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On the relationships between Fourier–Stieltjes
coefficients and spectra of measures

by

Przemysław Ohrysko and Michał Wojciechowski (Warszawa)

Abstract. We construct examples of uncountable compact subsets of complex num-
bers with the property that any Borel measure on the circle group with Fourier coefficients
taking values in this set has a natural spectrum. For measures with Fourier coefficients
tending to 0 we construct an open set with this property. We also give an example of a
singular measure whose spectrum is contained in our set.

1. Introduction. Let M(T) denote the convolution algebra of Borel
measures on the unit circle group. For details of notation and basic defini-
tions see [Ka]. The closure of the set of Fourier coefficients of µ ∈ M(T)
is obviously a subset of the spectrum σ(µ) of µ. However, as was observed
by Wiener and Pitt (see [WP]) in general it is a proper subset. There are
several different proofs of this phenomenon (cf. [S], [G]). This Wiener–Pitt
phenomenon is equivalent to the inversion problem which states that the
assumption |µ̂(n)| > c > 0 for all n ∈ Z and constant c does not ensure the
invertibility of µ as an element in the Banach algebra M(T). Moreover, it is
closely related to the asymmetry of the algebra M(T), discussed in [R].

On the other hand there are classes of Borel measures for which the
spectrum equals the closure of the set of Fourier coefficients. Such measures
are said to have a natural spectrum. It is known that absolutely continuous
and purely discrete measures have a natural spectrum (cf. [Za]). A natural
question is how to recognize a measure with a natural spectrum using only
the information about its Fourier coefficients. Motivated by this problem
we introduce the notion of Wiener–Pitt sets. We say that a compact set
A ⊂ C is a Wiener–Pitt set whenever µ̂(Z) ⊂ A implies that µ has a natural
spectrum.

Finite sets are easy examples of Wiener–Pitt sets. Indeed, if A = {a1, . . .
. . . , ak} then by Gelfand theory, the polynomial P (z) = (z − a1) . . . (z − ak)
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satisfies P̂ (µ)(n) = 0 for every n ∈ Z. Therefore P (µ) = 0, which in turn
yields P (ψ(µ)) = 0 for every multiplicative linear functional ψ. Hence ψ(µ)
is a root of P and therefore σ(µ) ⊂ A. The finite sets are the only known
class of Wiener–Pitt sets. The aim of this paper is to construct infinite (even
uncountable) Wiener–Pitt compacta. Our construction gives a quite flexible
family of zero-dimensional examples which are, moreover, stable under suit-
able small perturbations. Furthermore we construct an open subset U ⊂ C
such that 0 ∈ U and any continuous measure µ with µ̂(Z) ⊂ U ∪ {0} sat-
isfies µ ∈ Rad(L1(T)); thanks to the theorem of Zafran (see Theorem 19 in
Section 4), this gives

Theorem 1. There exists an open set U ⊂ C with 0 ∈ U such that every
continuous measure µ with µ̂(Z) ⊂ U ∪ {0} has a natural spectrum.

In the general case we prove the following.

Theorem 2. There exists a set K homeomorphic to the Cantor set such
that 0 ∈ K and every measure µ with µ̂(Z) ⊂ K has a natural spectrum.

To complete the above results we provide an example of a singular mea-
sure with spectrum contained in the set U of Theorem 1. The example,
interesting in its own right, is given in Section 6; we combine the techniques
of Riesz products with Rudin–Shapiro polynomials to get a singular mea-
sure with coefficients smaller than any sequence tending to 0 sufficiently fast
taken in advance.

The construction is quite involved—it uses four main ingredients. The
first is the Zafran characterization of measures with Fourier coefficients
tending to zero with a natural spectrum. The second is the Katznelson–
DeLeeuw theorem which is the main ingredient of their qualitative ver-
sion of the Grużewska–Rajchman theorem (however, we use a stronger and
more involved result from [GM], just to avoid unnecessary complications).
The third ingredient is the Bożejko–Pełczyński theorem on the uniform
invariant approximation property of L1(T). The fourth is the Littlewood
conjecture proved by McGehee–Pigno–Smith and independently by Konya-
gin.

The main construction of the proof of Theorem 1, under the additional
assumption that the relevant measure has Fourier coefficients tending to 0, is
presented in Section 3. The aim of Section 4 is to prove that this additional
assumption can be omitted. In Section 5 we complete the proof of Theorem 1
and we show how Theorem 2 can be derived from Theorem 1. Section 2
contains auxiliary lemmas. Here we combine two main analytical ingredients,
the Bożejko–Pełczyński uniform invariant approximation property and the
Littlewood conjecture, to derive Lemma 8, the main tool used in further
inductions.
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Remark 3. Some results of this paper are contained in the first author’s
MA thesis (see [O]).

2. Preparatory lemmas. In this section we prove some crucial lemmas
which are also of independent interest. The following definition will be useful.

Definition 4. For µ ∈M(T) and ε > 0 we write µ ∈ F (ε) iff |µ̂(n)| < ε
for all n ∈ Z. The set of trigonometric polynomials will be denoted P. The
abbreviation #f will be used for the number of elements in the support of
f̂ (for f ∈P), i.e. #f = #supp f̂ = #{n ∈ Z : f̂(n) 6= 0}. Also, for f ∈P

and a positive number a we write f ∈ G(a) when |f̂(n)| ≥ a for all integers
n such that f̂(n) 6= 0.

We will use two powerful results. The first is the Littlewood conjecture
(for a proof consult [MPS] and [Ko])

Theorem 5 (McGehee, Pigno, Smith; Konyagin). For every f ∈ P of
the form

f(t) =

N∑
k=1

cke
inkt,

where nk is a sequence of increasing integers and |ck| ≥ 1 for 1 ≤ k ≤ N ,
we have

‖f‖L1(T) > L lnN,

where the constant L > 0 does not depend on N .

The second fact is the invariant uniform approximation property of L1(T)
(proofs are contained in the papers [BP] and [B] and in the book [Wo]).

Theorem 6 (Bożejko, Pełczyński; Bourgain). Let Λ ⊂ N be a finite set
with #Λ = k. Then for every ε > 0 there exists f ∈P such that

(i) f̂(n) = 1 for n ∈ Λ.
(ii) ‖f‖L1(T) ≤ 1 + ε.
(iii) #{n ∈ N : f̂(n) 6= 0} ≤ (α/ε)2k for some α > 0.

We will write BPBε(Λ) for the set of polynomials with properties (i)–(iii).
It is now time to formulate our first lemma.
Lemma 7. Let f ∈P. If #f ≥ d for some positive number d, then there

exists a two-sided arithmetical progression Γ ⊂ Z such that

d ≤ #(supp f̂ ∩ 1Γ ) < 2d.

Proof. If d ≤ #f < 2d, we take Γ = Z. Otherwise #f ≥ 2d and taking
Γ1 = 2Z and Γ2 = 2Z + 1 we get d ≤ #(supp µ̂ ∩ 1Γi) for some i = 1, 2. If
moreover #(supp f̂ ∩ 1Γi) < 2d, we put Γ = Γi. Otherwise we repeat this
procedure.
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The second lemma is much more sophisticated (since for absolutely con-
tinuous measures the norm in M(T) is equal to the norm in L1(T) of the
density with respect to the Lebesgue measure, we will use these two notations
interchangeably).

Lemma 8. There exists a function ε = ε(K, a) and c > 0 such that
whenever ‖f + ν‖M(T) < K for some f ∈ G(a) and ν ∈ F (ε), then #f <
exp(cK/a).

Proof. Set d = exp
(
4K
aL

)
and define

(1) ε = ε(K, a) =
aL ln d

4α2d
= K exp

(
−2 ln(α) exp

(
4K

aL

))
where α is the constant from Theorem 6. We will show that the assumption
#f ≥ d leads to a contradiction, which proves our lemma with constant
c = 4/L.

By Lemma 7 there exists Γ ⊂ Z such that d ≤ #(supp ν̂ ∩ 1Γ ) < 2d. We
define f1 ∈P and ν1 ∈ M(T) by taking f̂1 = f̂ · 1Γ and ν̂1 = ν̂ · 1Γ . Since
multiplying Fourier sequences by the characteristic function of Γ corresponds
to convolution with a measure of norm one, we have ‖f1+ ν1‖M(T) < K. By
the definition of Γ , #f1 < 2d. It follows from Theorem 5 that ‖f1‖M(T) ≥
a · L ln d. Let Θ ∈ BPB1(supp f1). Then ‖Θ‖L1(T) < 2, Θ̂(n) = 1 for n ∈
supp f1, #Θ < α4d for some α > 0. By the triangle inequality,

2K > ‖(f1 + ν1) ∗Θ‖M(T) = ‖f1 + ν1 ∗Θ‖M(T) ≥ ‖f‖L1(T) − ‖Θ ∗ ν1‖M(T).

Estimating the L1-norm by the L2-norm we get

‖Θ ∗ ν1‖L1(T) ≤ ‖Θ ∗ ν1‖L2(T) ≤ 2εα2d.

Altogether this gives 2K > aL ln d − 2εα2d. Hence the formula (1) for ε =
ε(K, a) leads to a contradiction.

The next lemma gives more information.

Lemma 9. For every ε > 0 there exists δ = δ(ε, a,K) such that if
‖f + ν‖M(T) < K for f ∈ G(a) and ν ∈ F (δ), then ‖f‖L1(T) < K(1 + ε).

Proof. Let Θ ∈ BPBε/2(supp f̂). Then ‖Θ‖L1(T) < 1 + ε/2, Θ̂(n) = 1

for n ∈ supp f̂ , #Θ < (λ/ε)2#f = exp(2#f ln (λ/ε)) for some λ > 0. By
Lemma 8 for sufficiently small δ we have

#Θ < exp

(
2 ln

(
λ

ε

)
exp(cKa−1)

)
,

where c is as in Lemma 8. By the triangle inequality(
1+

ε

2

)
K ≥ ‖Θ∗(f+ν)‖L1(T) = ‖f+Θ∗ν‖L1(T) ≥ ‖f‖L1(T)−‖Θ∗ν‖L1(T).
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Since |Θ̂| < 1 + ε/2, we have Θ ∗ ν ∈ F ((1 + ε/2)δ). Obviously

#(Θ ∗ ν) ≤ #Θ < exp

(
2 ln

(
λ

ε

)
exp(cKa−1)

)
.

Estimating the L1-norm by the L2-norm we get

‖Θ ∗ ν‖L1(T) ≤ ‖Θ ∗ ν‖L2(T) ≤
(
1 +

ε

2

)
δ exp

(
ln

(
λ

ε

)
exp(cKa−1)

)
.

Altogether we get(
1 +

ε

2

)
K > ‖f‖L1(T) −

(
1 +

ε

2

)
δ exp

(
ln

(
λ

ε

)
exp(cKa−1)

)
.

If we put

δ <
ε

1 + ε
K exp

(
− ln

(
λ

ε

)
exp(cKa−1)

)
,

then the assumption ‖f‖L1(T) > (1 + ε)K leads to a contradiction.

3. The case of M0(T). We will make use of the following result (see
[W, Proposition 1.9]).

Proposition 10. Suppose A is a commutative Banach algebra with unit
and x ∈ A has a finite spectrum, σ(x)={λ1, . . . , λn}. Put δ=mini 6=j |λi−λj |.
Then there exist orthogonal idempotents x1, . . . , xn ∈ A (i.e. x2i = xi and
xixj = 0 for i 6= j, i, j = 1, . . . , n) such that

x = λ1x1 + λ2x2 + · · ·+ λnxn.

Moreover, ‖xi‖ ≤ δ−n+12n−1‖x‖n−1 for i = 1, . . . , n.

One abbreviation is useful when it comes to manipulating with convolu-
tion powers. We will write fm = f∗m = f ∗· · ·∗f (m-times) for a function (or
a measure) f and to avoid any misunderstandings we will not use pointwise
multiplication for functions up to the end of this section.

Now, we prove a simple corollary of the last proposition. From now on,
unless otherwise stated, ‖ · ‖ denotes the L1(T) norm.

Lemma 11. Let f be a trigonometric polynomial such that

f̂(Z) = {0, λ1, . . . , λk}.

Put λ0 = 0 and define δ = mini 6=j |λi − λj |, λmax = max{|λ| : λ ∈ f̂(Z)}.
Then, for every m ∈ N,

‖fm‖ ≤ kδ−k2k‖f‖kλmmax.

Proof. We easily see that, if f is a polynomial, its spectrum in the algebra
M(T) is equal to f̂(Z). Hence, by Proposition 10, we have

f = λ1f1 + λ2f2 + · · ·+ λkfk
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for some orthogonal idempotent polynomials fk. A simple calculation shows
that

fm =
( k∑
l=1

λlfl

)m
=

k∑
l=1

λml fl.

Applying the estimate from Proposition 10 we complete the proof:

‖fm‖ ≤
k∑
l=1

|λl|m‖fl‖ ≤ kδ−k2k‖f‖kλmmax.

The next theorem allows the strict spectral conditions of the previous
lemma to be relaxed.

Theorem 12. Let Λ ⊂ C be a finite set with #Λ = m+1 such that 0 ∈ Λ
and denote λmax = max{|λ| : λ ∈ Λ}. Then there exists C = C(Λ) such that,
for every K > 0 and every k > m, there exists ε = ε(K,Λ) with the property:
if a trigonometric polynomial f with ‖f‖ ≤ K satisfies f̂(Z) ⊂ Λ+ B(0, ε),
then

‖fk‖ ≤ Cλk−mmax ‖f‖m,

where C = C(Λ) = C(tΛ) for any t ∈ C \ {0}.

Proof. Let λ0 = 0, Λ = {0, λ1, . . . , λm} and put δ = mini 6=j |λi−λj |. We
may assume that ε < δ/2, which guarantees B(λi, ε)∩B(λj , ε) = ∅ for i 6= j.

Fix n ∈ Z. Then there exists a unique λin with minj=0,1,...,m |λj− f̂(n)| =
|λin−f̂(n)|. Now, we define a polynomial f0 by the condition f̂0(n) = λin ∈ Λ
for every n ∈ Z. It is obvious that f̂0(Z) ⊂ Λ. Moreover, g = f − f0 satisfies
ĝ(Z) ⊂ B(0, ε).

We have to estimate ‖g‖ (an upper bound for ‖f0‖ follows from Lem-
ma 11). A simple observation is that, if f̂(l) = 0 for some l ∈ Z, then ĝ(l) = 0.
Recall that, for any polynomial h, we write #h = #{n ∈ Z : ĥ(n) 6= 0}.
Using Parseval’s identity we obtain

‖g‖L1(T) ≤ ‖g‖L2(T) ≤ ε
√
#g ≤ ε

√
#f.

Putting γ = minn∈Z{|f̂(n)| : f̂(n) 6= 0}, from the McGehee–Pigno–Smith +
Konyagin theorem we obtain γ‖f‖ ≥ L ln(#f), which leads to√

#f ≤ exp

(
γ

2L
‖f‖

)
≤ exp

(
γ

2L
K

)
.

Altogether we have ‖g‖ ≤ ε exp
( γ
2LK

)
. Finally

‖fk‖ ≤ ‖fk0 ‖+
k−1∑
l=0

(
k

l

)
‖f l0‖ ‖g‖k−l.
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Using Lemma 11 we obtain

‖f l0‖ ≤ mδ−m2mλlmax‖f‖m for l = 1 . . . , k.

Moreover, ‖g‖k−l ≤ εk−l exp
(γ(k−l)

2l K
)
. Collecting these facts, we get

‖fk‖ ≤ mδ−m2m‖f‖m
(
λkmax + ε

k−1∑
l=1

(
k

l

)
λlmaxε

k−l−1 exp

(
γ(k − l)

2l
K

)
+

1

‖f‖m
εk−1 exp

(
mγ

2l
K

))
.

Taking ε so small that the expression in parentheses is smaller than 2λkmax

we finally get ‖fk‖ ≤ mδ−m2m+1‖f‖mλkmax. Putting C = m2m+1λmmax/δ
m

we have C = C(Λ) = C(tΛ) for every t ∈ C \ {0}, which gives the desired
estimate.

We now introduce the following notation. Let C > 0 and k ∈ N, k ≥ 2.
We say that a compact set Λ ⊂ C with 0 /∈ Λ belongs to the class U(C, k)
provided for every K > 0 there exists an open neighborhood VK of Λ such
that for every µ ∈ M0(T) satisfying ‖µ‖M(T) ≤ K and σ(µ) ⊂ VK ∪ {0} we
have

‖µk‖M(T) ≤ C‖µ‖k−1M(T).

By Theorem 12, every finite set Λ ⊂ C with 0 /∈ Λ and #Λ = k belongs to
the class U(C, k).

Theorem 13. Let C > 0 and k ∈ N. Assume that X,Y ∈ U(C, k) are
such that X ⊂ B(0, r) and Y ⊂ {z ∈ C : |z| > R} for some R, r > 0.
Then for every C ′ > C, there exists ε = ε(r,R,C ′) > 0 such that εX ∪ Y ∈
U(C ′, k).

Proof. Fix K > 0 and take µ ∈M0(T) such that

σ(µ) ⊂ (εX ∪ Y +B(0, δ)) ∪ {0}
and ‖µ‖ < K. Since µ ∈M0(T), there are only finitely many n ∈ Z satisfying
µ̂(n) ∈ Y +B(0, δ). Hence, we may define a polynomial f by the conditions
f̂(n) = µ̂(n) if µ̂(n) ∈ Y +B(0, δ), and f̂(n) = 0 otherwise. Then the measure
ν = µ − f satisfies ν̂(Z) ⊂ (εX ∪ B(0, δ)) ∪ 0 and the equality µ = f + ν
holds.

Now, we apply Lemma 9. For sufficiently small ε = ε(c) we get ‖f‖ ≤
c‖µ‖, where c is any number greater than 1, and consequently ‖ν‖≤‖µ‖+‖f‖
≤ (1+ c)‖µ‖. The measure ε−1ν has Fourier coefficients in (X +B(0, ε−1δ))
∪ {0}. By the assumption there exists δ > 0 such that ‖(ε−1ν)k‖ ≤
C‖ε−1ν‖k−1, which yields ‖νk‖ ≤ Cε‖ν‖k−1. We also have f̂(Z) = σ(f) ⊂
(Y + B(0, δ)) ∪ {0} and Y ∈ U(C, k). Hence, taking smaller δ if necessary,
we get ‖fk‖ ≤ C‖f‖k−1. Clearly, we may assume that the sets εX +B(0, δ)
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and Y +B(0, δ) are disjoint, which leads to ν ∗ f = 0. A simple calculation

‖µk‖ = ‖fk + νk‖ ≤ ‖fk‖+ ‖νk‖ ≤ C‖f‖k−1 + Cε‖ν‖k−1

≤ C(ck−1 + ε(1 + c)k−1)‖µ‖k−1.
Since c can be chosen arbitrarily close to 1, and ε may be as small as we
wish, the theorem follows.

In the formulation and the proof of the next theorem we will write s(n)
instead of sn for a clearer display.

Theorem 14. Let 0 < a < b and k ∈ N, k ≥ 2. For every C > 0 there
exist a sequence of continuous functions ψl : R+ → R+, l ∈ N, such that
whenever a decreasing sequence s(n) tending to zero satisfies

s(2ln+ 2l−1 + 1)

s(2ln+ 1)
< ψl

(
a
s(2ln+ 2l−1)

s(2ln+ 1)

)
for every l ∈ N, n = 0, 1, . . . , 2l−1 and An ∈ U(C, k), An ⊂ B(0, b)∩{z ∈ C :
|z| > a} and (rn) tends to zero rapidly enough, then any measure µ ∈M0(T)
with ‖µ‖M(T) ≤ K and with

µ̂(Z) ⊂
⋃

(s(n)An +B(0, rn)) ∪ {0}

satisfies µk ∈ L1(T).

Proof. For simplicity assume s(1) = 1. Let Cm be an increasing sequence
of real numbers such that C < Cm < C̃ for all m ∈ N and some C̃ > 0.
Let us also define ψl by ψ̃l(·) = ε(b, ·, Cl) where ε(·, ·, ·) is as in the previous
theorem for C := Cl−1.

We show first by induction that for every m,n ≥ 0,

(2) Bm,n =

(n+1)2m⋃
j=n·2m+1

s(j)

s(n · 2m + 1)
Aj ∈ U(Cm, k),

Indeed, for m = 0 clearly B0,n = An+1. For m > 0 the interval of integers
[n ·2m+1, (n+1) ·2m] is the disjoint union of [(2n) ·2m−1+1, (2n+1) ·2m−1]
and [(2n+ 1) · 2m−1 + 1, (2n+ 2) · 2m−1], which implies

(3) Bm,n = Bm−1,2n ∪
s((2n+ 1)2m−1 + 1)

s(n · 2m + 1)
Bm−1,2n+1.

It is easy to check that

Bm−1,2n ⊂
{
z ∈ C : |z| > a

s(n · 2m + 2m−1)

s(n · 2m + 1)

}
and Bm−1,2n+1 ⊂ B(0, b). From the previous theorem it follows that if we
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take in (3) the coefficient s((2n+1)2m−1+1)
s(n·2m+1) such that

s((2n+ 1)2m−1 + 1)

s(n · 2m + 1)
≤ ψ̃m

(
a
s(n · 2m + 2m−1)

s(n · 2m + 1)

)
,

then the resulting union belongs to U(Cm, k) and hence to U(C̃, k).
Applying (2) to n = 1 and n = 0, we see that for every m = 0, 1, 2, . . . ,

Bm−1,1 =

2m⋃
j=2m−1+1

s(j)

s(2m−1 + 1)
Aj ∈ U(C̃, k)

and

(4) Bm,0 \Bm−1,0 =
2m⋃

j=2m−1+1

s(j)Aj = s(2m−1 + 1)Bm−1,1.

Then it follows from Theorem 13 that there exists r′m such that for every
measure γ ∈M(T) with

(5) ‖γ‖M(T) ≤
4K

s(2m−1 + 1)
and γ̂(Z) ⊂ Bm−1,1 +B(0, r′m)

we have

(6) ‖γk‖M(T) < C̃‖γ‖k−1M(T).

Let µ ∈M0(T) with ‖µ‖M(T) ≤ K satisfy

µ̂(Z) ⊂
∞⋃
m=1

((Bm,0 \Bm−1,0) +B(0, rm))

where rm = r′ms(2
m−1 + 1). Since µ ∈ M0(T), for any fixed m ∈ N there

exist only finitely many p ∈ N such that µ̂(p) ∈ (Bm,0 \Bm−1,0) + B(0, rm)
(we may assume that these sets are disjoint for different m’s). Hence we
can define polynomials fm by the condition f̂m(p) = µ̂(p) for p ∈ Z such
that µ̂(p) ∈ (Bm,0 \ Bm−1,0) + B(0, rm), and f̂m(p) = 0 for other p’s. Then
µ̂ =

∑∞
m=0 f̂m.

The polynomials f ′m = fm/s(2
m−1 + 1) satisfy (5). In fact, the second

part of (5) follows directly from (4). For the first part it is enough to show
that ‖fm‖ ≤ 4K. This follows from the observation that

fm =
( m∑
j=0

fj

)
−
(m−1∑
j=0

fj

)
,

the triangle inequality, Lemma 9 and the properties
m∑
j=0

fj ∈ G(as(2m)) and
∞∑

j=m+1

fj ∈ F (bs(2m + 1)).
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Indeed, let us put in Lemma 9

f =

m∑
j=0

fj , ν = µ− f, ε = 1,

and define a sequence of functions ψm by the formula

ψm(·) = min

(
ψ̃m(·),

1

b
δ(1, ·,K)

)
.

Then the assumptions of Lemma 9 are satisfied, which leads to ‖f‖ < 2K.
The second term is estimated analogously.

Finally, by (6) we have

‖fkm‖L1(T) < s(2m−1 + 1)C̃‖fm‖k−1L1(T) < s(2m−1 + 1)C̃(4K)k−1.

Consequently, the series
∑∞

m=0 f
k
m is absolutely convergent in L1(T) to µk,

which finishes the proof.

4. Reduction to the case of M0(T). The first result which will be used
in this section is the following theorem taken from the book [GM], closely
related to results from [DK].

Theorem 15. Let r ∈ N, r ≥ 2 and µ ∈Mc(T). Define

Q = Q(µ) = {n ∈ Z : |µ̂(n)| ≥ 1}
and suppose that |µ̂(n)| ≤ e−r for n /∈ Q.

• If ‖µ‖ < r1/2/4, then Q is a finite set.
• If ‖µ‖ < r1/2/4 and N ∈ N is such that

r ≤ (ln (N/4) ln lnN)1/2

then #Q < N .

Applying the above theorem we will prove that a continuous measure
belongs to M0(T) if special assumptions are imposed on the range of its
Fourier transforms.

In the next lemma we denote

L(r, t) = {z ∈ C : r < |z| < t} (0 < r < t).

Lemma 16. Let wk, tk with wk < tk be sequences of positive real numbers
such that

• tk → 0 as k →∞.
• tk

√
ln (tk/wk) is increasing and divergent to ∞.

Let Lk = L(wk, tk). If µ ∈Mc(T) satisfies µ̂(Z)∩Lk = ∅ for all k ∈ N, then
µ ∈M0(T).
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Proof. Define xk = ln tk
wk

. Then the second condition on wk, tk implies
that the sequence tk

√
xk is increasing and divergent to∞. Hence, there exists

k0 ∈ N such that for every k > k0,

‖µ‖ < tk
√
xk/4.

By the assumption, µ̂(Z) ∩ Lk = ∅ for every k > k0. That means

µ̂(m)/tk /∈ L(e−xk , 1) for all m ∈ Z, k > k0.

From Theorem 15 we deduce that the set

Ak = {n ∈ Z : |µ̂(n)/tk| > 1} = {n ∈ Z : |µ̂(n)| > tk}
is finite for all k > k0, which finishes the proof.

Remark 17. Obviously the assumption µ̂(Z)∩Lk = ∅ from the preceding
lemma can be replaced by µ̂(Z) ∩ Lkn = ∅ for any subsequence kn.

This will be used in the proof of Theorem 1 in the next section. The
second reduction, needed in the proof of Theorem 2, is as follows: having an
arbitrary µ ∈ M(T) we split it as µ = µc + µd where µc is the continuous
part and µd the discrete part. Then from the assumptions on the set µ̂(Z)
we would like to extract information about µ̂c(Z) which with the aid of the
last lemma leads to the conclusion that µc ∈M0(T), and for measures from
this class we shall apply Theorem 14.

One thing remains to be proved: if µ ∈ M0(T) has a natural spectrum
and ν is an arbitrary measure with a natural spectrum, then µ+ ν also has
a natural spectrum. The key to obtain this fact is an important theorem of
Zafran [Za]. To formulate it we introduce the following definition.

Definition 18. Let C denote the set of measures with natural spectrum
with Fourier–Stieltjes coefficients from c0, i.e.

C = {µ ∈M0(T) : σ(µ) = µ̂(Z) = µ̂(Z) ∪ {0}}.
For any commutative Banach algebra A we denote by M(A) the space of

maximal modular ideals of A, identified also as the set of all multplicative
linear functionals on A (cf. [Ż]).

Theorem 19 (Zafran). The following hold true:

(i) If h ∈M(M0(T)) \ Z, then h(µ) = 0 for µ ∈ C .
(ii) C is a closed ideal in M0(T).
(iii) M(C ) = Z.
It is easy an elementary fact that L1(T) ⊂ C and from the preceding

theorem we conclude that

Rad(L1(T)) = {µ ∈M(T) : µ∗k ∈ L1(T) for some k ∈ N} ⊂ C .

In contrast to the second conclusion of Zafran’s theorem, the sum of two mea-
sures with natural spectrum does not necessarily have a natural spectrum.
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The proof of this fact is based on the construction of a measure supported
on an independent Cantor set as in [R] (see also [Za] for details). However, as
stated before, assuming more on one summand provides the desired property.

Theorem 20. The sum of two measures with natural spectrum has a
natural spectrum if one of them has Fourier coefficients tending to zero.

Proof. The spectrum of a measure is the image of its Gelfand transform.
Hence using the result of Zafran for µ ∈ C and ν with natural spectrum, we
obtain

σ(µ+ ν) = {ϕ(µ+ ν) : ϕ ∈M(M(T))}
= (µ̂+ ν̂)(Z) ∪ {ϕ(ν) : ϕ ∈M(M(T)) \ Z}.

Since ν has a natural spectrum, for every ϕ ∈ M(M(T)) we have ϕ(ν) ∈
ν̂(Z). Now we consider two cases:

1. ϕ(ν) ∈ ν̂(Z) \ ν̂(Z).
2. ϕ(ν) ∈ ν̂(Z).

In the first case there exists an increasing sequence (nk)k∈N of integers such
that limk→∞ ν̂(nk) = ϕ(ν). Since µ ∈M0(T), we get ϕ(ν) = limk→∞ ν̂(nk) =
limk→∞(µ̂+ ν̂)(nk). Hence ϕ(ν) ∈ (µ̂+ ν̂)(Z), which completes the proof in
this case.

In the second case ϕ(ν) = ν̂(n0) for some n0 ∈ Z. If µ̂(n0) = 0 then
ϕ(ν) = ν̂(n0) + µ̂(n0) ∈ (µ̂ + ν̂)(Z) and the result follows. Assume now
µ̂(n0) 6= 0. If ν̂(n0) is an accumulation point of σ(ν) = ν̂(Z), then we proceed
as in the first case. It remains to consider the case when ν̂(n0) is an isolated
point of ν̂(Z). Because µ ∈M0(T) we see that also ν̂(n0) is an isolated point
of (µ̂+ ν̂)(Z). We will prove a stronger statement: ν̂(n0) is an isolated point
of σ(µ+ ν).

Indeed, suppose on the contrary that there exists a sequence of complex
numbers (λk)k∈N ⊂ σ(µ + ν) tending to ν̂(n0). Since the spectrum of a
measure is the image of its Gelfand transform, we can choose a sequence ϕ /∈
(hk)k∈N ⊂ M(M(T)) such that hk(µ + ν) = λk. Without losing generality,
we may assume that for a sufficiently large k, the functionals hk are not the
Fourier coefficients (otherwise ν̂(n0) ∈ (µ̂+ ν̂)(Z) and the proof is finished).
Using again the theorem of Zafran we get

lim
k→∞

hk(µ+ ν) = lim
k→∞

hk(ν) = ν̂(n0).

But hk(ν) ∈ σ(ν) = ν̂(Z). Hence ν̂(n0) is not an isolated point of ν̂(Z),
which contradicts the assumption.

Since σ(µ + ν) has a complex number ν̂(n0) as an isolated point, we
can find two open sets A,B ⊂ C such that A ∩ B = ∅, σ(µ + ν) ⊂ A ∪ B,
ν̂(n0) ∈ B and σ(µ+ν)\ ν̂(n0) ⊂ A. Let f be a holomorphic function defined
on A ∪ B by putting f(z) = z for z ∈ A and f ≡ ν̂(n0) + 1 on B. By the



Fourier–Stieltjes coefficients and spectra of measures 129

spectral mapping theorem there exists a measure υ := f(µ + ν) ∈ M(T)
satisfying

υ̂(m) = f((µ̂+ ν̂)(m)) for all m ∈ Z.
By the definition of f we have υ̂(n) = (µ̂+ ν̂)(n) for n 6= n0. Moreover, since
we have assumed µ̂(n0) 6= 0 we have µ̂(n0) + ν̂(n0) 6= ν̂(n0) and µ̂(n0) +
ν̂(n0) ∈ A, which leads to

υ̂(n0) = (µ̂+ ν̂)(n0).

Therefore, the measures υ = f(µ + ν) and µ + ν have the same Fourier
coefficients, which implies f(µ + ν) = µ + ν. From item (i) of Zafran’s
theorem we have ϕ(µ) = 0, which by functional calculus implies

ν̂(n0) = ϕ(µ+ ν) = ϕ(f(µ+ ν)) = f(ϕ(µ+ ν))

= f(ϕ(ν)) = f(ν̂(n0)) = ν̂(n0) + 1.

This contradiction completes the proof.

5. Proofs of the main theorems. We begin with the proof of The-
orem 1. Let tk, wk and Lk be as in Lemma 16 and let b > 2, a < 1. We
put An = A = {−1, 1} for n ∈ N and take C > 0 from Theorem 12 such
that A ∈ U(C, 2). Next, let us denote by ψn the sequence of functions from
Theorem 14. We construct inductively a sequence εn as follows: ε0 = 1 and
if ε0, . . . , εn are chosen, take the smallest k such that tk < ε1 · . . . · εn and re-
name it as kn. Now let εn+1 be any number which satisfies 0 < εn+1 <

1
2wkn

and εn+1 < ψn(aε1 · . . . · εn). Every n ∈ N has a unique binary expansion

n =
∑

ai2
i, ai ∈ {0, 1}.

We put s(n+ 1) =
∏
εaii . We take the sequence r(n) from Theorem 14 and

modify it (if necessary) to guarantee that r(2n−1) < tkn and r(2n) < 1
2wkn .

Finally, we put
U =

⋃
n∈N

(s(n)An +B(0, r(n))).

Let µ ∈ Mc(T) be such that µ̂(Z) ⊂ U ∪ {0}. Then, by the construction,
(U ∪ {0}) ∩ Ikn = ∅. By Lemma 16 and the remark following it, µ ∈M0(T).
Finally, Theorem 14 yields µ2 ∈ L1(T). Hence, by Zafran’s theorem µ ∈ C ,
i.e. µ has a natural spectrum.

We move on now to the proof of Theorem 2. We start from the following
simple lemma whose proof is left to the reader.

Lemma 21. Let S =
⋃∞
k=1Bk ⊂ C be a union of balls such that 0 ∈ S.

Then there exists a (topological) Cantor set K such that K −K ⊂ S ∪ −S.
Let D = {−1, 1} and E = {−2,−1, 1, 2}. By Theorem 12, D ∈ U(C, 2)

and E ∈ U(C, 4) for some C > 0. Let (sn)
∞
n=1 := (s(n))∞n=0 and (rn)

∞
n=1
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satisfy the conditions of Theorem 14 for An = D, n = 1, 2, . . . , and (sn)
∞
n=1

and (r′n)
∞
n=1 satisfy the conditions of Theorem 14 for An = E, n = 1, 2, . . . ;

suppose moreover that 2|sm|+r′m+r′n < rn for m > n. Let Gn, n = 1, 2, . . . ,
be a Cantor set satisfying, by Lemma 21,

Gn −Gn ⊂
⋃
k>n

B(sk, r
′
k) ∪

⋃
k>n

B(−sk, r′k).

We also put A0 = B0 = G0 = {0}, r0 = r′0 = 0, s0 = 1 and with a little
abuse of notation B(0, 0) = {0}. Then we define

X =
∞⋃
n=0

(snAn +Gn).

Clearly the set X is closed. Suppose now that µ̂(Z) ⊂ X. We will use the
following result from [GW].

Lemma 22. Let µ ∈M(T). Then µ̂d(Z) ⊂ µ̂(Z) where µd is the discrete
part of µ.

Therefore

µ̂c(Z) ⊂ µ̂(Z)− µ̂d(Z) ⊂ X−X ⊂
( ∞⋃
n=0

(snAn +Gn)
)
−
( ∞⋃
n=0

(snAn +Gn)
)

⊂
⋃
n 6=k

(snAn − skAk +Gn −Gk) ∪
⋃
n

((snAn +Gn)− (snAn +Gn))

⊂
⋃
n<k

(snAn +B(0, 2|sk|+ r′n + r′k))

∪
⋃
n

(snBn +Gn −Gn) ∪
⋃
n

(Gn −Gn)

⊂
⋃
n<k

(snBn +B(0, 2|sk|+ r′n + r′k))

∪
⋃
n

(snBn +B(0, 2r′n)) ∪
⋃
n

(snBn +B(0, r′n))

⊂
⋃
n

(snBn +B(0, rn)).

By Theorem 1, we derive that µc has a natural spectrum. Finally, since
additionally µc ∈ M0, Theorem 20 shows that µ = µc + µd has a natural
spectrum.

6. The example. In this section we construct an example of a singular
measure satisfying the assumptions of Theorem 1 which we call the Riesz–
Rudin–Shapiro product. Our construction is an instance of generalized Riesz
products, which are elaborated in Chapter 5 of the book [HMP].
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First, let us recall a few results concerning the usual Riesz products. They
are continuous probability measures on the circle group given as weak-star
limits of trigonometric polynomials of the form

N∏
k=1

(1 + ak cos(nkt)),

where −1 ≤ ak ≤ 1 and nk is a sequence of natural numbers satisfying the
lacunarity condition nk+1/nk ≥ 3. We will write

R(ak, nk) =

∞∏
k=1

(1 + ak cos(nkt))

for the Riesz product built on the sequences ak and nk satisfying the above
conditions. One of the oldest results (see [Zy]) on Riesz products is that
R(1, 3k) is singular with respect to Lebesgue measure (we will write simply
“singular”). However, a much more general theorem was proved in [BM]. In
its formulation below, µ ⊥ ν means that the measures µ, ν ∈ M(T) are
mutually singular and µ ∼ ν denotes equivalence of measures, i.e., µ is
absolutely continuous with respect to ν and vice versa.

Theorem 23 (Brown and Moran). If ak, bk satisfy −1 ≤ ak, bk ≤ 1 and
the natural numbers nk have the property nk+1/nk ≥ 3 then

R(ak, nk) ⊥ R(bk, nk) ⇔
∞∑
k=1

(ak − bk)2 =∞,

R(ak, nk) ∼ R(bk, nk) ⇔
∞∑
k=1

(ak − bk)2 <∞.

As we stated in the introduction, Riesz products may be used for a simple
proof of the Wiener–Pitt phenomenon (see [G]). Moreover, Zafran [Za] gave
a necessary and sufficient condition for the Riesz product R(ak, nk) to have
a natural spectrum under the assumption that the sequence ak converges to
zero.

Theorem 24 (Zafran). Let ak be a sequence tending to zero such that
−1 ≤ ak ≤ 1 and nk be a sequence of natural numbers with nk+1/nk ≥ 3.
Then the Riesz product R(ak, nk) has a natural spectrum if and only if there
exists m ∈ N such that

∞∑
k=1

|ak|m <∞.

It is also proven in [BBM] that in the case when the Riesz product has all
powers mutually singular, its spectrum is the whole disc {z ∈ C : |z| ≤ 1}.
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However, usual Riesz products are not sufficient for our needs and we move
on to the construction of a more general class of measures.

Let us start with some preliminary lemmas and notation. The first one is
a very simple arithmetic argument needed in calculating the Fourier–Stieltjes
coefficients of our measure.

Lemma 25. Let (mj)
∞
j=1, (rj)

∞
j=1 and (nj)

∞
j=1 be increasing sequences of

positive integers with

rk > 2
k−1∑
j=1

((2nj − 1)mj + rj) for k ≥ 2.

Moreover, let (cj)∞j=1 be a sequence of positive integers satisfying

cj ∈ {rj ,mj + rj , 2mj + rj , . . . , (2
nj − 1)mj + rj} for j ∈ N.

Assume that an integer s is expressible in the form

s =
N∑
j=1

bjcj where N ∈ N, bj ∈ {−1, 0, 1} and bN 6= 0.

Then this expression is unique.

The proof is obvious and we omit it.
The fundamental ingredient in our construction are the Rudin–Shapiro

polynomials (cf. [R]). We recall them in the next definition.

Definition 26. Let P0 ≡ 1 and Q0 ≡ 1. We define inductively two
sequences of polynomials by the formula

Pn+1(t) = Pn(t) + ei2
ntQn(t), Qn+1(t) = Pn(t)− ei2

ntQn(t).

We will reserve the name ‘Rudin-Shapiro polynomials’ for the sequence
(Pn)

∞
n=0. Now, we collect the well-known properties of these polynomials.

Proposition 27. For every n ∈ N we have

Pn(t) =

2n−1∑
k=0

ake
ikt where ak ∈ {−1, 1} for k ∈ {0, . . . , 2n − 1}.

Hence ‖Pn‖L2(T) = 2n/2. Also, ‖Pn‖C(T) ≤ 2(n+1)/2.

Using (Pn)
∞
n=1 we define another sequence (wk)

∞
k=1 of polynomials.

Definition 28. Let (Pn)
∞
n=1 be the sequence of Rudin–Shapiro poly-

nomials and (rk)
∞
k=1, (mk)

∞
k=1, (nk)

∞
k=1 be increasing sequences of positive

integers. Let (εk)∞k=1 be a decreasing sequence of positive numbers vanishing
at infinity. We define polynomials (wk)∞k=1 by the formula

wk = εkPnk
(mkt)e

irkt + εkPnk
(mkt)e

−irkt.

We summarize the properties of the polynomials wk.
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Proposition 29. The polynomials wk are real-valued on T and have the
following form (the prime denotes a sum without the term corresponding to
l = 0):
(7)

wk(t) = εk

2nk−1∑′

l=−2nk+1

a|l|e
it(lmk+sgn(l)rk)+a0(e

−itrk + eitrk) where al ∈ {−1, 1}.

Hence, ‖wk‖2L2(T) = ε2k(2
nk+1 − 1). Moreover, ‖wk‖C(T) ≤ εk2(nk+3)/2.

Proof. The polynomials wk are real-valued by Definition 28. Equation
(7) is straightforward by Proposition 27. The remaining properties follow
from (7) and Proposition 27.

Equation (7) reveals an important feature of the polynomials wk, namely
the sequence of their Fourier coefficients has gaps of lengths mk.

We are now ready to construct the Riesz–Rudin–Shapiro products. The
proof of the following proposition is standard, based on fact that the weak-
star convergence of a bounded sequence of measures follows from the point-
wise convergence of its Fourier transforms (see for example [HMP]).

Proposition 30. Let (rk)∞k=1, (mk)
∞
k=1, (nk)

∞
k=1 be increasing sequences

of positive integers. Let (εk)∞k=1 be a decreasing sequence of positive numbers
vanishing at infinity and (wk)

∞
k=1 be the corresponding sequence of polyno-

mials. Assume that

(8) rk > 2

k−1∑
j=1

((2nj − 1)mj + rj) for k ≥ 2

and moreover εk2(nk+3)/2 < 1 for all k ∈ N. Then the sequence of polynomials

fN (t) =

N∏
k=1

(1− wk(t))

converges in the weak-star topology of M(T) as N → ∞ to some positive
measure µ ∈M0(T) with ‖µ‖M(T) = 1 with the additional property

µ̂(Z) ⊂
{
±

m∏
k=1

εlkk : lk ∈ {0, 1}, m ∈ N
}
∪ {0}.

We will write

µ =

∞∏
k=1

(1− wk)

to denote the measure µ obtained by the procedure described above. Adding
more restrictions on our sequences we get
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Proposition 31. Let (rk)∞k=1, (mk)
∞
k=1, (nk)

∞
k=1 be increasing sequences

of positive integers. Let (εk)∞k=1 be a decreasing sequence of positive numbers
vanishing at infinity and (wk)

∞
k=1 be the corresponding sequence of polyno-

mials. Assume that

rk > 2

k−1∑
j=1

((2nj − 1)mj + rj) for k ≥ 2,

mk > 2

k−1∑
j=1

((2nj − 1)mj + rj) for k ≥ 2

(9)

and moreover εk2(nk+3)/2 < 1 for all k ∈ N. Also, assume that there exists a
constant c > 0 such that

(10) ε2k(2
nk+1 − 1) > c for all k ∈ N.

Then the measure µ =
∏∞
k=1(1− wk) does not belong to L2(T).

Proof. The above assumptions yield the existence of a measure µ as in
Proposition 30. Fix N ∈ N and consider the polynomial

fN (t) =
N∏
k=1

(1− wk(t)).

An easy application of Parseval’s identity gives
∞∑

k=−∞
|µ̂(k)|2 ≥

∞∑
k=−∞

|f̂N (k)|2 = ‖fN‖2L2(T).

Hence it is enough to show that ‖fN‖2L2(T) → ∞ as N → ∞. We calculate
(using the normalized Lebesgue measure on [0, 2π])

‖fN‖2L2(T) =
� N∏
k=1

(1− wk(t))2 dt =
� N∏
k=1

(1− 2wk(t) + w2
k(t)) dt.

Expanding the last product we get multiples of the expressions

±
�
wl1i1(t) · w

l2
i2
(t) · · · · · wlmim(t) dt = ±

�
h(t) dt,

where 1 ≤ m ≤ N , i1 < · · · < im and l1, . . . , lm ∈ {1, 2}. A simple arithmeti-
cal argument based on (9) shows that the integral equals 0 unless l1 = · · · =
lm = 2. Indeed, it is equal to ĥ(0), and to prove this assertion let us assume
on the contrary that ls = 1 for some 1 ≤ s ≤ m. If ĥ(0) 6= 0, then there exist
integers j1, j′1, . . . , jm, j′m satisfying jd, j′d ∈ {−2

nid + 1, . . . , 2nid − 1} \ {0}
for all d = 1, . . . ,m except d = s, for which js belongs to the same set of
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integers but j′s = 0, such that

0 =
m∑
k=1

(
mk(jk + j′k) + rk(sgn(jk) + sgn(j′k))

)
.

Condtions (9) imply that this is possible if and only if jk + j′k = 0 for all k.
However, this is excluded by the assumption ls = 1, which leads to the
vanishing of j′s. Putting all this together we obtain

‖fN‖2L2(T) =
� N∏
k=1

(1− wk(t))2 dt =
� N∏
k=1

(1 + w2
k(t)) dt.

Forgetting the terms of order higher than two we have, by Proposition 29,
� N∏
k=1

(1 + w2
k(t)) dt ≥ 1 +

N∑
k=1

�
w2
k(t) dt = 1 +

N∑
k=1

2ε2k(2
nk − 1)).

Using the assumption (10) we finally get

‖fN‖2L2(T) ≥ 1 +Nc→∞ as N →∞.
The main result of this section states that under additional assumptions

on the sequences (rk)
∞
k=1, (mk)

∞
k=1 and (nk)

∞
k=1 the resulting measure is

singular. We also show how to satisfy these assumptions.

Theorem 32. Let (εk)∞k=1 be a decreasing sequence of positive numbers
vanishing at infinity such that εk+1 <

1
2εk for all k ∈ N. Then there exist

sequences (rk)
∞
k=1, (mk)

∞
k=1, (nk)

∞
k=1 of positive integers satisfying the con-

ditions

(11)

rk > 2
k−1∑
j=1

((2nj − 1)mj + rj) for k ≥ 2,

mk > 2

k−1∑
j=1

((2nj − 1)mj + rj) for k ≥ 2,

1/2 < εk2
(nk+3)/2 < 1,

such that the positive measure µ =
∏∞
k=1(1 − wk) ∈ M0(T) with norm 1 is

singular and satisfies

µ̂(Z) ⊂
{
±

m∏
k=1

εlkk : lk ∈ {0, 1}, m ∈ N
}
∪ {0}.

Proof. We show first how to choose the sequence (nk)
∞
k=1. We define nk

as the smallest integer satisfying

2 log2
1

εk
− 5 < nk < 2 log2

1

εk
− 3.
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To satisfy nk+1>nk it is enough to have 2 log2 (1/εk)−3<2 log2 (1/εk+1)−5,
which is equivalent to εk+1 <

1
2εk. Now we define the sequences (rk)∞k=1 and

(mk)
∞
k=1. We put m1 = r1 = 1 and then we choose inductively

rk > 2

k−1∑
j=1

((2nj − 1)mj + rj) for k ≥ 2,

mk > 2

k−1∑
j=1

((2nj − 1)mj + rj) for k ≥ 2.

We can apply Proposition 31 to derive that the measure µ exists and does
not belong to L2(T) (in fact, the assumption 2nkε2k > 1/32 leads to this
result without referring to Proposition 31). The proof of singularity follows
essentially the argument given in [BM] and [GM] for Riesz products.

We obviously have
∞∑
k=1

2nkεk =∞.

Hence, we may choose a sequence (ck)
∞
k=1 ∈ l2(N) of real numbers and an

increasing sequence (lk)
∞
k=1 of integers such that

(12)
lk+1∑
l=lk+1

cl2
nlεl = 1 for all k ∈ N

with the additional property

(13)
∞∑
l=1

c2l 2
nl <∞.

We set

Al = {rl, rl +ml, rl + 2ml, . . . , rl + (2nl − 1)ml} ⊂ N for l ∈ N.

Clearly, Al ∩ Ak = ∅ for l 6= k and |Al| = 2nl . Moreover, µ̂(n) = sgn µ̂(n)εl
for n ∈ Al. Consider polynomials fk for k ∈ N defined by

(14) fk(t) =

lk+1∑
l=lk+1

cl
∑
n∈Al

sgn µ̂(n)eint.

By (13) we have

(15) ‖fk‖2L2(T) =

lk+1∑
l=lk+1

2nlc2l → 0 as k →∞.
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We now perform a crucial calculation of ‖fk‖2L2(T,µ):

‖fk‖2L2(T,µ) =
�
fk(t)fk(t) dµ

=
∑
l

2nlc2l +
∑
l

c2l
∑

n,m∈Al
n6=m

sgn µ̂(n) sgn µ̂(m) µ̂(m− n) +
∑
l,r
l 6=r

cl2
nlεlcr2

nrεr.

However, µ̂(m− n) = 0 for m,n ∈ Al, n 6= m (by (11) and the construction
of µ in Proposition 30) and the second sum vanishes. Simple manipulations
of the remaining terms give∑

l

2nlc2l +
∑
l,r
l 6=r

cl2
nlεlcr2

nrεr =
∑
l

2nlc2l +
(∑

l

2nlεlcl

)2
−
∑
l

c2l 2
2nlε2l .

By (12), the second term equals 1 and so

‖fk‖2L2(T,µ) = 1 +

lk+1∑
l=lk+1

c2l 2
nl(1− 2nlε2l ).

The assumption 2nlε2l > 1/32 leads to 1 − 2nlε2l < 31/32, which, with the
aid of (13), gives

lk+1∑
l=lk+1

c2l 2
nl(1− 2nlε2l )→ 0 as k →∞.

Hence

(16) ‖fk‖L2(T,µ) → 1 as k →∞.

We shall now show that

(17) lim
k→∞

‖fk − 1‖L1(T,µ) = 0

Applying the Schwarz inequality we get( �
|fk − 1| dµ

)2
≤

�
|fk − 1|2 dµ =

�
|fk|2 dµ− 2Re

�
fk dµ+ 1

=
�
|fk|2 dµ− 2Re

lk+1∑
l=lk+1

cl2
nlεl + 1→ 0 as k →∞.

The last assertion follows from (12) and (16). This proves (17).
Finally, by (15) and (17), we can find a subsequence (fkj ) and a Borel

set F ⊂ T of full Lebesgue measure and with µ(F ) = 1 such that

lim
j→∞

fkj (t) = 0 for t ∈ F , lim
j→∞

fkj = 1 µ-a.e. on F .
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Both the normalized Lebesgue measure and µ are positive and have norm 1.
Hence µ is singular with respect to the Lebesgue measure, which finishes the
proof.

7. Final remarks. 1. The components of the open set U constructed
in Theorem 1 tend to 0 very fast. A closer look at the proof shows that
the reciprocal of the distance of the nth component to 0 grows as fast as
the Ackermann function A(4, 2n), which is very fast. It is not easy to see in
which places of the proof this growth could be optimized.

2. Our proof shows that the continuous part of a measure satisfying the
assumptions of Theorem 1 has an absolutely continuous convolution square.
We do not know, however, whether this could be improved. In particular it
would be interesting to find an example of an open set U1 such that a con-
tinuous measure is absolutely continuous if it has all its Fourier coefficients
in U1.

3. It would also be interesting to construct an open set Uk with the
property that any function with Fourier coefficients from Uk has only the
kth convolution power absolutely continuous, and such that there exists a
measure with Fourier coefficients in Uk with all smaller convolution powers
singular.

4. The above property uses the fact that the sum of measures with Fourier
coefficients tending to 0 whose convolution powers are absolutely continuous
belongs to the Zafran class C . We also conjecture that the converse holds:
any measure from C can be decomposed into an (infinite) sum of measures
whose convolution powers are absolutely continuous.

5. The crucial element in our proof was the use of the Littlewood con-
jecture to estimate the number of repetitions of any specific value taken by
the Fourier coefficients. In the case of the Cantor group, the Littlewood con-
jecture does not hold. This fact encourages us to ask whether any infinite
Wiener–Pitt set exists for the convolution measure algebra on the Cantor
group.

6. Our Lemma 8 is a stronger version of the second part of Theorem 15,
which is taken from [GM]. Our proof uses the exact version of the Little-
wood conjecture, which was not available when [GM] was written. But our
proof differs in more respects: it uses Bożejko–Pełczyński’s invariant local
approximation property, which seems to be a simpler method.

7. While Lemma 8 does not hold for torsion abelian groups, because the
Littlewood conjecture is false there, it seems likely that Lemma 9 may be
extended to this case—but this would require completely different methods.
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