in [7, Chapter 4], there is an isomorphism $\Phi: V N_{\pi}(G)$ $\rightarrow V N_{\pi \otimes \pi}(G)$ such that

$$
\Phi(\pi(g))=(\pi \otimes \pi)(g) \quad \text { for any } g \in G .
$$

Moreover, we have

$$
\langle u, x\rangle_{\left(A_{\pi}(G), V N_{\pi}(G)\right)}=\langle u, \Phi(x)\rangle_{\left(A_{\pi \otimes \pi}(G), V N_{\pi \otimes \pi}(G)\right)}
$$

for any $u \in A_{\pi}(G)$ and $x \in V N_{\pi}(G)$ (see [2]). It is easy to see that the isomorphism with the above properties is unique.

For any $x \in V N_{\pi}(G), \pi \otimes \pi(x)$ is defined to be $\Phi(x)$. It is an operator on $H_{\pi} \otimes H_{\pi}$ since it is an element of $V N_{\pi \otimes \pi}(G)$. Since $\pi \otimes \pi(x)$ and $\pi(x) \otimes \pi(x)$ are operators on $H_{\pi} \otimes H_{\pi}$, it makes sense to ask if they are equal.

The following lemma is a generalization of [20, Theorem 1(ii)].
Lemma 3.5. If $A_{\pi}(G)$ is unital, then

$$
\sigma\left(A_{\pi}(G)\right):=\left\{x \in V N_{\pi}(G) \backslash\{0\}: \pi \otimes \pi(x)=\pi(x) \otimes \pi(x)\right\} .
$$

Proof. Let $u_{i}=\left\langle\pi(\cdot) \xi_{i}, \eta_{i}\right\rangle \in A_{\pi}(G)$ where $i=1,2$, and let $f=u_{1} u_{2}$. Then $f(x)=\left\langle\pi \otimes \pi(x) \xi_{1} \otimes \xi_{2}, \eta_{1} \otimes \eta_{2}\right\rangle$ for any $x \in G$. Thus we have

$$
\langle f, x\rangle=\langle f, \Phi(x)\rangle=\langle f, \pi \otimes \pi(x)\rangle=\left\langle\pi \otimes \pi(x) \xi_{1} \otimes \xi_{2}, \eta_{1} \otimes \eta_{2}\right\rangle .
$$

If $x \in \sigma\left(A_{\pi}(G)\right)$, then

$$
\begin{aligned}
\langle f, x\rangle & =\left\langle u_{1}, x\right\rangle\left\langle u_{2}, x\right\rangle=\left\langle\pi(x) \xi_{1}, \eta_{1}\right\rangle\left\langle\pi(x) \xi_{2}, \eta_{2}\right\rangle \\
& =\left\langle\pi(x) \otimes \pi(x) \xi_{1} \otimes \xi_{2}, \eta_{1} \otimes \eta_{2}\right\rangle .
\end{aligned}
$$

Therefore,

$$
\left\langle\pi \otimes \pi(x) \xi_{1} \otimes \xi_{2}, \eta_{1} \otimes \eta_{2}\right\rangle=\left\langle\pi(x) \otimes \pi(x) \xi_{1} \otimes \xi_{2}, \eta_{1} \otimes \eta_{2}\right\rangle
$$

Conversely, suppose that $x \in V N_{\pi}(G) \backslash\{0\}$ and $\pi(x) \otimes \pi(x)=\pi \otimes \pi(x)$. Then we have

$$
\begin{aligned}
\left\langle u_{1}, x\right\rangle\left\langle u_{2}, x\right\rangle & =\left\langle\pi(x) \xi_{1}, \eta_{1}\right\rangle\left\langle\pi(x) \xi_{2}, \eta_{2}\right\rangle \\
& =\left\langle\pi(x) \otimes \pi(x) \xi_{1} \otimes \xi_{2}, \eta_{1} \otimes \eta_{2}\right\rangle=\langle f, x\rangle .
\end{aligned}
$$

So, $x \in \sigma\left(A_{\pi}(G)\right)$.
For any $u \in A_{\pi}(G)$ and $T \in V N_{\pi}(G)$, define $T_{l}(u)(x)=\langle\pi(x) \cdot T, u\rangle$.
Lemma 3.6. We have $T_{l}(u)(x)=\left\langle T,{ }_{x} u\right\rangle$. If $A_{\pi}(G)$ is unital, then $T_{l}(1)(x)$ $\equiv\langle T, 1\rangle$.

Proof. If $u \in A_{\pi}(G)$ and $u(x)=\sum_{n=1}^{\infty}\left\langle\pi(x) \xi_{n}, \eta_{n}\right\rangle$ for some $\xi_{n}, \eta_{n} \in \mathcal{H}_{\pi}$, then

$$
(u \cdot \pi(x))(y)=\sum_{n=1}^{\infty}\left\langle\pi(y) \xi_{n}, \pi(x)^{*} \eta_{n}\right\rangle=\sum_{n=1}^{\infty}\left\langle\pi(x y) \xi_{n}, \eta_{n}\right\rangle={ }_{x} u(y)
$$

for any $x, y \in G$.
Lemma 3.7. $T_{l}(u) \in A_{\pi}(G)$ for each $u \in A_{\pi}(G)$ and $T \in V N_{\pi}(G)$.
Proof. $T_{l}(u)(x)=\langle\pi(x) \cdot T, u\rangle=\langle\pi(x), T \cdot u\rangle=(T \cdot u)(x)$.
Lemma 3.8. If $T \in \sigma\left(A_{\pi}(G)\right)$, then $T_{l}: A_{\pi}(G) \rightarrow A_{\pi}(G)$ is a homomorphism.

Proof. If $u, v \in A_{\pi}(G)$, then $\left.T_{l}(u \cdot v)(x)=\left\langle T,{ }_{x}(u v)\right\rangle=\left\langle T,{ }_{x} u_{x} v\right)\right\rangle=\left\langle T,{ }_{x} u\right\rangle\left\langle T,{ }_{x} v\right\rangle=T_{l}(u)(x) T_{l}(v)(x)$.

For any $S, T \in V N_{\pi}(G)$, define $S \circ T \in V N_{\pi}(G)$ by $\langle S \circ T, u\rangle=\left\langle S, T_{l}(u)\right\rangle$ for all $u \in A_{\pi}(G)$.

Proposition 3.9. If $S, T \in V N_{\pi}(G)$, then $S \circ T=S \cdot T$ and $(S \cdot T)_{l}(u)=$ $T_{l}\left(S_{l}(u)\right)$ for all $u \in A_{\pi}(G)$.

Proof. By definition, the first equality holds clearly if $S=\pi(x)$ for some $x \in G$. The rest follows from the weak ${ }^{*}$ density of $\operatorname{span}(\pi(G))$ in $V N_{\pi}(G)$. The second equality is straightforward.

Given a function $u: G \rightarrow \mathbb{C}$, let $\tilde{u}: G \rightarrow \mathbb{C}$ be the function defined by $\tilde{u}(x)=u\left(x^{-1}\right)$.

Proposition 3.10. If $\sigma\left(A_{\pi}(G)\right) \cup\{0\}$ is equipped with multiplication and involution inherited from the von Neumann algebra $V N_{\pi}(G)$, then it is a^{*}-semitopological semigroup. In addition, if $A_{\pi}(G)$ is unital and $\sigma\left(A_{\pi}(G)\right)$ is equipped with multiplication and involution inherited from $V N_{\pi}(G)$, then it is a compact*-semitopological semigroup.

Proof. If $T, S \in \sigma\left(A_{\pi}(G)\right)$ and $u, v \in A_{\pi}(G)$, then

$$
\begin{aligned}
\langle T \cdot S, u v\rangle & =\left\langle T, S_{l}(u v)\right\rangle=\left\langle T, S_{l}(u) S_{l}(v)\right\rangle \\
& =\left\langle T, S_{l}(u)\right\rangle\left\langle T, S_{l}(v)\right\rangle=\langle T \cdot S, u\rangle\langle T \cdot S, v\rangle .
\end{aligned}
$$

On the other hand, we have

$$
\left\langle T^{*}, u v\right\rangle=\langle T, \tilde{u} v\rangle=\langle T, \tilde{u} \tilde{v}\rangle=\left\langle T^{*}, u\right\rangle\left\langle T^{*}, v\right\rangle
$$

so $T^{*} \in \sigma\left(A_{\pi}(G)\right)$. Suppose that $A_{\pi}(G)$ is unital. Now $\langle T, 1\rangle=1=\langle S, 1\rangle$, so $\langle T \cdot S, 1\rangle=\left\langle T, S_{l}(1)\right\rangle=\langle T, 1\rangle=1$. It follows that $T \cdot S \neq 0$. Hence, $T \cdot S \in$ $\sigma\left(A_{\pi}(G)\right)$. Since multiplication in a von Neumann algebra is separately weak*-continuous, we conclude that these are semitopological semigroups.

Corollary 3.11. $\sigma(a(G))$ is a compact ${ }^{*}$-semitopological semigroup if it is equipped with multiplication and involution inherited from $\mathrm{vn}(G)$.

Suppose that $\phi \in l^{\infty}(G)$ satisfies

$$
\phi f=f \quad \text { for any } f \in l^{1}(G)
$$

Then, obviously, ϕ is the constant one function. We now have the following proposition which is a non-commutative analogue of this observation:

Proposition 3.12. Let T be a non-zero element in $v n(G)$. Then the following statements are equivalent:
(a) $T u=u$ for all $u \in a(G)$.
(b) $T=\sigma(e)$.

Proof. (b) $\Rightarrow(\mathrm{a})$ is clear. Suppose that (a) holds. We have $\left[T_{l}(u)\right](x)=$ $(T u)(x)=u(x)$. For any $S \in v n(G)$, we obtain $\langle S \cdot T, u\rangle=\left\langle S, T_{l}(u)\right\rangle=$ $\langle S, u\rangle$. Hence, $S \cdot T=S$ for all $S \in v n(G)$. Therefore, $T=\sigma(e)$.

Write $\sigma_{\mathrm{u}}\left(A_{\pi}(G)\right)\left(\sigma_{\mathrm{inv}}\left(A_{\pi}(G)\right)\right)$ for the set of all unitary (resp. invertible) elements in $\sigma\left(A_{\pi}(G)\right)$. Clearly, $\sigma_{\mathrm{u}}\left(A_{\pi}(G)\right)$ and $\sigma_{\mathrm{inv}}\left(A_{\pi}(G)\right)$ are semitopological groups if equipped with the relative weak* topology of $V N_{\pi}(G)$.

TheOrem 3.13. Let π_{1} and π_{2} be unitary representations of G_{1} and G_{2}, respectively. If $A_{\pi_{1}}\left(G_{1}\right)$ and $A_{\pi_{2}}\left(G_{2}\right)$ are isometrically isomorphic, then there is a homeomorphism $\phi: \sigma\left(A_{\pi_{1}}\left(G_{1}\right)\right) \rightarrow \sigma\left(A_{\pi_{2}}\left(G_{2}\right)\right)$ such that:
(a) $\phi\left(T^{*}\right)=\phi(T)^{*}$ for any $T \in \sigma\left(A_{\pi_{1}}\left(G_{1}\right)\right)$;
(b) for each $T, S \in \sigma\left(A_{\pi_{1}}\left(G_{1}\right)\right)$, either

$$
\phi(T \cdot S)=\phi(T) \phi(S) \quad \text { or } \quad \phi(T \cdot S)=\phi(S) \phi(T)
$$

(c) ϕ is either a^{*}-isomorphism or a^{*}-anti-isomorphism from $\sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)$ onto $\sigma_{\mathrm{u}}\left(A_{\pi_{2}}\left(G_{2}\right)\right)$.
Proof. Step 1: We construct a Jordan*-isomorphism Φ between $V N_{\pi_{1}}\left(G_{1}\right)$ and $V N_{\pi_{2}}\left(G_{2}\right)$. Let $\psi: A_{\pi_{2}}\left(G_{2}\right) \rightarrow A_{\pi_{1}}\left(G_{1}\right)$ be an isometric isomorphism. It is straightforward to show that $U=\psi^{*}\left(\pi_{2}(e)\right) \in \sigma\left(A_{\pi_{2}}\left(G_{2}\right)\right)$. We have $V=U^{*} \in \sigma\left(A_{\pi_{2}}\left(G_{2}\right)\right)$ by Proposition 3.10. By Lemma 3.8, $V_{l}: A_{\pi_{2}}\left(G_{2}\right) \rightarrow$ $A_{\pi_{2}}\left(G_{2}\right)$ is a homomorphism. Since V is unitary, it is easy to see that V_{l} is in fact an isometric isomorphism. It follows that $\psi \circ V_{l}: A_{\pi_{2}}\left(G_{2}\right) \rightarrow A_{\pi_{1}}\left(G_{1}\right)$ is an isometric isomorphism. Let $\Phi=\left(\psi \circ V_{l}\right)^{*}$. Then Φ is an isometry from $V N_{\pi_{1}}\left(G_{1}\right)$ onto $V N_{\pi_{2}}\left(G_{2}\right)$. Note that

$$
\left\langle\Phi\left(\pi_{1}\left(e_{1}\right)\right), f\right\rangle=\left\langle\psi^{*}\left(\pi\left(e_{1}\right)\right), V_{l}(f)\right\rangle=\left\langle U, V_{l}(f)\right\rangle=\left\langle\pi_{2}(e), f\right\rangle
$$

for any $f \in A_{\pi_{1}}\left(G_{1}\right)$. Therefore, Φ preserves units and hence is a Jordan *-isomorphism by [10, Theorem 7].

STEP 2: Let ϕ be the restriction of Φ to $\sigma\left(A_{\pi_{1}}\left(G_{1}\right)\right)$. Then ϕ is a homeomorphism from $\sigma\left(A_{\pi_{1}}\left(G_{1}\right)\right)$ onto $\sigma\left(A_{\pi_{2}}\left(G_{2}\right)\right)$. We show that ϕ satisfies (a) and (b). If $T S=S T$, then (b) holds, as Jordan ${ }^{*}$-isomorphisms preserve commutativity. Otherwise, we have

$$
\phi(T) \phi(S)+\phi(S) \phi(T)=\phi(S T)+\phi(T S) .
$$

Suppose that (b) does not hold. Then $\phi(T) \phi(S), \phi(S) \phi(T), \phi(S T)$ and $\phi(T S)$ are pairwise distinct, hence linearly independent, in $\sigma\left(A_{\pi_{2}}\left(G_{2}\right)\right)$, which leads to a contradiction.

By [10, Theorem 10], there exist central projections $z_{i} \in V N_{\pi_{i}}\left(G_{i}\right)(i=$ 1,2) such that $\Phi=\Phi_{I}+\Phi_{A}$ and $\Phi_{I}: V N\left(G_{1}\right) z_{1} \rightarrow V N\left(G_{2}\right) z_{2}$ is a ${ }^{*}$ isomorphism and $\Phi_{A}: V N\left(G_{1}\right)\left(\pi_{1}(e)-z_{1}\right) \rightarrow V N\left(G_{2}\right)\left(\pi_{2}(e)-z_{2}\right)$ is a *-anti-isomorphism. For each $T \in \sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)$, define

$$
\begin{aligned}
& H_{T}=\left\{S \in \sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right):(S T-T S) z_{1}=0\right\}, \\
& K_{T}=\left\{S \in \sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right):(S T-T S)\left(\pi_{2}(e)-z_{1}\right)=0\right\} .
\end{aligned}
$$

Step 3: We show that H_{T} and K_{T} are subgroups of $\sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)$ and $H_{T} \cup K_{T}=\sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)$. If $S_{1}, S_{2} \in H_{T}$ and $S \in \sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)$, then

$$
S S_{1} S_{2} z_{1}=S_{1}\left(S S_{2}\right) z_{1}=S_{1}\left(S_{2} S z_{1}\right)=S_{1} S_{2} S z_{1}
$$

and

$$
\left(S_{1}^{-1} S-S S_{1}^{-1}\right) z_{1}=S_{1}^{-1}\left(S_{1} S-S S_{1}\right) S_{1}^{-1} z_{1}=0
$$

It follows that H_{T} is a subgroup of $\sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)$. Similarly, K_{T} is a subgroup of $\sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right.$). Finally, if $\phi(S T)=\phi(T) \phi(S)$, then $\phi(S T-T S) z_{2}=0$ (since
Φ_{I} is a ${ }^{*}$-isomorphism), which implies that $(S T-T S) z_{1}=0$. So, $S \in H_{T}$. Otherwise, we have $\phi(S T)=\phi(S) \phi(T)$. It follows similarly that $S \in K_{T}$.

Step 4: Define

$$
\begin{aligned}
& H=\left\{T \in \sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right): H_{T}=\sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)\right\} \\
& K=\left\{T \in \sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right): K_{T}=\sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)\right\}
\end{aligned}
$$

We show that either $H=\sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)$ or $K=\sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)$. If $S_{1}, S_{2} \in H$, then, for any $S \in \sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)$, we have

$$
S_{1} S_{2} S z_{1}=S_{1}\left(S S_{2} z_{1}\right)=\left(S S_{1}\right) S_{2} z_{1}=S\left(S_{1} S_{2}\right) z_{1}
$$

Thus,

$$
H_{S_{1} S_{2}}=\sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)
$$

Also, we have

$$
\left(S_{1}^{-1} S-S S_{1}^{-1}\right) z_{1}=S_{1}^{-1}\left(S_{1} S-S S_{1}\right) S_{1}^{-1} z_{1}=0
$$

Consequently, $H_{S_{1}^{-1}}=\sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)$. The final assertion is clear since $H_{T}=$ $\sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)$ or $K_{T}=\sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)$ for any $T \in \sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right.$ (as H_{T} and K_{T} are subgroups of $\left.\sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)\right)$.

STEP 5: Suppose that $H=\sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)\left(K=\sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)\right)$. We show that ϕ is a^{*}-anti-isomorphism (resp. a^{*}-isomorphism). Suppose that $H=$ $\sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)$. We claim that

$$
\phi\left(S_{1} S_{2}\right)=\phi\left(S_{2}\right) \phi\left(S_{1}\right) \quad \text { for all } S_{1}, S_{2} \in \sigma_{\mathrm{u}}\left(A_{\pi_{1}}\left(G_{1}\right)\right)
$$

If not, then $\phi\left(S_{1} S_{2}\right)=\phi\left(S_{1}\right) \phi\left(S_{2}\right)$. It follows that

$$
\left(\phi\left(S_{1}\right) \phi\left(S_{2}\right)-\phi\left(S_{2}\right) \phi\left(S_{1}\right)\right)\left(\pi_{2}(e)-\phi\left(z_{1}\right)\right)=0
$$

But $S_{1}, S_{2} \in H$ implies that $\left(S_{1} S_{2}-S_{2} S_{1}\right) z_{1}=0$. So, $S_{1} S_{2}=S_{2} S_{1}$. Hence, $\phi\left(S_{1} S_{2}\right)=\phi\left(S_{2}\right) \phi\left(S_{1}\right)$. Therefore, ϕ is a *-anti-isomorphism. The other case is similar.

Corollary 3.14. If $a\left(G_{1}\right)$ and $a\left(G_{2}\right)$ are isometrically isomorphic, then $\sigma_{\mathrm{u}}\left(a\left(G_{1}\right)\right)$ and $\sigma_{\mathrm{u}}\left(a\left(G_{2}\right)\right)$ are topologically isomorphic.

REmARK 3.15.
(a) The product discussed in Proposition 3.9 is motivated by [12, Section 5].
(b) Theorem 3.13 is a generalization of [20, Theorem 2] and its proof is inspired by [12, Theorem 5.8] and [20, Theorem 2].
4. When is the spectrum of $a(G)$ a group? In this section, we investigate when the spectrum of $a(G)$ is a group.

Let G be a non-[Moore]-group. Let $\hat{G}_{\mathcal{I}}$ be the set of all infinite-dimensional irreducible representations of G, and $\pi_{I}=\bigoplus_{\pi \in \hat{G}_{\mathcal{I}}} \pi$. Then $\pi_{a}=$
$\pi_{F} \oplus \pi_{I}$. Let $\sigma_{I}=\bigoplus_{n \in \mathbb{N}} \pi_{F} \otimes \pi_{I}^{\otimes n}$ where $\pi_{I}^{\otimes n}=\bigotimes_{i=1}^{n} \pi_{I}$. It is easy to see that $\sigma=\pi_{F} \oplus \sigma_{I}$.

Since $A_{\mathcal{F}}(G)=A_{\pi_{F}}(G)$ is a closed translation invariant subalgebra of $B(G)$, there exists a central projection $p_{F} \in W^{*}(G)$ such that $A_{\mathcal{F}}(G)=$ $p_{F} \cdot B(G)$ where $W^{*}(G)$ is the enveloping von Neumann algebra of $C^{*}(G)$ (see [18, Lemma 2.2] for more details). Note that p_{F} is in the spectrum of $B(G)$, and p_{F} is equal to the identity element of $W^{*}(G)$ precisely when G is compact (see [21, Theorem 2]). The algebra $A_{\mathcal{P I F}}(G)=\left(1-p_{F}\right) \cdot B(G)$ is defined and proved to be an ideal of $B(G)$ in [18, Section 2].

LEMMA 4.1. Let $z_{F} \in \operatorname{vn}(G)$ be the central projection such that $A_{\mathcal{F}}(G)=$ $z_{F} \cdot a(G)$. Write $a(G)=A_{\mathcal{F}}(G) \oplus A_{I}(G)$, where $A_{I}(G)=\left(\sigma(e)-z_{F}\right) a(G)$. Then $A_{I}(G)$ is the ideal generated by $A_{\pi_{I}}(G)$ in $a(G)$, and $A_{I}(G)=A_{\sigma_{I}}(G)$.

Proof. Note that $B(G)=A_{\mathcal{F}}(G) \oplus A_{\mathcal{P I F}}(G)$. Thus, $a(G)=A_{\mathcal{F}}(G) \oplus$ $\left(a(G) \cap A_{\mathcal{P I F}}(G)\right)$. By uniqueness of the translation invariant complement of $A_{\mathcal{F}}(G)$ in $a(G)$, we have $a(G) \cap A_{\mathcal{P I F}}(G)=A_{I}(G)$ (see [2, Proposition 3.16]). Since $A_{\mathcal{P I F}}(G)$ is an ideal in $B(G)$, it follows that $A_{I}(G)$ is an ideal in $a(G)$.

We have the following proposition that gives some criteria for the equality of $a(G)$ and $a_{0}(G)$, which is of independent interest:

Proposition 4.2. The following statements are equivalent:
(a) $a_{0}(G)=a(G)$.
(b) $a_{0}(G)=A_{\pi_{a} \otimes \pi_{a}}(G)$.
(c) $a(G)$ has RNP.
(d) $A_{\pi_{a} \otimes \pi_{a}}(G)$ has $R N P$.
(e) $A_{I}(G)$ has $R N P$.
(f) $\pi_{a} \otimes \pi_{a}$ is completely reducible.
(g) $\pi \otimes \rho$ is completely reducible for any $\pi, \rho \in \hat{G}$.
(h) $A_{\pi_{I}}(G)$ is an algebra and $a_{0}(G) A_{\pi_{I}}(G)=A_{\pi_{I}}(G)$.

Proof. Note that $a_{0}(G) \subseteq A_{\pi_{a} \otimes \pi_{a}}(G) \subseteq a(G)$ and $a(G)=A_{\mathcal{F}}(G) \oplus$ $A_{I}(G)$. The result follows from [3, Theorem 3].

Remark 4.3. It follows that [14] that if $a_{0}(G)=a(G)$, then $a(G)$ has the weak fixed point property for non-expansive mappings. We do not know if the converse is true (see also [13]).

Note that $\sigma\left(A_{\mathcal{F}}(G)\right)=\sigma\left(A\left(G^{\text {ap }}\right)\right) \cong G^{\text {ap }}$ where $G^{\text {ap }}$ is the almost periodic compactification of G. If G is a [Moore]-group, then $a(G)=A_{\mathcal{F}}(G)=$ $B\left(G^{\text {ap }}\right)=A\left(G^{\text {ap }}\right)$. Therefore, $\sigma(a(G))=G^{\text {ap }}$ is a group. We will prove below that the converse is also true.

The following lemma is a generalization of [21, Proposition 1]; the proof is left to the reader.

Lemma 4.4. Let s be a non-zero element of $V N_{\pi}(G)$ such that $s^{2}=s$. Then the following are equivalent:
(a) $s \in \sigma\left(A_{\pi}(G)\right)$.
(b) $s \cdot A_{\pi}(G)$ is an algebra and $(\pi(e)-s) A_{\pi}(G)$ is an ideal in $A_{\pi}(G)$.
(c) The $\operatorname{map} A_{\pi}(G) \rightarrow s \cdot A_{\pi}(G), f \mapsto s \cdot f$, is an endomorphism.

Lemma 4.5. If $A_{\pi}(G)=A_{\pi_{1}}(G) \oplus A_{\pi_{2}}(G)$ and $m \in \sigma\left(A_{\pi}(G)\right)$ is invertible, then $m\left(A_{\pi_{1}}(G)\right) \neq 0$ and $m\left(A_{\pi_{2}}(G)\right) \neq 0$.

Proof. Assume that $m\left(A_{\pi_{1}}(G)\right)=0$. Let $z\left[\pi_{1}\right]$ be the support projection of π_{1} in $V N_{\pi}(G)$. Then $m \in A_{\pi_{1}}(G)^{\perp}=\left(\pi(e)-z\left[\pi_{1}\right]\right) V N_{\pi}(G)$. So, $m=$ $\left(\pi(e)-z\left[\pi_{1}\right]\right) m$. Hence, $\pi(e)=z\left[\pi_{1}\right]$. Consequently, $A_{\pi_{2}}(G)=0$, which is a contradiction.

Lemma 4.6. Let $z_{F} \in \operatorname{vn}(G)$ be the central projection such that $A_{\mathcal{F}}(G)=$ $z_{F} \cdot a(G)$. Then $z_{F} \in \sigma(a(G))$.

Proof. Since $A_{I}(G)$ is an ideal in $a(G)$, by Lemma 4.4, we have $z_{F} \in$ $\sigma(a(G))$.

Note that $a_{0}(G)=\oplus_{1}\left\{A_{\pi}(G): \pi \in \hat{G}\right\}=\oplus_{1}\left\{L^{1}\left(\mathcal{H}_{\pi}\right): \pi \in \hat{G}\right\}$ (see [2]) where $L^{1}\left(\mathcal{H}_{\pi}\right)$ is the space of all trace-class operators on \mathcal{H}_{π}. Let $c_{0}(\hat{G}):=$ $\oplus_{0}\left\{\mathcal{K}\left(\mathcal{H}_{\pi}\right): \pi \in \hat{G}\right\}$. Then it is easy to see that the dual space of $c_{0}(\hat{G})$ is $a_{0}(G)$.

Lemma 4.7. The following assertions are equivalent:
(a) G is a $[$ Moore $]$-group.
(b) $a_{0}(G)$ is an l^{1}-sum of finite-dimensional Banach spaces.
(c) $c_{0}(\hat{G})$ is a c_{0}-sum of finite-dimensional C^{*}-algebras.
(d) Every bounded linear operator $T: c_{0}(G) \rightarrow a_{0}(G)$ is compact.
(e) Every irreducible representation of $c_{0}(\hat{G})$ is finite-dimensional.

Proof. By using [15, Theorems 3.6 and 4.1], we see the equivalence of (b)-(e). It suffices to prove that (e) implies (a). Define $\hat{\pi}_{0}: c_{0}(\hat{G}) \rightarrow B\left(\mathcal{H}_{\pi_{0}}\right)$, $\left(T_{\pi}\right)_{\pi \in \hat{G}} \mapsto T_{\pi_{0}}$. Let $\xi, \eta \in \mathcal{H}_{\pi_{0}} \backslash\{0\}$. There exists $S_{\pi_{0}} \in \mathcal{F}\left(\mathcal{H}_{\pi_{0}}\right)$ such that $S_{\pi_{0}}(\xi)=\eta$. Now, define $T_{\pi}=S_{\pi_{0}}$ if $\pi=\pi_{0}$ and $T_{\pi}=0$ if $\pi \neq \pi_{0}$. Then $\hat{\pi}_{0}\left(\left(T_{\pi}\right)_{\pi \in \hat{G}}\right) \xi=\eta$, and hence $\hat{\pi}_{0}$ is irreducible. Therefore, $\mathcal{H}_{\pi_{0}}$ is finitedimensional.

Remark 4.8. A Banach space is said to have Schur's property if all weakly convergent sequences are norm convergent. The Banach space X is said to have the $D P P$ if, for any Banach space Y, every weakly compact linear operator $u: X \rightarrow Y$ sends weakly Cauchy sequences to norm convergent sequences. Actually, by using [15, Theorems 3.6 and 4.1], we can prove that the following assertions are equivalent:
(a) G is a [Moore]-group.
(b) $a_{0}(G)$ has Schur's property.
(c) $a_{0}(G)$ has DPP.
(d) $c_{0}(\hat{G})$ has DPP.
(e) $a p\left(c_{0}(G)\right)=a_{0}(G)$.

Theorem 4.9. Let G be a locally compact group. The following statements are equivalent:
(a) G is a $[$ Moore $]$-group.
(b) $\sigma(a(G))$ is a group.
(c) The only idempotent of $\sigma(a(G))$ is $\sigma(e)$.
(d) $z_{F} \in \sigma(a(G))$ is invertible.
(e) $a(G)=A_{\mathcal{F}}(G)$.
(f) $a_{0}(G)=A_{\mathcal{F}}(G)$.

Proof. (a) $\Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c})$ and (b) \Rightarrow (d) are clear. Suppose that (b) holds. Then $z_{F}=\sigma(e)$. So, $a(G)=z_{F} \cdot a(G)=A_{\mathcal{F}}(G)$. On the other hand, suppose that (d) holds. Then $z_{F}\left(A_{I}(G)\right) \neq 0$ by Lemma 4.5. This contradicts that $A_{I}(G)=\left(\sigma(e)-z_{F}\right) a(G)$. We thus get $A_{I}(G)=0$, i.e. $a(G)=A_{\mathcal{F}}(G)$. If $a(G)=A_{\mathcal{F}}(G)$, then we have $a_{0}(G)=A_{\mathcal{F}}(G)$ as $A_{\mathcal{F}}(G) \subseteq a_{0}(G)$. Finally, assume that (f) is true. Then G is a [Moore]-group by Lemma 4.7.

By the result above, we see that $\sigma(a(G))$ is not always a group. We will now study the unitary (invertible) part of $\sigma(a(G))$.

Recall the following definitions: A unitary representation of G is completely reducible if it can be written as a direct sum of irreducibles. A locally compact group G is called an $[A R]$-group if $A(G)$ has RNP. It is proved that G is an [AR]-group if and only if its left regular representation is completely reducible (see [19] for more details).

Theorem 4.10. Let G be an $[A R]$-group. Then $\sigma_{\mathrm{u}}(a(G))$ and $\sigma_{\mathrm{inv}}(a(G))$ are topologically isomorphic to G.

Proof. We prove the statement for $\sigma_{\mathrm{u}}(a(G))$. The case of $\sigma_{\mathrm{inv}}(a(G))$ is similar. Define $\phi: G \rightarrow \sigma_{\mathrm{u}}(a(G))$ by $x \mapsto m_{x}$ where $m_{x}(u)=u(x)$. Clearly, ϕ is continuous. Since G^{*} separates the points of G (see Remark 4.4), the map ϕ is injective. By assumption, $A(G) \subseteq a(G)$. Let $m \in \sigma_{\mathrm{u}}(a(G))$. Then $\left.m\right|_{A(G)} \neq 0$ by Lemma 4.5. Therefore, $\left.m\right|_{A(G)} \in \sigma(A(G))$. Let $u \in A(G)$ and $v \in a(G)$. Note that $A(G)$ is an ideal in $a(G)$. There exists $x_{0} \in G$ such that

$$
m(u) m(v)=m(u v)=u\left(x_{0}\right) v\left(x_{0}\right) .
$$

Pick $u_{0} \in A(G)$ such that $u_{0}\left(x_{0}\right) \neq 0$. We conclude that $m(v)=v\left(x_{0}\right)$. Hence, ϕ is surjective. The continuity of the inverse of ϕ follows from the facts that $A(G) \subseteq a(G)$ and $\sigma(A(G))$ is topologically isomorphic to G. -

If G is a discrete group, then $l^{1}(G)=L^{1}(G)$ is a total invariant of G by Wendel's theorem (see [22]). We have the following non-commutative analogue of this observation.

Corollary 4.11. Let G_{1} and G_{2} be locally compact groups such that $A\left(G_{1}\right)$ and $A\left(G_{2}\right)$ have $R N P$, i.e., G_{1}, G_{2} are $[A R]$-groups. The following conditions are equivalent:
(a) G_{1} and G_{2} are topologically isomorphic.
(b) $a\left(G_{1}\right)$ and $a\left(G_{2}\right)$ are isometrically isomorphic.
(c) $\sigma_{\mathrm{u}}\left(G_{1}\right)$ and $\sigma_{\mathrm{u}}\left(G_{2}\right)$ are topologically isomorphic.
(d) $\sigma_{\mathrm{inv}}\left(G_{1}\right)$ and $\sigma_{\mathrm{inv}}\left(G_{2}\right)$ are topologically isomorphic.

Proof. This follows from Corollary 3.14 and Theorem 4.10.
REmark 4.12.
(a) Part of the proof of Theorem 4.9 is inspired by the proof of [20, Lemma of Theorem 2, p. 27].
(b) The proof of Theorem 4.10 follows an idea in [21, Theorem 2].

Acknowledgments. The results presented in this paper will be part of the Ph.D. thesis of the author at the University of Alberta under the supervision of Dr. Anthony To-Ming Lau. The author is grateful to Dr. Lau for many valuable suggestions.

References

[1] C. A. Akemann and M. E. Walter, Non-abelian Pontriagin duality, Duke Math. J. 39 (1972), 451-463.
[2] G. Arsac, Sur l'espace de Banach engendré par les coefficients d'une représentation unitaire, Publ. Dép. Math. (Lyon) 13 (1976), no. 2, 1-101.
[3] A. Belanger and B. E. Forrest, Geometric properties of coefficient function spaces determined by unitary representations of a locally compact group, J. Math. Anal. Appl. 193 (1995), 390-405.
[4] M. Y.-H. Cheng, A bipolar property of subgroups and translation invariant closed convex subsets, submitted.
[5] -, Translation invariant means on group von Neumann algebras, submitted.
[6] A. Derighetti, Some results on the Fourier-Stieltjes algebra of a locally compact group, Comment. Math. Helv. 45 (1970), 219-228.
[7] J. Dixmier, C^{*}-algebras, North-Holland Math. Library 15, North-Holland, Amsterdam, 1977.
[8] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
[9] G. B. Folland, A Course in Abstract Harmonic Analysis, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1995.
[10] R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338.
[11] A. T.-M. Lau, Uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 232 (1979), 39-59.
[12] A. T.-M. Lau, The Fourier-Stieltjes algebra of a topological semigroup with involution, Pacific J. Math. 77 (1978), 165-181.
[13] A. T.-M. Lau and M. Leinert, Fixed point property and the Fourier algebra of a locally compact group, Trans. Amer. Math. Soc. 360 (2008), 6389-6402.
[14] A. T.-M. Lau, P. F. Mah and A. Ülger, Fixed point property and normal structure for Banach spaces associated to locally compact groups, Proc. Amer. Math. Soc. 125 (1997), 2021-2027.
[15] A. T.-M. Lau and A. Ülger, Some geometric properties on the Fourier and FourierStieltjes algebras of locally compact groups, Arens regularity and related problems, Trans. Amer. Math. Soc. 337 (1993), 321-359.
[16] P. F. Mah and T. Miao, Extreme points of the unit ball of the Fourier-Stieltjes algebra, Proc. Amer. Math. Soc. 128 (2000), 1097-1103.
[17] A. L. T. Paterson, Amenability, Math. Surveys Monogr. 29, Amer. Math. Soc., Providence, RI, 1988.
[18] V. Runde and N. Spronk, Operator amenability of Fourier-Stieltjes algebras, Math. Proc. Cambridge Philos. Soc. 136 (2004), 675-686.
[19] K. F. Taylor, Geometry of the Fourier algebras and locally compact groups with atomic unitary representations, Math. Ann. 262 (1983), 183-190.
[20] M. E. Walter, W^{*}-algebras and non-abelian harmonic analysis, J. Funct. Anal. 11 (1972), 17-38.
[21] -, On the structure of the Fourier-Stieltjes algebra, Pacific J. Math. 58 (1975), 267-281.
[22] J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952), 251-261.

Michael Yin-hei Cheng
Department of Pure Mathematics
University of Waterloo
Waterloo, ON N2L 3G1, Canada
E-mail: y47cheng@uwaterloo.ca

Received August 13, 2010
Revised version January 9, 2011

[^0]: 2010 Mathematics Subject Classification: Primary 43A30, 43A35, 43A40; Secondary 46J10. Key words and phrases: Fourier-Stieltjes algebra, locally compact group, extreme point, spectrums.

