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Subalgebras generated by extreme points in Fourier–Stieltjes
algebras of locally compact groups

by

Michael Yin-hei Cheng (Waterloo)

Abstract. Let G be a locally compact group, G∗ be the set of all extreme points of
the set of normalized continuous positive definite functions of G, and a(G) be the closed
subalgebra generated by G∗ in B(G). When G is abelian, G∗ is the set of Dirac measures
of the dual group Ĝ, and a(G) can be identified as l1(Ĝ). We study the properties of a(G),
particularly its spectrum and its dual von Neumann algebra.

1. Introduction. LetG be a locally compact group, and letA(G),B(G)
and VN (G) be the Fourier algebra, the Fourier–Stieltjes algebra and the
group von Neumann algebra of G, respectively, as defined by Eymard [8]. If
G is abelian, then A(G) can be identified as L1(Ĝ) via the Fourier transform,
VN (G) can be identified as L∞(Ĝ) via the adjoint of Fourier transform, and
B(G) can be identified as M(Ĝ) via the Fourier–Stieltjes transform, where
Ĝ is the dual group of G.

Akemann and Walter [1] first studied G∗, the set of all extreme points
in the set of all continuous positive definite functions on G with norm one.
See [6] for references on positive definite functions of G. This object is also
studied by A. T.-M. Lau in [11]. If G is amenable (see [17]), it is proved that
the convex hull ofG∗ is weak∗-dense in the set of means on UCB(Ĝ) (= norm
closure of A(G) · VN (G)). In [16], P. F. Mah and T. Miao showed that for
a [SIN]-group G, G∗ and A(G) are disjoint if and only if G is non-compact.
This object was later studied by the author (see [4], [5]).

The main purpose of this paper is to study G∗ from other points of
view. For a locally compact abelian group G, G∗ can be viewed as the set
of all Dirac measures on Ĝ. We define a(G), the algebra generated by G∗ in
B(G), as a non-commutative analogue of l1(Ĝ) and prove that σ(a(G)) has
a natural semigroup structure. The main results are as follows:
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We show that if G1 and G2 are locally compact groups and a(G1) and
a(G2) are isometrically isomorphic, then the unitary parts of their spectra
are either topologically isomorphic or anti-isomorphic. It is a natural ques-
tion to ask when σ(a(G)) is a group. If G is a [Moore]-group, then a(G) is the
Fourier algebra of Gap, where Gap is the almost periodic compactification
of G. In this case, σ(a(G)) is just Gap. We show that σ(a(G)) is a group only
if G is a [Moore]-group. Finally, we observe that if G is a discrete abelian
group, then l1(Ĝ) characterizes G. We prove a non-commutative analogue
of this phenomenon: if G is an [AR]-group, then a(G) characterizes G.

2. Some preliminaries. Let E be a Banach space. Throughout this
paper, SE will denote the boundary of the unit ball of E respectively. Let
K be a subset of E. We denote by E(K) the set of all extreme points of K,
and by co(K) the algebraic convex hull of K. Let E′ be the Banach dual
space of E, which consists of all bounded linear functionals on E.

In this paper, all groups will be assumed to be locally compact, and G
will denote a locally compact group. Let f be a function on G and y ∈ G.
We define the left and right translates of f through y by

Lyf(x) = f(y−1x), Ryf(x) = f(xy).

We also write xf and fx for the functions f(x·) and f(·x), respectively.
Let ΣG be the class of all unitary equivalence classes of unitary rep-

resentations of G, and let λ2 : G → B(L2(G)), [λ2(x)(f)](y) := f(x−1y)
(x, y ∈ G, f ∈ L2(G)), be the left regular representation of G. We will also
denote by Ĝ the set of all unitary equivalence classes of irreducible unitary
representations of G. If G is abelian, Ĝ is just the dual group of G.

For any f ∈ L1(G), define

‖f‖C∗(G) := sup
π∈Ĝ
‖π(f)‖.

It is easily seen that ‖ · ‖C∗(G) is a C∗-norm on L1(G). Let C∗(G) be the
completion of L1(G) under ‖·‖C∗(G). Then C∗(G) is called the full group C∗-
algebra or simply the group C∗-algebra of G. Let B(G) := {x 7→ 〈π(x)ξ, η〉 :
π ∈ ΣG, ξ, η ∈ Hπ} be the Fourier–Stieltjes algebra of G. B(G) is a commu-
tative Banach algebra with pointwise multiplication and its norm is given
by

‖u‖B(G) = sup
{∣∣∣ �uf ∣∣∣ : f ∈ L1(G), ‖f‖C∗(G) ≤ 1

}
.

Let A(G) := {x 7→ 〈λ2(x)ξ, η〉 : ξ, η ∈ L2(G)} be the Fourier algebra of G.
It is well-known that A(G) is a closed ideal of B(G).

Recall that the involution on L1(G) is given by the following formula:

f∗(x) = ∆(x−1)f(x−1) a.e. (f ∈ L1(G)).
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Let P (G) be the set of all continuous positive definite functions on G, i.e.,

P (G) :=
{
φ ∈ B(G) :

�
(f∗ ∗ f)φ ≥ 0 for any f ∈ L1(G)

}
.

It can be shown that P (G) = {〈π(·)ξ, ξ〉 : π ∈ ΣG, ξ ∈ Hπ} and φ(e) =
‖φ‖B(G). See [6] for details.

Let VN (G) be the von Neumann algebra generated by the image of λ2

in B(L2(G)). It is called the group von Neumann algebra of G. For any
f ∈ L1(G), define

‖f‖C∗r (G) := ‖λ2(f)‖.

It is easily seen that ‖ · ‖C∗r (G) is a C∗-norm on L1(G). Let C∗r (G) be the
completion of L1(G) under ‖ · ‖C∗r (G). Then C∗r (G) is called the reduced
group C∗-algebra of G. It is proved by Eymard [8] that A(G)′ = VN (G).
For u ∈ A(G) and T ∈ VN (G), define u ·T ∈ VN (G) by 〈u ·T, v〉 = 〈T, uv〉,
v ∈ A(G).

Suppose that π is a unitary representation of G. Let Fπ(G) = span {x 7→
〈π(x)ξ, η〉 : ξ, η ∈ Hπ}. Then Aπ(G), the Fourier space associated to π, is
defined to be the closure of Fπ(G) in the Banach space B(G). For any repre-
sentation π of G, define VN π(G) to be the von Neumann algebra generated
by π(G) (or π(L1(G))) in L(Hπ). We have Aπ(G)′ = VN π(G). If π = λ2,
then Aπ(G) = A(G) = Fπ(G) and VN π(G) = VN (G). For each u ∈ Aπ(G),
there exist nets (ξn) and (ηn) in Hπ such that

u(x) =
∞∑
n=1

〈π(x)ξn, ηn〉 and ‖u‖ =
∞∑
n=1

‖ξn‖ ‖ηn‖.

See [2] and [8] for more details.

3. Semigroup structure of the spectrum of a(G). In this section,
we will study the semigroup structure of the spectrum of a(G). We start
with the definition of G∗, which will play an important role throughout this
paper. Let P1(G) = SB(G) ∩ P (G). In other words,

P1(G) = {〈π(·)ξ, ξ〉 : π ∈ ΣG, ξ ∈ Hπ, ‖ξ‖ = 1}.

Let G∗ = E(P1(G)), and let G̃ be the semigroup generated by G∗ in B(G).
The sets G∗ and G̃ are equipped with the relative weak∗ topology inherited
from B(G). We shall denote the elements in G∗ by g∗, h∗ or k∗.

Remarks 3.1.

(a) If G is abelian, then G∗ = G̃ = Ĝ.
(b) We have G∗ = {x 7→ 〈π(x)ξ, ξ〉 : π ∈ Ĝ, ξ ∈ Hπ, ‖ξ‖ = 1}. Hence,

G∗ is non-empty as Ĝ is non-empty.
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(c) G∗ separates the points of G. That is, if x and y are distinct points
of G, there is an element g∗ ∈ G∗ such that g∗(x) 6= g∗(y) (see [9,
Theorem 3.34]).

(d) Actually, it is proved in [1] that the following statements are equiv-
alent:

• G is abelian.
• For every g∗ ∈ G∗, we have 1/g∗(·) ∈ P1(G).
• G∗, equipped with pointwise multiplication, is a group.

Let a0(G) be the closure of the span of G∗ in B(G), and let a(G) be the
closed subalgebra generated by a0(G) inB(G). We call a(G) the little Fourier
algebra of G. Denote by vn0(G) and vn(G) the dual Banach spaces of a0(G)
and a(G), respectively. We call vn(G) the little von Neumann algebra of G.
Then the norm closure of the span of G̃ in B(G) is a(G). Recall that π̄ is the
contragredient of π (for details, see [9, Chapter 3]). Note that π̄ is irreducible
for any irreducible representation π of G. It follows that a(G) is a Banach
∗-algebra where the involution is given by complex conjugation. Further-
more, we can show that a(G) is semisimple as G∗ separates the points of G.

Proposition 3.2. Let πa =
⊕

π∈Ĝ π. Then a0(G) = Aπa(G). Hence,
vn0(G) = VN πa(G). In particular, vn0(G) is a von Neumann algebra.

Proof. Let F be the set of all unitary equivalence classes of finite direct
sums of irreducible representations of G. It is clear that span(G∗) = {x 7→
〈π(x)ξ, η〉 : π ∈ F, ξ, η ∈ Hπ}. Suppose that φ ∈ Aπa(G) is such that
φ(x) = 〈πa(x)ξ, ξ〉 for some ξ ∈ Hπa . For any ε > 0, there exists ξ0 ∈ Hπ for
some π ∈ F such that ‖ξ − ξ0‖ < ε. For any f ∈ C∗(G),

|〈πa(f)ξ, ξ〉 − 〈π(f)ξ0, ξ0〉| = |〈πa(f)ξ, ξ〉 − 〈πa(f)ξ0, ξ0〉|
≤ |〈πa(f)ξ, ξ − ξ0〉|+ |〈πa(f)(ξ − ξ0), ξ0〉| ≤ 2‖f‖C∗‖ξ‖ε.

Therefore, ‖〈πa(·)ξ, ξ〉 − 〈π(·)ξ0, ξ0〉‖B(G) ≤ ε. The result follows.

For the definitions of direct sums and internal tensor products of unitary
representations of G, we refer the reader to [9, Chapters 3 and 7].

Let π(n)
a =

⊗n
i=1 πa and σ =

⊕∞
n=1 π

(n)
a . It is straightforward to show

that a(G) = Aσ(G) and vn(G) = VN σ(G). Hence, vn(G) is a von Neumann
algebra.

A Banach space X has the Radon–Nikodym property (RNP) if, for every
bounded subset C of X and ε > 0, there is some x ∈ C such that x does
not lie in the norm closure of co[C \ (x+ {y ∈ X : ‖y‖ ≤ ε})].

Remark 3.3. If G is a compact group, then B(G) has RNP. In fact,
B(G) has RNP if and only if B(G) = a0(G) (see [3, Theorem 5], [19, Theo-
rem 4.2], [13, Theorem 4.5] and [14]).
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Let AF (G) be the ‖ · ‖B(G)-closure of {x 7→ 〈π(x)ξ, η〉 : π is a finite-
dimensional representation of G, ξ, η ∈ Hπ}. Let ĜF be the set of all finite-
dimensional irreducible representations of G, and πF =

⊕
π∈ĜF π. Then

AF (G) = AπF (G) ⊆ a0(G).
A [Moore]-group is a locally compact group such that all its irreducible

unitary representations are finite-dimensional.

Remarks 3.4.

(1) If G is abelian, then a0(G) = a(G) ∼= l1(Ĝ) and vn0(G) = vn(G) ∼=
l∞(Ĝ).

(2) If G is compact, then every representation of G is a direct sum of
copies of irreducible representations, hence a0(G) = B(G) = a(G).

(3) If G is a [Moore]-group, it is clear that a0(G) = a(G) = AF (G).
(4) More generally, if B(G) has RNP, then a0(G) = B(G) = a(G).
(5) If G is the “ax + b”-group, then a0(G) = AF (G) ⊕ A(G), which is

an algebra since A(G) is an ideal in a0(G). Thus a0(G) = a(G).

Let A be a commutative Banach algebra. The spectrum of A, written as
σ(A), is the set of all non-zero multiplicative linear functionals on A.

From now on, π will be a unitary representation of G such that Aπ(G)
is an algebra.

If Aπ(G) is a unital algebra, then it is easy to see that

Aπ(G) = Aπ(G) ·Aπ(G) = norm-cl(span(Aπ(G) ·Aπ(G))).

Therefore, Aπ(G) = Aπ⊗π(G), and hence π and π ⊗ π are quasi-equivalent
(see [2]). By a result in [7, Chapter 4], there is an isomorphism Φ : VN π(G)
→ VN π⊗π(G) such that

Φ(π(g)) = (π ⊗ π)(g) for any g ∈ G.

Moreover, we have

〈u, x〉(Aπ(G),VNπ(G)) = 〈u, Φ(x)〉(Aπ⊗π(G),VNπ⊗π(G))

for any u ∈ Aπ(G) and x ∈ VN π(G) (see [2]). It is easy to see that the
isomorphism with the above properties is unique.

For any x ∈ VN π(G), π⊗π(x) is defined to be Φ(x). It is an operator on
Hπ⊗Hπ since it is an element of VN π⊗π(G). Since π⊗π(x) and π(x)⊗π(x)
are operators on Hπ ⊗Hπ, it makes sense to ask if they are equal.

The following lemma is a generalization of [20, Theorem 1(ii)].

Lemma 3.5. If Aπ(G) is unital, then

σ(Aπ(G)) := {x ∈ VN π(G) \ {0} : π ⊗ π(x) = π(x)⊗ π(x)}.
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Proof. Let ui = 〈π(·)ξi, ηi〉 ∈ Aπ(G) where i = 1, 2, and let f = u1u2.
Then f(x) = 〈π ⊗ π(x)ξ1 ⊗ ξ2, η1 ⊗ η2〉 for any x ∈ G. Thus we have

〈f, x〉 = 〈f, Φ(x)〉 = 〈f, π ⊗ π(x)〉 = 〈π ⊗ π(x)ξ1 ⊗ ξ2, η1 ⊗ η2〉.
If x ∈ σ(Aπ(G)), then

〈f, x〉 = 〈u1, x〉〈u2, x〉 = 〈π(x)ξ1, η1〉〈π(x)ξ2, η2〉
= 〈π(x)⊗ π(x)ξ1 ⊗ ξ2, η1 ⊗ η2〉.

Therefore,

〈π ⊗ π(x)ξ1 ⊗ ξ2, η1 ⊗ η2〉 = 〈π(x)⊗ π(x)ξ1 ⊗ ξ2, η1 ⊗ η2〉.
Conversely, suppose that x ∈ VN π(G) \ {0} and π(x) ⊗ π(x) = π ⊗ π(x).
Then we have

〈u1, x〉〈u2, x〉 = 〈π(x)ξ1, η1〉〈π(x)ξ2, η2〉
= 〈π(x)⊗ π(x)ξ1 ⊗ ξ2, η1 ⊗ η2〉 = 〈f, x〉.

So, x ∈ σ(Aπ(G)).

For any u ∈ Aπ(G) and T ∈ VN π(G), define Tl(u)(x) = 〈π(x) · T, u〉.
Lemma 3.6. We have Tl(u)(x)=〈T, xu〉. If Aπ(G) is unital, then Tl(1)(x)

≡ 〈T, 1〉.
Proof. If u ∈ Aπ(G) and u(x) =

∑∞
n=1〈π(x)ξn, ηn〉 for some ξn, ηn ∈ Hπ,

then

(u · π(x))(y) =
∞∑
n=1

〈π(y)ξn, π(x)∗ηn〉 =
∞∑
n=1

〈π(xy)ξn, ηn〉 = xu(y)

for any x, y ∈ G.

Lemma 3.7. Tl(u) ∈ Aπ(G) for each u ∈ Aπ(G) and T ∈ VN π(G).

Proof. Tl(u)(x) = 〈π(x) · T, u〉 = 〈π(x), T · u〉 = (T · u)(x).

Lemma 3.8. If T ∈ σ(Aπ(G)), then Tl : Aπ(G) → Aπ(G) is a homo-
morphism.

Proof. If u, v ∈ Aπ(G), then

Tl(u · v)(x) = 〈T, x(uv)〉 = 〈T, xu xv)〉 = 〈T, xu〉〈T, xv〉 = Tl(u)(x)Tl(v)(x).

For any S, T ∈ VN π(G), define S◦T ∈ VN π(G) by 〈S◦T, u〉 = 〈S, Tl(u)〉
for all u ∈ Aπ(G).

Proposition 3.9. If S, T ∈ VN π(G), then S◦T = S ·T and (S ·T )l(u) =
Tl(Sl(u)) for all u ∈ Aπ(G).

Proof. By definition, the first equality holds clearly if S = π(x) for some
x ∈ G. The rest follows from the weak∗ density of span(π(G)) in VN π(G).
The second equality is straightforward.
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Given a function u : G → C, let ũ : G → C be the function defined by
ũ(x) = u(x−1).

Proposition 3.10. If σ(Aπ(G)) ∪ {0} is equipped with multiplication
and involution inherited from the von Neumann algebra VN π(G), then it is
a ∗-semitopological semigroup. In addition, if Aπ(G) is unital and σ(Aπ(G))
is equipped with multiplication and involution inherited from VN π(G), then
it is a compact ∗-semitopological semigroup.

Proof. If T, S ∈ σ(Aπ(G)) and u, v ∈ Aπ(G), then

〈T · S, uv〉 = 〈T, Sl(uv)〉 = 〈T, Sl(u)Sl(v)〉
= 〈T, Sl(u)〉〈T, Sl(v)〉 = 〈T · S, u〉〈T · S, v〉.

On the other hand, we have

〈T ∗, uv〉 = 〈T, ũv〉 = 〈T, ũṽ〉 = 〈T ∗, u〉〈T ∗, v〉,

so T ∗ ∈ σ(Aπ(G)). Suppose that Aπ(G) is unital. Now 〈T, 1〉 = 1 = 〈S, 1〉,
so 〈T ·S, 1〉 = 〈T, Sl(1)〉 = 〈T, 1〉 = 1. It follows that T ·S 6= 0. Hence, T ·S ∈
σ(Aπ(G)). Since multiplication in a von Neumann algebra is separately
weak∗-continuous, we conclude that these are semitopological semigroups.

Corollary 3.11. σ(a(G)) is a compact ∗-semitopological semigroup if
it is equipped with multiplication and involution inherited from vn(G).

Suppose that φ ∈ l∞(G) satisfies

φf = f for any f ∈ l1(G).

Then, obviously, φ is the constant one function. We now have the following
proposition which is a non-commutative analogue of this observation:

Proposition 3.12. Let T be a non-zero element in vn(G). Then the
following statements are equivalent:

(a) Tu = u for all u ∈ a(G).
(b) T = σ(e).

Proof. (b)⇒(a) is clear. Suppose that (a) holds. We have [Tl(u)](x) =
(Tu)(x) = u(x). For any S ∈ vn(G), we obtain 〈S · T, u〉 = 〈S, Tl(u)〉 =
〈S, u〉. Hence, S · T = S for all S ∈ vn(G). Therefore, T = σ(e).

Write σu(Aπ(G)) (σinv(Aπ(G))) for the set of all unitary (resp. invert-
ible) elements in σ(Aπ(G)). Clearly, σu(Aπ(G)) and σinv(Aπ(G)) are semi-
topological groups if equipped with the relative weak∗ topology of VN π(G).

Theorem 3.13. Let π1 and π2 be unitary representations of G1 and
G2, respectively. If Aπ1(G1) and Aπ2(G2) are isometrically isomorphic, then
there is a homeomorphism φ : σ(Aπ1(G1))→ σ(Aπ2(G2)) such that:
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(a) φ(T ∗) = φ(T )∗ for any T ∈ σ(Aπ1(G1));
(b) for each T, S ∈ σ(Aπ1(G1)), either

φ(T · S) = φ(T )φ(S) or φ(T · S) = φ(S)φ(T );

(c) φ is either a ∗-isomorphism or a ∗-anti-isomorphism from σu(Aπ1(G1))
onto σu(Aπ2(G2)).

Proof. Step 1:We construct a Jordan ∗-isomorphismΦ between VN π1(G1)
and VN π2(G2). Let ψ : Aπ2(G2) → Aπ1(G1) be an isometric isomorphism.
It is straightforward to show that U = ψ∗(π2(e)) ∈ σ(Aπ2(G2)). We have
V = U∗ ∈ σ(Aπ2(G2)) by Proposition 3.10. By Lemma 3.8, Vl : Aπ2(G2)→
Aπ2(G2) is a homomorphism. Since V is unitary, it is easy to see that Vl is
in fact an isometric isomorphism. It follows that ψ◦Vl : Aπ2(G2)→ Aπ1(G1)
is an isometric isomorphism. Let Φ = (ψ ◦ Vl)∗. Then Φ is an isometry from
VN π1(G1) onto VN π2(G2). Note that

〈Φ(π1(e1)), f〉 = 〈ψ∗(π(e1)), Vl(f)〉 = 〈U, Vl(f)〉 = 〈π2(e), f〉
for any f ∈ Aπ1(G1). Therefore, Φ preserves units and hence is a Jordan
∗-isomorphism by [10, Theorem 7].

Step 2: Let φ be the restriction of Φ to σ(Aπ1(G1)). Then φ is a homeo-
morphism from σ(Aπ1(G1)) onto σ(Aπ2(G2)). We show that φ satisfies (a)
and (b). If TS = ST , then (b) holds, as Jordan ∗-isomorphisms preserve
commutativity. Otherwise, we have

φ(T )φ(S) + φ(S)φ(T ) = φ(ST ) + φ(TS).

Suppose that (b) does not hold. Then φ(T )φ(S), φ(S)φ(T ), φ(ST ) and
φ(TS) are pairwise distinct, hence linearly independent, in σ(Aπ2(G2)),
which leads to a contradiction.

By [10, Theorem 10], there exist central projections zi ∈ VN πi(Gi) (i =
1, 2) such that Φ = ΦI + ΦA and ΦI : VN (G1)z1 → VN (G2)z2 is a ∗-
isomorphism and ΦA : VN (G1)(π1(e) − z1) → VN (G2)(π2(e) − z2) is a
∗-anti-isomorphism. For each T ∈ σu(Aπ1(G1)), define

HT = {S ∈ σu(Aπ1(G1)) : (ST − TS)z1 = 0},
KT = {S ∈ σu(Aπ1(G1)) : (ST − TS)(π2(e)− z1) = 0}.

Step 3: We show that HT and KT are subgroups of σu(Aπ1(G1)) and
HT ∪KT = σu(Aπ1(G1)). If S1, S2 ∈ HT and S ∈ σu(Aπ1(G1)), then

SS1S2z1 = S1(SS2)z1 = S1(S2Sz1) = S1S2Sz1

and
(S−1

1 S − SS−1
1 )z1 = S−1

1 (S1S − SS1)S−1
1 z1 = 0.

It follows that HT is a subgroup of σu(Aπ1(G1)). Similarly, KT is a subgroup
of σu(Aπ1(G1)). Finally, if φ(ST ) = φ(T )φ(S), then φ(ST−TS)z2 = 0 (since
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ΦI is a ∗-isomorphism), which implies that (ST − TS)z1 = 0. So, S ∈ HT .
Otherwise, we have φ(ST ) = φ(S)φ(T ). It follows similarly that S ∈ KT .

Step 4: Define

H = {T ∈ σu(Aπ1(G1)) : HT = σu(Aπ1(G1))},
K = {T ∈ σu(Aπ1(G1)) : KT = σu(Aπ1(G1))}.

We show that either H = σu(Aπ1(G1)) or K = σu(Aπ1(G1)). If S1, S2 ∈ H,
then, for any S ∈ σu(Aπ1(G1)), we have

S1S2Sz1 = S1(SS2z1) = (SS1)S2z1 = S(S1S2)z1.

Thus,
HS1S2 = σu(Aπ1(G1)).

Also, we have

(S−1
1 S − SS−1

1 )z1 = S−1
1 (S1S − SS1)S−1

1 z1 = 0.

Consequently, HS−1
1

= σu(Aπ1(G1)). The final assertion is clear since HT =
σu(Aπ1(G1)) or KT = σu(Aπ1(G1)) for any T ∈ σu(Aπ1(G1) (as HT and KT

are subgroups of σu(Aπ1(G1))).

Step 5: Suppose that H = σu(Aπ1(G1)) (K = σu(Aπ1(G1))). We show
that φ is a ∗-anti-isomorphism (resp. a ∗-isomorphism). Suppose that H =
σu(Aπ1(G1)). We claim that

φ(S1S2) = φ(S2)φ(S1) for all S1, S2 ∈ σu(Aπ1(G1)).

If not, then φ(S1S2) = φ(S1)φ(S2). It follows that

(φ(S1)φ(S2)− φ(S2)φ(S1))(π2(e)− φ(z1)) = 0.

But S1, S2 ∈ H implies that (S1S2 − S2S1)z1 = 0. So, S1S2 = S2S1. Hence,
φ(S1S2) = φ(S2)φ(S1). Therefore, φ is a ∗-anti-isomorphism. The other case
is similar.

Corollary 3.14. If a(G1) and a(G2) are isometrically isomorphic, then
σu(a(G1)) and σu(a(G2)) are topologically isomorphic.

Remark 3.15.

(a) The product discussed in Proposition 3.9 is motivated by [12, Sec-
tion 5].

(b) Theorem 3.13 is a generalization of [20, Theorem 2] and its proof is
inspired by [12, Theorem 5.8] and [20, Theorem 2].

4. When is the spectrum of a(G) a group? In this section, we
investigate when the spectrum of a(G) is a group.

Let G be a non-[Moore]-group. Let ĜI be the set of all infinite-dimen-
sional irreducible representations of G, and πI =

⊕
π∈ĜI π. Then πa =
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πF ⊕ πI . Let σI =
⊕

n∈N πF ⊗ π
⊗n
I where π⊗nI =

⊗n
i=1 πI . It is easy to see

that σ = πF ⊕ σI .
Since AF (G) = AπF (G) is a closed translation invariant subalgebra of

B(G), there exists a central projection pF ∈ W ∗(G) such that AF (G) =
pF · B(G) where W ∗(G) is the enveloping von Neumann algebra of C∗(G)
(see [18, Lemma 2.2] for more details). Note that pF is in the spectrum of
B(G), and pF is equal to the identity element of W ∗(G) precisely when G
is compact (see [21, Theorem 2]). The algebra APIF (G) = (1− pF ) · B(G)
is defined and proved to be an ideal of B(G) in [18, Section 2].

Lemma 4.1. Let zF ∈ vn(G) be the central projection such that AF (G) =
zF · a(G). Write a(G) = AF (G)⊕AI(G), where AI(G) = (σ(e)− zF )a(G).
Then AI(G) is the ideal generated by AπI (G) in a(G), and AI(G) = AσI (G).

Proof. Note that B(G) = AF (G) ⊕ APIF (G). Thus, a(G) = AF (G) ⊕
(a(G) ∩ APIF (G)). By uniqueness of the translation invariant complement
of AF (G) in a(G), we have a(G) ∩ APIF (G) = AI(G) (see [2, Proposition
3.16]). Since APIF (G) is an ideal in B(G), it follows that AI(G) is an ideal
in a(G).

We have the following proposition that gives some criteria for the equality
of a(G) and a0(G), which is of independent interest:

Proposition 4.2. The following statements are equivalent:

(a) a0(G) = a(G).
(b) a0(G) = Aπa⊗πa(G).
(c) a(G) has RNP.
(d) Aπa⊗πa(G) has RNP.
(e) AI(G) has RNP.
(f) πa ⊗ πa is completely reducible.
(g) π ⊗ ρ is completely reducible for any π, ρ ∈ Ĝ.
(h) AπI (G) is an algebra and a0(G)AπI (G) = AπI (G).

Proof. Note that a0(G) ⊆ Aπa⊗πa(G) ⊆ a(G) and a(G) = AF (G) ⊕
AI(G). The result follows from [3, Theorem 3].

Remark 4.3. It follows that [14] that if a0(G) = a(G), then a(G) has
the weak fixed point property for non-expansive mappings. We do not know
if the converse is true (see also [13]).

Note that σ(AF (G)) = σ(A(Gap)) ∼= Gap where Gap is the almost peri-
odic compactification of G. If G is a [Moore]-group, then a(G) = AF (G) =
B(Gap) = A(Gap). Therefore, σ(a(G)) = Gap is a group. We will prove
below that the converse is also true.

The following lemma is a generalization of [21, Proposition 1]; the proof
is left to the reader.
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Lemma 4.4. Let s be a non-zero element of VN π(G) such that s2 = s.
Then the following are equivalent:

(a) s ∈ σ(Aπ(G)).
(b) s ·Aπ(G) is an algebra and (π(e)− s)Aπ(G) is an ideal in Aπ(G).
(c) The map Aπ(G)→ s ·Aπ(G), f 7→ s · f , is an endomorphism.

Lemma 4.5. If Aπ(G) = Aπ1(G)⊕Aπ2(G) and m ∈ σ(Aπ(G)) is invert-
ible, then m(Aπ1(G)) 6= 0 and m(Aπ2(G)) 6= 0.

Proof. Assume that m(Aπ1(G)) = 0. Let z[π1] be the support projection
of π1 in VN π(G). Then m ∈ Aπ1(G)⊥ = (π(e) − z[π1])VN π(G). So, m =
(π(e)− z[π1])m. Hence, π(e) = z[π1]. Consequently, Aπ2(G) = 0, which is a
contradiction.

Lemma 4.6. Let zF ∈ vn(G) be the central projection such that AF (G) =
zF · a(G). Then zF ∈ σ(a(G)).

Proof. Since AI(G) is an ideal in a(G), by Lemma 4.4, we have zF ∈
σ(a(G)).

Note that a0(G) = ⊕1{Aπ(G) : π ∈ Ĝ} = ⊕1{L1(Hπ) : π ∈ Ĝ} (see [2])
where L1(Hπ) is the space of all trace-class operators on Hπ. Let c0(Ĝ) :=
⊕0{K(Hπ) : π ∈ Ĝ}. Then it is easy to see that the dual space of c0(Ĝ) is
a0(G).

Lemma 4.7. The following assertions are equivalent:

(a) G is a [Moore]-group.
(b) a0(G) is an l1-sum of finite-dimensional Banach spaces.
(c) c0(Ĝ) is a c0-sum of finite-dimensional C∗-algebras.
(d) Every bounded linear operator T : c0(G)→ a0(G) is compact.
(e) Every irreducible representation of c0(Ĝ) is finite-dimensional.

Proof. By using [15, Theorems 3.6 and 4.1], we see the equivalence of
(b)–(e). It suffices to prove that (e) implies (a). Define π̂0 : c0(Ĝ)→ B(Hπ0),
(Tπ)π∈Ĝ 7→ Tπ0 . Let ξ, η ∈ Hπ0 \ {0}. There exists Sπ0 ∈ F(Hπ0) such that
Sπ0(ξ) = η. Now, define Tπ = Sπ0 if π = π0 and Tπ = 0 if π 6= π0. Then
π̂0((Tπ)π∈Ĝ)ξ = η, and hence π̂0 is irreducible. Therefore, Hπ0 is finite-
dimensional.

Remark 4.8. A Banach space is said to have Schur’s property if all
weakly convergent sequences are norm convergent. The Banach space X is
said to have the DPP if, for any Banach space Y , every weakly compact
linear operator u : X → Y sends weakly Cauchy sequences to norm conver-
gent sequences. Actually, by using [15, Theorems 3.6 and 4.1], we can prove
that the following assertions are equivalent:
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(a) G is a [Moore]-group.
(b) a0(G) has Schur’s property.
(c) a0(G) has DPP.
(d) c0(Ĝ) has DPP.
(e) ap(c0(G)) = a0(G).

Theorem 4.9. Let G be a locally compact group. The following state-
ments are equivalent:

(a) G is a [Moore]-group.
(b) σ(a(G)) is a group.
(c) The only idempotent of σ(a(G)) is σ(e).
(d) zF ∈ σ(a(G)) is invertible.
(e) a(G) = AF (G).
(f) a0(G) = AF (G).

Proof. (a)⇒(b)⇒(c) and (b)⇒(d) are clear. Suppose that (b) holds.
Then zF = σ(e). So, a(G) = zF ·a(G) = AF (G). On the other hand, suppose
that (d) holds. Then zF (AI(G)) 6= 0 by Lemma 4.5. This contradicts that
AI(G) = (σ(e) − zF )a(G). We thus get AI(G) = 0, i.e. a(G) = AF (G). If
a(G) = AF (G), then we have a0(G) = AF (G) as AF (G) ⊆ a0(G). Finally,
assume that (f) is true. Then G is a [Moore]-group by Lemma 4.7.

By the result above, we see that σ(a(G)) is not always a group. We will
now study the unitary (invertible) part of σ(a(G)).

Recall the following definitions: A unitary representation of G is com-
pletely reducible if it can be written as a direct sum of irreducibles. A locally
compact group G is called an [AR]-group if A(G) has RNP. It is proved that
G is an [AR]-group if and only if its left regular representation is completely
reducible (see [19] for more details).

Theorem 4.10. Let G be an [AR]-group. Then σu(a(G)) and σinv(a(G))
are topologically isomorphic to G.

Proof. We prove the statement for σu(a(G)). The case of σinv(a(G)) is
similar. Define φ : G→ σu(a(G)) by x 7→ mx where mx(u) = u(x). Clearly,
φ is continuous. Since G∗ separates the points of G (see Remark 4.4), the
map φ is injective. By assumption, A(G) ⊆ a(G). Let m ∈ σu(a(G)). Then
m|A(G) 6= 0 by Lemma 4.5. Therefore, m|A(G) ∈ σ(A(G)). Let u ∈ A(G) and
v ∈ a(G). Note that A(G) is an ideal in a(G). There exists x0 ∈ G such that

m(u)m(v) = m(uv) = u(x0)v(x0).

Pick u0 ∈ A(G) such that u0(x0) 6= 0. We conclude that m(v) = v(x0).
Hence, φ is surjective. The continuity of the inverse of φ follows from the
facts that A(G) ⊆ a(G) and σ(A(G)) is topologically isomorphic to G.
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If G is a discrete group, then l1(G) = L1(G) is a total invariant of G
by Wendel’s theorem (see [22]). We have the following non-commutative
analogue of this observation.

Corollary 4.11. Let G1 and G2 be locally compact groups such that
A(G1) and A(G2) have RNP, i.e., G1, G2 are [AR]-groups. The following
conditions are equivalent:

(a) G1 and G2 are topologically isomorphic.
(b) a(G1) and a(G2) are isometrically isomorphic.
(c) σu(G1) and σu(G2) are topologically isomorphic.
(d) σinv(G1) and σinv(G2) are topologically isomorphic.

Proof. This follows from Corollary 3.14 and Theorem 4.10.

Remark 4.12.

(a) Part of the proof of Theorem 4.9 is inspired by the proof of [20,
Lemma of Theorem 2, p. 27].

(b) The proof of Theorem 4.10 follows an idea in [21, Theorem 2].
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